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ABSTRACT

Motivation: There has been an increasing interest in expressing
a survival phenotype (e.g. time to cancer recurrence or death) or
its distribution in terms of a subset of the expression data of a
subset of genes. Due to high dimensionality of gene expression
data, however, there is a serious problem of collinearity in fitting a
prediction model, e.g. Cox’s proportional hazards model. To avoid
the collinearity problem, several methods based on penalized Cox
proportional hazards models have been proposed. However, those
methods suffer from severe computational problems, such as slow
or even failed convergence, because of high-dimensional matrix
inversions required for model fitting. We propose to implement the
penalized Cox regression with a lasso penalty via the gradient lasso
algorithm that yields faster convergence to the global optimum
than do other algorithms. Moreover the gradient lasso algorithm
is guaranteed to converge to the optimum under mild regularity
conditions. Hence, our gradient lasso algorithm can be a useful tool in
developing a prediction model based on high-dimensional covariates
including gene expression data.
Results: Results from simulation studies showed that the prediction
model by gradient lasso recovers the prognostic genes. Also results
from diffuse large B-cell lymphoma datasets and Norway/Stanford
breast cancer dataset indicate that our method is very competitive
compared with popular existing methods by Park and Hastie and
Goeman in its computational time, prediction and selectivity.
Availability: R package glcoxph is available at
http://datamining.dongguk.ac.kr/R/glcoxph.
Contact: park463@uos.ac.kr

1 INTRODUCTION
DNA microarray is a biotechnology allowing simultaneous
monitoring of tens of thousands of gene expression in cells (Brown
and Botstein, 1999). It has important applications in pharmaceutical
and clinical research, including tumor classification, molecular
pathway modeling and functional genomics. The identification
of genes related to survival may provide new information on
pathogenesis and etiology, and may further aid in the search for
new targets for drug design.

There has been an increasing interest in relating gene expression
profiles to survival phenotypes such as time to cancer recurrence or
death. Recent works include semi-supervised methods (Bair and

∗To whom correspondence should be addressed.

Tibshirani, 2004), supervised principal components (Bair et al.,
2006), a Cox regression based on threshold gradient descent (Gui
and Li, 2005a), the LARS-Cox (Gui and Li, 2005b), the residual
finesse (Segal, 2006) and cancer survival prediction using automatic
relevance determination (Kaderali et al., 2006).

In particular, we are interested in the Cox regression (Cox,
1972) because of its popularity in the analysis of survival data
with censoring. However, due to high dimensionality of gene
expression data, there is a serious problem of collinearity in
applying the Cox proportional hazards model directly. To avoid
the collinearity problem, several methods based on penalized Cox
proportional hazards models have been proposed. Fan and Li (2002)
adopted the smoothly clipped absolute deviation (SCAD) penalty
in the Cox model and Zou (2008) proposed a path-based variable
selection method to construct an adaptive sparse shrinkage path
of the coefficients. Because the SCAD penalty is non-convex, the
optimization with the SCAD penalty has a non-convex problem.
Zhang and Lu (2007) suggested an adaptive lasso method with an
adaptively weighted penalty on coefficients. Note that the adaptive
lasso has an extra tuning parameter and thus the computation is much
heavier than usual one step estimations. Park and Hastie (2007)
generalized the LARS algorithm to generalized linear models and
the Cox proportional hazards model.

The LARS-Cox procedure by Gui and Li (2005b) suffers from
severe computational problems in its optimization because it
requires inversion of high-dimensional matrices as discussed in
Segal (2006) or Goeman (2008). To remedy the computational
problem of the LARS-Cox, Segal (2006) proposed a method, called
the residual finesse, to speed up the computation by replacing
the survival times by the deviance residuals and Goeman (2008)
proposed to combine gradient descent with the Newton–Raphson
algorithm.

In this article, we apply the gradient lasso algorithm proposed by
Kim et al. (2008) to a Cox proportional hazards model with a lasso
penalty. Unlike the algorithm in Gui and Li (2005b), the gradient
lasso algorithm does not require a matrix inversion, so that it is
scalable to high-dimensional data and yields faster convergence to
the global optimum. Theorem 1 in Kim et al. (2008) guarantees
the convergence of the gradient lasso estimator to the optimum
under mild regularity conditions. Unlike other methods such as Gui
and Li (2005b), Segal (2006) and Zou (2008), the gradient lasso
yields a solution to the exact penalized partial likelihood, not to an
approximate penalized partial likelihood. Hence, our method can be
a useful alternative to those methods in building a statistical model
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to predict the patient’s survival time based on high-dimensional gene
expression data.

A recent method proposed by Park and Hastie (2007) provides
the entire penalization path for the Cox model in a forward stage-
wise manner. Both their method and our gradient lasso act only
on active sets. Because Park and Hastie (2007) require matrix
inversions only on active sets, the computation is faster and more
stable than other methods in the literature. Ma and Huang (2005)
adopted the earlier version of the gradient lasso by Kim and Kim
(2004). In this article, we adopt the refined version of Kim and
Kim (2004) with a deletion step to improve the computational speed
and provide more stable solutions than the earlier version. Another
recent method by Goeman (2008) is a gradient algorithm with an
option of switching to the Newton–Raphson algorithm to avoid
slow convergence. Both our method and the algorithm by Goeman
(2008) are gradient algorithms. However, our method directly solves
the optimization problem of the lasso penalized Cox model in the
constrained form, whereas the methods of Park and Hastie (2007)
and Goeman (2008) solve the optimization problem equally in an
unconstrained form using a Lagrange multiplier.

The rest of the article is organized as follows. In Section 2, we
describe the Cox proportional hazards model with lasso penalty and
present the gradient lasso algorithm for the model. We briefly review
Park and Hastie (2007), too. In Section 3, we compare the methods
in Park and Hastie (2007) and Goeman (2008) with the gradient
lasso on simulated and real microarray datasets. Finally, we give
brief discussions of our method and results.

2 METHODS

2.1 Cox model with lasso penalty
We investigate the relationship between the survival time and the covariates
such as gene expression levels and clinical variables. For patient i (=1, …, N),
we observe (ti,δi,xi1,...,xip), where δi is the censoring indicator taking 1 if
an event is observed and 0 otherwise, ti denotes the survival time if δi =1 or
censoring time otherwise, and xi = (xi1,...,xip)T is the vector of covariates.

By the Cox’s proportional hazards model, the hazard function for patient
i is given as

λi(t)=λ0(t)exp(xT
i β), (1)

where λ0(t) is a unknown baseline hazard function and β = (β1,...,βp)T is
the regression coefficient vector. Then the partial log-likelihood (Cox, 1972)
is expressed as

l(β)=
N∑

i=1

δi

⎧⎨
⎩xT

i β−log

⎛
⎝∑

j∈Ri

exp(xT
j β

⎞
⎠

⎫⎬
⎭,

where Ri is the set of indices of the patients at risk at time ti−.
Typically for microarray data we have p�N , so that there exists a serious

collinearity problem when applying the partial likelihood estimation to the
Cox model directly. Tibshirani (1997) proposed to estimate the parameters
in (1) under the L1 constraint:

β̂ =arg maxl(β), subject to ‖β‖1 ≤s, (2)

where ‖·‖1 denotes the L1 norm and s is a positive number. The
optimization problem (2) is good for dimension reduction of covariates,
but is computationally difficult because the L1 objective function is not
differentiable (Fan and Li, 2002).

The equivalent Lagrange multiplier version of (2) is

β̂ =arg min{−l(β)+λ‖β‖1} (3)

for λ>0. Equation (3) can be interpreted as the posterior mode of β for the
double exponential prior with parameter λ. The tuning parameters s and λ can

be determined, for example, by cross-validated partial likelihood (CVPL) as
in Gui and Li (2005b) and Segal (2006).

Tibshirani (1997) proposed an iterative procedure to solve (2). Let X =
(x1,...,xN ) denote the p×N gene expression matrix, η=βT X, µ=− ∂l

∂η ,

A=− ∂2l
∂η∂ηT , and z=η+A−µ, where A− is a generalized inverse of A. By

the Taylor expansion of l(β), the partial log-likelihood is approximated by

(z−η)T A(z−η). (4)

Tibshirani (1997) suggested to replace A with a diagonal matrix D having
the same diagonal elements as A and solve (4) iteratively using a quadratic
programming. See Tibshirani (1997) for more details on the iterative
procedure. Since the quadratic programming cannot be applied directly to the
cases with p�N , Gui and Li (2005b) applied the Choleski decomposition:
T =A1/2 and TT T =A. Note that, with the restriction rank(A)=n−1 in
place, the quadratic form (4) is invariant to the choice of the generalized
inverse. The LARS-Cox procedure can be solved using the LARS procedure
in Efron et al. (2004). See Gui and Li (2005b) for more details.

As noted earlier, these algorithms can be very computationally intensive
and sometimes may fail to converge to the optimum because they
involve matrix inversions. Other methods in the literature such as Segal
(2006) and Zou (2008) speed up the computation by solving approximate
objective functions. The gradient lasso algorithm presented below solves the
optimization problem (2) directly and does not resort to a matrix inversion.
Thus, the gradient lasso can be a useful alternative. Another recent method
of Goeman (2008) is a gradient algorithm solving (3). While the gradient
lasso updates a single coordinate at a time, the method in Goeman (2008)
utilizes the full gradient at each step and can switch to a Newton–Raphson
algorithm to speed up its convergence around the optimum. As the gradient
lasso is scalable to high-dimensional data, so are the algorithms in Park
and Hastie (2007) and Goeman (2008). Interested readers may see Park and
Hastie (2007) and Goeman (2008) for more details on the algorithms.

2.2 Gradient lasso algorithm
Kim et al. (2008) proposed gradient lasso algorithm, which is a refined
version of the early algorithm by Kim and Kim (2004). The algorithm can be
applied to general convex loss functions. Moreover the algorithm is scalable
to high-dimensional data because it requires only a univariate optimization
at each iteration and its convergence speed is independent of the number of
input variables.

For a given convex function C(β) of β ∈R
p, consider the minimization

of C(β) on S ={β :‖β‖1 ≤s}. Note that C(β)=−l(β) in the lasso penalized
Cox model. The gradient lasso solves the minimization problem by iteratively
updating its solution through the addition and deletion steps.

In the addition step, a coordinate vector v at which C(β) decreases most
rapidly is sought. Let ∇C(β)= (∂C(β)/∂β1,...,∂C(β)/∂βp)T be the gradient
of C(β) with respect to β. By Taylor expansion, we have

C((1−α)β+αv)≈C(β)+α∇C(β)T (v−β)

for v∈S and α∈[0,1], and

min
v∈S

∇C(β)T v= min
j=1,...,p

min

{
∂C(β)

∂βj
,− ∂C(β)

∂βj

}
.

Let

ĵ=arg max
j=1,...,p

{∣∣∣∣ ∂C(β)

∂βj

∣∣∣∣
}

and γ̂ =−s×sign

(
∂C(β)

∂βj

)
.

Let v̂ be a vector such that its ĵ-th coordinate of v is γ̂ and the other coordinates
are zeros. The current solution β is updated as (1−α̂)β+α̂v̂, where the
weight α̂ is determined by

α̂=arg min
α∈[0,1]C((1−α)β+αv̂). (5)

Since we take a convex combination, the updated solution always satisfies
the constraint S.
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1. Initialize: β =0 and m=0.

2. Do until convergence

(a) Addition:

i. Compute the gradient ∇C(β).

ii. Find the ĵ maximizing |∂C(β)/∂βj| for j=
1,...,p and γ̂ =−s×sign(∂C(β)/∂βĵ).

iii. Let v be a p dimensional vector such that its ĵ-th
element γ̂ and the other elements are zeros.

iv. Find α̂=argminα∈[0,1]C
(
(1−α)β+αv

)
.

v. Update β = (1−α̂)β+α̂v.

(b) Deletion:

i. Calculate hσ as in (6).

ii. Find δ̂ as in (7).

iii. Update β =β+ δ̂h.

(c) Set m=m+1.

3. Return β.

Fig. 1. The gradient lasso algorithm.

The earlier version of the algorithm (Kim and Kim, 2004) consisting of
only the addition step may converge slowly near the optimum. To resolve
this problem, Kim et al. (2008) introduced the deletion step. The deletion
step speeds up the algorithm by updating all the non-zero coordinate of β

simultaneously. The active set σ is defined as σ ={j :βj �=0}. Denote the
current solution and corresponding gradient of the current solution with
respect to an active set as βσ and ∇C(βσ ), respectively. Then we move
βσ toward the direction of −∇C(βσ ). If the current solution is placed on
the surface of S with redundant non-zero coefficients, such a move may not
satisfy the constraint S. In order to make the move to satisfy the constraint,
we replace ∇C(βσ ) by

hσ =−∇C(βσ )+θσ ∇C(βσ )T θσ /|σ |, (6)

where θσ is the sign vector of βσ and |σ | is the cardinality of σ . Let
U =mink∈σ {−βk/hk :βkhk <0}. Let P denote the permutation matrix that
collects the non-zero elements of β in the first |σ | elements. Then we move
βσ toward hσ until one of the non-zero coordinates becomes zero. That is,
β is updated as β+ δ̂h, where

δ̂=arg min
δ∈[0,U]C(β+δh) (7)

and h=PT
(

hσ

0

)
. When δ̂=U, one of non-zero coordinates is deleted.

Figure 1 summarizes the gradient lasso algorithm.

2.3 Performance measures
In the microarray survival literature, the predictive performance of a model
is typically assessed as follows: (i) risk scores based on the fitted model
are computed for patients in a (withheld) test dataset, (ii) strata (usually
two) are created based on thresholding these scores and (iii) log-rank
testing of between-strata survival differences is performed. The greater
the achieved significance the more predictive the model is deemed to be.
In our data analysis, the threshold value of the predictive score is set to
zero for dividing patients into low- and high-risk groups. Limitations of
this approach include not just the arbitrariness of the imposed stratification
but, more importantly, the familiar shortcoming of P-values not necessarily
capturing effect size/explained variation. A more refined approach is afforded

by the use of time-dependent ROC curves, proposed by Heagerty et al.
(2000) and used in the present context by Gui and Li (2005b). Let f (X)
be the predictive model, where X = (X1,...,Xp) denotes a p-dimensional
random vector measuring the gene expression levels of an individual. Define
time-dependent sensitivity and specificity functions at a cutoff point c as

sensitivity(c,t|f (X))=P(f (X)>c|
(t)=1) (8)

specificity(c,t|f (X))=P(f (X)≤c|
(t)=0), (9)

where 
(t) is the event indicator at time t. Throughout the article, the
cutoff point c is set to zero as in Gui and Li (2005b) and Segal (2006).
The corresponding time-dependent ROC curve at time t, ROC(t|f (X)), is
then just the plot of sensitivity(c,t|f (X)) versus 1−specificity(c,t|f (X)) over
different values of cutoff point c. We adopt the analogous area under the
time-dependent ROC(t|f (X)) curve, denoted as AUC(t|f (X)), in Section 3.
In order to estimate the conditional probabilities in (8) and (9) accounting for
possible censoring, we employ a nearest neighbor estimator for the bivariate
distribution function (Akritas, 1994) as in Heagerty et al. (2000).

3 RESULTS
We compared the performance of a recent algorithm by Park and
Hastie (2007), called the coxpath, the gradient algorithm by Goeman
(2008), called the penalized, and our gradient lasso algorithm, called
the glcoxph. Note that the coxpath and the penalized are available
in the R package glmpath and penalized, respectively. The
glcoxph package in R is available upon request from the authors.
The glcoxph directly solves the constrained optimization problem
in (2), while the coxpath and the penalized solve the equivalent
unconstrained optimization (3).

Although there exists a one-to-one correspondence between the
tuning parameters s in (2) and λ in (3), there is no closed conversion
formula between them. Hence, we used different grids for tuning
the coxpath and glcoxph. For the coxpath and the penalized,
we conducted a grid search. More specifically, we extracted the
maximum value, λ̂max, of λ after fitting the coxpath on the training
dataset, obtained the 100 grid points by dividing the interval 1≤
λ≤ λ̂max equally in the log scale, and used those points in tuning.
Note that the coefficients for λ≥ λ̂max are almost the same and thus
the penalization path taken to be flat over the range of λ in the
coxpath. For the glcoxph, the grid for the tuning parameter s was
0.05,0.1,...,5 as available in the previous studies such as Gui and Li
(2005b). We adopted 5-fold CVPL as our criterion for the selection
of tuning parameter.

3.1 Real microarray data
The diffuse large B-cell lymphoma (DLBCL) dataset consists
of 240 samples from patients having DLBCL with expression
measurements on 7399 genes. The clinical outcome was survival
time, either observed or censored. We analyzed two different sets of
the DLBCL data: one from Rosenwald et al. (2002) and the other
from Bair et al. (2006). Both of the datasets consist of 160 training
samples and 80 test samples.

Table 1 lists the genes selected by the glcoxph on the datasets
from Rosenwald et al. (2002) and Bair et al. (2006). For the datasets
defined in Rosenwald et al. (2002), eight genes were selected by the
glcoxph. Four of those genes belong to the three gene expression
signature groups, including Germinal-center B-cell signature, MHC
class II signature and Lymph-node signature, defined in Rosenwald
et al. (2002). Note that these four genes belong to the 10 genes
selected by the LARS-Cox in Gui and Li (2005b) and are in fact
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Table 1. Genes selected by the glcoxph on DLBCL datasets

Dataset GenBank ID β̂ Signature Description

AA805575 −0.190 Germ Thyroxine-binding globulin precursor
X00452 −0.163 MHC Major histocompatibility complex, class II, DQ alpha 1
LC_29222 −0.148 Lymph

Rosenwald et al. (2002) X59812 −0.076 Lymph Cytochrome P450, subfamily XXVIIA polypeptide 1
AA729003 −0.062 T-cell leukemia/lymphoma 1A
M15800 −0.052 Mal, T-cell differentiation protein
AA291844 0.016 Immunoglobulin kappa constant
AA760674 0.111 COX15 homolog, cytochrome c oxidase assembly protein (yeast)

AA805575 −0.609 Germ Thyroxine-binding globulin precursor
M81750 −0.117 Myeloid cell nuclear differentiation antigen

Bair et al. (2006) AA729055 −0.086 MHC Major histocompatibility complex, class II, DR alpha
AA809474 0.042 Immunoglobulin heavy constant mu
AA485725 0.140 Immunoglobulin kappa constant

Table 2. The number of genes selected and the partial log-likelihood on DLBCL training datasets

Rosenwald et al. (2002) Bair et al. (2006)

coxpath glcoxph penalized coxpath glcoxph penalized

No. of genes 14 8 16 5 5 5
l(β) −391.1635 −383.8169 −387.0456 −432.3464 −429.5923 −432.3153

Table 3. Log-rank test results on DLBCL test datasets

Rosenwald et al. (2002) Bair et al. (2006)

coxpath glcoxph penalized coxpath glcoxph penalized

No. of high risk 38 31 32 42 33 35
Log-rank P-value 0.0005 0.0000 0.0009 0.0040 0.0000 0.0027

the top four genes selected by the residual finesse in Segal (2006).
The other four genes do not belong to the signature groups defined
in Rosenwald et al. (2002). Among those four genes, AA729003,
a protein coding TCL1A gene and AA760674, a COX15 homolog,
were also selected by the LARS-Cox in Gui and Li (2005b). The
glcoxph has selected five genes from the datasets by Bair et al.
(2006). Two of those genes belong to the two gene expression
signature groups, including Germinal-center B-cell signature and
MHC class II signature, defined in Rosenwald et al. (2002).

Table 2 summarizes the number of selected genes and the partial
log-likelihood by the coxpath, glcoxph and penalized on DLBCL
training datasets. For the training data from Rosenwald et al.
(2002), the coxpath and the glcoxph selected 14, 8 and 16 genes,
respectively, and seven genes were selected by all the methods. Only
by the coxpath, glcoxph and penalized algorithms, 1, 1 and 3 genes
were selected, respectively. Interestingly, all the methods selected
the same five genes on the training data from Bair et al. (2006). Our
method yielded a sparser model than the other methods for both of
DLBCL datasets. Comparing the values of l(β) on the training data,
we observe that the glcoxph yielded slightly larger value of l(β) than

the other methods. The optimal values of tuning parameters on the
training datasets from Rosenwald et al. (2002) were 0.8, 25.2068 and
23.1014 for the glcoxph, the coxpath and the penalized, respectively.
For the second training dataset from Bair et al. (2006), the optimal
values were 0.2 for the glcoxph and 31.2733 for the coxpath and the
penalized.

We compared the predictive performances of the methods. We
stratified the test data into low- and high-risk groups. Table 3 shows
the results by the log-rank test. The P-value of the glcoxph was a
bit smaller than the others on both of the DLBCL datasets.

Time-dependent AUC curves in Figure 2 indicate that the glcoxph
outperforms the other methods over the time span and the predictive
performance of the penalized and the coxpath are almost the same.
Note that the curve for the coxpath and the penalized in Figure 2b are
identical. In summary, for the DLBCL datasets, the glcoxph predicts
the survival distribution better with a smaller number of genes than
the penalized or the coxpath.

Kaplan–Meier curves on the DLBCL datasets are shown in
Figure 3. For the first dataset, the Kaplan–Meier curves have similar
patterns except that the survival probability of the coxpath for the
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high-risk patients has a longer tail than the glcoxph or the penalized.
For the second dataset, the three methods show almost the same
patterns for the low-risk patients. For the high-risk patients, the
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Fig. 2. AUC on DLBCL test datasets (a) Rosenwald et al. (2002) and
(b) Bair et al. (2006).

patterns of the methods are very similar up to 10 years. After
10 years, the survival curve for the coxpath decays very slowly,
while that of the penalized drops quickly.

The experiments were implemented in a Windows R environment
on a computer with 2 GHz Intel Pentium processor and 1 GB RAM.
We compared the computational times on the DLBCL dataset from
Rosenwald et al. (2002). It took 4449.72 s (3094.24 s in tuning and
1355.38 s in training at the optimal value of tuning parameter),
2904.53 s (2903.84 s in tuning and 0.69 s in training), and 59432.29 s
(59361.04 s in tuning and 71.25 s in training) seconds for the
coxpath, the glcoxph and the penalized, respectively. While glcoxph
fits the model at each fixed value of tuning parameter, the coxpath
computes the entire penalization path over the range of s values
with a specific step size. Consequently, a direct comparison of their
computing times may not be so meaningful. However, at least we
can say that the glcoxph is very competitive in terms of computing
time.

In order to compare the performance of these methods further,
we randomly partitioned the DLBCL data and the Norway/Stanford
breast cancer data from Sørlie et al. (2003). The latter consist
of 115 samples from women with breast cancer with expression
measurements on 549 genes. The DLBCL dataset was randomly
partitioned into 160 training samples and 80 test samples, and
the Norway/Stanford breast cancer dataset was partitioned into
76 training samples and 39 test samples. We compared the predictive
performance of the methods over 50 random partitions. Table 4
summarizes the average performance measures (and their standard
errors in the parentheses) over the chosen random partitions.

In terms of the P-value and the AUC, the differences of the
methods were negligible because the numbers are within the error
range. However, the penalized was worse than the other methods
in terms of the P-value on both datasets. The numbers of selected
genes by the glcoxph and the coxpath were not much different, but
fewer than that by the penalized. In summary, the glcoxph showed
similar performance as the coxpath and the glcoxph outperformed
the penalized in prediction and in sparsity of the resulting predictive
model.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

glcoxph

time

P
ro

b 
su

rv
iv

al

low−risk patients
high−risk patients
p=0.000036

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

coxpath

time

P
ro

b 
su

rv
iv

al

low−risk patients
high−risk patients
p=0.000591

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

penalized

time

P
ro

b 
su

rv
iv

al

low−risk patients
high−risk patients
p=0.000916

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

glcoxph

time

P
ro

b 
su

rv
iv

al

low−risk patients
high−risk patients
p=0.000098

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

coxpath

time

P
ro

b 
su

rv
iv

al

low−risk patients
high−risk patients

p=0.004061

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

penalized

time

P
ro

b 
su

rv
iv

al

low−risk patients
high−risk patients
p=0.002766

(a) (b)

Fig. 3. Kaplan–Meier curves on DLBCL test datasets (a) Rosenwald et al. (2002) and (b) Bair et al. (2006).
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Table 4. Results on the DLBCL and Norway/Stanford breast cancer datasets

Average no. of genes selected Average P-value Average AUC

Dataset coxpath glcoxph penalized coxpath glcoxph penalized coxpath glcoxph penalized

DLBCL 13.30 13.54 23.12 0.0590 0.0672 0.1020 0.5917 0.6015 0.5678
(1.6311) (1.2438) (1.7976) (0.0123) (0.0143) (0.0275) (0.0185) (0.0188) (0.0216)

Norway/Stanford 9.36 9.12 13.56 0.0653 0.0474 0.1081 0.6131 0.6119 0.6120
breast cancer (0.8411) (0.7332) (0.9652) (0.0202) (0.0147) (0.0248) (0.0098) (0.0101) (0.0091)

Table 5. Average number of genes and prognostic genes on the simulated data

coxpath glcoxph penalized

No. of No. of Recovery No. of No. of Recovery No. of No. of Recovery
Censoring (%) ρ genes prognostic genes rate genes prognostic genes rate genes prognostic genes rate

0 21.04 2.86 0.13 16.32 2.86 0.18 30.16 2.98 0.09
30 0.3 23.22 2.96 0.12 16.80 2.96 0.18 30.22 2.98 0.09

0.6 22.54 2.94 0.13 15.70 2.94 0.19 28.68 2.94 0.10

0 23.29 2.96 0.12 17.28 2.96 0.17 29.90 2.94 0.09
15 0.3 24.24 2.92 0.12 15.82 2.92 0.18 28.26 2.92 0.10

0.6 22.22 2.92 0.13 15.26 2.92 0.19 30.64 2.98 0.09

The recovery rate is defined as the ratio of the average number of prognostic genes to the average number of genes selected.

3.2 Simulated data
To evaluate the performance of the glcoxph empirically, we carried
out a simulation study. We have modified the simulation scheme
in Owzar et al. (2007) slightly. The data generation scheme is as
follows. For i=1,...,N , we generate εi0,εi1,...,εip independently
from standard normal distribution and set

xij =εij
√

1−ρ+εi0
√

ρ, j=1,...,p.

The gene expression data have a block exchangeable correlation
structure (i.e. genes in the same block are correlated and in different
blocks uncorrelated) with the correlation coefficient ρ and the block
size 10. Survival times are generated from the Cox regression
model (1) in the following configuration of coefficients:

βj =
{ −0.7, j=1,...,D

0, j=D+1,...,p,

where D denotes the number of prognostic genes.
For our experiment, we have set p=1000, N =200 and D=3. We

considered the cases with 15% and 30% of censoring and ρ =0,0.3
and 0.6. A censoring time was generated from U(0,a), where a
was chosen to yield ∼30% of censoring. With a fixed at this value,
a censoring variable was generated from U(b,a+b). Here, b was
chosen to yield about 15% of censoring. We have generated 200
random samples. Hundred samples were used for training and the
others for testing. To assess the variability of the experiment, we
have replicated the above process 100 times.

We compared our method with the coxpath and the penalized.
The tuning parameters were chosen by 5-fold CVPL as stated at
the beginning of Section 3. Table 5 shows the average number of
genes and prognostic genes selected by the coxpath and the glcoxph.

Overall the penalized selected the largest number of genes and the
glcoxph selected the least. All the methods selected almost all the
three prognostic genes. The recovery rate of glcoxph was the highest,
the coxpath was the second and the penalized was the lowest.

Table 6 shows average P-value of the log-rank test andAUC on the
simulated data with standard errors in parentheses. All three methods
perform better at 15% censoring than at 30% censoring as expected.
In terms of P-value, the glcoxph performed a bit better than the other
methods. The penalized yielded slightly larger AUC values than the
others. However, their differences seem to be marginal. Combined
with the results reported in Table 6, we conclude that the glcoxph
showed similar predictive performance as the other methods with a
more succinct model and a shorter computing time.

4 DISCUSSION
We applied the gradient lasso algorithm by Kim et al. (2008) to
the Cox proportional hazards model. Most of the algorithms for
the Cox model with lasso penalty suffer from severe computational
problems. Due to matrix inversions, those algorithms converge very
slowly or even fail to converge to the optimum. Meanwhile, the
gradient lasso algorithm is scalable to high-dimensional data because
it does not require matrix inversions. Also the gradient lasso tackles
the exact penalized partial likelihood directly, while many other
methods solve approximated penalized partial likelihoods. We have
compared the gradient lasso algorithm with recent algorithms by
Park and Hastie (2007) and Goeman (2008) on DLBCL datasets from
Rosenwald et al. (2002) and Bair et al. (2006), Norway/Stanford
breast cancer dataset from Sørlie et al. (2003) and also on a simulated
dataset. Results indicate that our gradient lasso algorithm is very
competitive in analyzing high-dimensional survival data in terms of
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Table 6. Average P-values of log-rank test and AUC on the simulated data with standard errors in parentheses

coxpath glcoxph penalized

Censoring (%) ρ P-value AUC P-value AUC P-value AUC

0 0.0183 (0.0090) 0.6452 (0.0132) 0.0113 (0.0071) 0.6444 (0.0052) 0.0232 (0.0096) 0.6546 (0.0018)
30 0.3 0.0038 (0.0017) 0.6524 (0.0110) 0.0039 (0.0032) 0.6582 (0.0046) 0.0028 (0.0071) 0.6677 (0.0136)

0.6 0.0013 (0.0004) 0.6588 (0.0102) 0.0010 (0.0004) 0.6603 (0.0051) 0.0026 (0.0013) 0.6659 (0.0172)

0 0.0028 (0.0008) 0.6525 (0.0091) 0.0015 (0.0007) 0.6768 (0.0046) 0.0092 (0.0064) 0.6685 (0.0086)
15 0.3 0.0020 (0.0013) 0.6798 (0.0041) 0.0011 (0.0005) 0.6851 (0.0051) 0.0008 (0.0004) 0.6691 (0.0065)

0.6 0.0002 (0.0001) 0.6679 (0.0092) 0.0005 (0.0003) 0.6779 (0.0046) 0.0005 (0.0004) 0.6827 (0.0061)

sparsity of the final prediction model, predictability and computing
time. Since our algorithm can yield a more stable solution to the
penalized Cox model in a faster manner than other methods in the
literature, it will provide an efficient tool in developing a prediction
model for survival time based on high-dimensional microarray data.

There are several issues yet to be investigated. We considered
relating only gene expression profiles to survival phenotypes in our
study. In the Cox proportional hazards model, the incorporation of
some categorical clinical variables is anticipated. One may consider
borrowing ideas from the blockwise sparse regression, an extension
of the group lasso in Yuan and Lin (2006) to general loss functions,
proposed by Kim et al. (2006). A non-parametric extension of the
penalized Cox regression is another direction of interest. Liu (2008)
proposed a garrote method of feature selection in the penalized
partial likelihood of additive Cox models. An advantage of the
garrote method is that it can deal with continuous as well as
categorical variables. However, it seems that there is room for
improvement in the computational aspect of the garrote method.
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