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ABSTRACT

Motivation: Recently, many univariate and several multivariate
approaches have been suggested for testing differential expression
of gene sets between different phenotypes. However, despite a
wealth of literature studying their performance on simulated and
real biological data, still there is a need to quantify their relative
performance when they are testing different null hypotheses.
Results: In this article, we compare the performance of univariate
and multivariate tests on both simulated and biological data. In the
simulation study we demonstrate that high correlations equally affect
the power of both, univariate as well as multivariate tests. In addition,
for most of them the power is similarly affected by the dimensionality
of the gene set and by the percentage of genes in the set, for which
expression is changing between two phenotypes. The application of
different test statistics to biological data reveals that three statistics
(sum of squared t-tests, Hotelling’s T2, N-statistic), testing different
null hypotheses, find some common but also some complementing
differentially expressed gene sets under specific settings. This
demonstrates that due to complementing null hypotheses each test
projects on different aspects of the data and for the analysis of
biological data it is beneficial to use all three tests simultaneously
instead of focusing exclusively on just one.
Contact: Galina_Glazko@urmc.rochester.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
In recent years, there has been a considerable shift in attention
from single components of molecular biological systems towards
studies focusing on functionally related compartments. The reason
for this change can be acknowledged, at least partly, to the fact
that today’s systems perspective (Kitano, 2001; Palsson, 2006) is
generally considered as very beneficial to elucidate the collective
functioning of biological processes and even of whole cells. In this
context, it is no surprise that this reflects also in recent developments
regarding the analysis of gene expression data (Emmert-Streib
and Dehmer, 2008) and more specifically endeavors to detect
differentially expressed pathways (Barry et al., 2008; Emmert-
Streib, 2007; Mootha et al., 2003). The analysis of pathways
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(gene ontologies, or pre-selected gene sets) that are significantly
differentially expressed between two phenotypes is intuitively
appealing and there are two known reasons for this. First, by
arranging genes into pathways the dimensionality of the data is
reduced and as a consequence the number of statistical hypotheses
to test. Second, the statement ‘a gene is differentially expressed
between two phenotypes’ has less explanatory power compared to
the statement ‘a pathway is differentially expressed between two
phenotypes’. However, the idea to look for differentially expressed
pathways (gene sets in what follows) appeared with a different
reasoning in mind. There is a general belief that in metabolic
diseases changes in gene expression are moderate and cannot be
detected for individual genes. For example, after correction for
multiple tests there were no differentially expressed genes between
type II diabetes positive and negative patients (Mootha et al.,
2003). In contrast, the search for differentially expressed gene sets
identified a set of genes involved in oxidative phosphorylation as
coordinately decreased in human diabetic muscle (Mootha et al.,
2003). In the latter work, Mootha and colleagues described the first
algorithm (‘Gene Set Enrichment Analysis’, GSEA) focused on the
expression changes in a set of genes as opposed to changes in the
expression of individual genes. Since that time many approaches
for the analysis of gene sets have been suggested (Kim and Volsky,
2005; Nettleton et al., 2008; Tomfohr et al., 2005) and their number
is still growing (see Ackermann and Strimmer, 2009 for a review).
The major difference between them was formulated by Goeman
and Buhlmann (2007) in terms of the scope of the comparisons
of these approaches. Competitive tests compare a gene set against
the rest of all sets and self-contained tests answer the question
whether two gene sets are differentially expressed between different
phenotypes. In what follows we concentrate on the self-contained
tests only [see Goeman and Buhlmann (2007) for further discussion].
Self-contained tests, in turn, are different in terms of whether they
are multivariate and account for interdependencies among genes
(e.g. Hotelling’s T2 test: Kong et al., 2006; Lu et al., 2005;
Xiong, 2006; GlobalANCOVA: Hummel et al., 2008; N−statistic:
Klebanov et al., 2007), or disregard existing complex correlation
structure in a gene set and consider gene-level statistics only (e.g.
weighted sum of t-tests: Tian et al., 2005; median-based or sign-
tests: Jiang and Gentleman, 2007). Furthermore, for gene-level
statistics a transformation of the test statistics is frequently used,
to account for the presence of up- and down-regulated genes in
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a gene set (Ackermann and Strimmer, 2009). More importantly,
for univariate and multivariate self-contained tests the underlying
statistical hypotheses are different. For example, Hotelling’s T2

tests the equality of two multivariate mean vectors while N-statistic
tests the equality of two multivariate distributions. A combination
of univariate statistics (either transformed or not) studies whether
the aggregate gene-level test score differentiates between two
phenotypes (Jiang and Gentleman, 2007). We want to emphasize
that due to these complementing null hypotheses each test projects
on different aspects of the data.

To get the most out of the many tests available one needs to know
their relative power in different settings and account for different
hypotheses they test. In this article, we compare the performance
of univariate and multivariate tests on simulated and biological
data with three questions in mind. First, not all genes in a gene
set are expected to change their expressions between different
phenotypes. The percent of genes changing their expression in a
gene set, in the way that the entire gene set is called differentially
expressed (‘detection call’), is an important but currently unknown
characteristic of a test performance. Second, genes in a gene set
are functionally related and have complex correlation structure.
Multivariate tests might have better power because they account
for interdependences among genes considering the joint distribution
of gene expression levels, in contrast to univariate tests, which test
differences in the marginal distributions, but this hypothesis requires
confirmation. The third question is an implication of the second:
one might expect that because univariate and multivariate statistics
test different null hypotheses that for real biological data they may
result in completely different gene sets. There is a reason for concern
here, because for example the application of Principal Component
Analysis and gene-level tests resulted in a similar scenario (Jiang and
Gentleman, 2007). In this article we answer the first two questions
on simulated data, mimicking the stated conditions and study in
detail the third one on two biological data sets.

In our analysis we compare five statistical tests, four tests
representing popular choices in testing whether two gene sets
are differentially expressed between different phenotypes (though
testing different statistical hypotheses) and one test which has never
been used in the context of gene expression sets before. We include
two multivariate tests, Hotelling’s T2 test (Lu et al., 2005), and
N-statistic (Klebanov et al., 2007), also known as non-parametric
Cramer test (Baringhaus and Franz, 2004) and two univariate tests
(different transformations of the t-statistic, see below). A fifth test,
the multivariate Dempster’s T1 (Dempster, 1958) was recently
considered by Srivastava and Du (2008) in the context of power
study (see Srivastava and Du, 2008 for further details). For biological
data we compare the performance of these tests with other popular
approaches (Jiang and Gentleman, 2007; Liu et al., 2007).

2 METHODS
Consider a pair of biological conditions, such as ‘case’ versus ‘control’ or
‘treated’versus ‘untreated’. Suppose there are n1 samples of measurements of
p genes for the first, and n2 samples of measurement of p genes for the second
conditions. Let the two p-dimensional random vectors of measurements
X1, …, Xn1 and Y1, …, Yn2 be independent and identically distributed with
the distribution functions F, G, mean vectors X̄ , Ȳ and p×p covariance
matrices Sx , Sy. We consider the problem of testing the hypothesis H: F = G
against a fixed alternative F �= G.

2.1 Test statistics
2.1.1 Hotelling’s T2. Hotelling’s T2 does not test the hypothesis H:
F = G. If F and G are multivariate normal distributions with common
covariance matrix, the Hotelling’s T2 tests the simplified hypothesis X̄ = Ȳ .
The corresponding test statistic is

T2 = n1n2

n1 +n2
(X̄ −Ȳ )S−1(X̄ − Ȳ )T (1)

where S is the pooled variance–covariance matrix of the measurements. The
problem, however, is that if p is larger than n1 + n2−2 the covariance matrix
becomes singular and cannot be inverted. In gene expression studies the
number of samples is always much less than the number of observation
and to calculate the inverse one needs to use additional steps. One obvious
modification is to use a generalized matrix inverse instead of S−1, and another
one is the dimensionality reduction (e.g. Kong et al., 2006). Yet another
possibility is to use the shrinkage estimator by Schafer and Strimmer (2005).
We did not find significant differences between results obtained using the
generalized matrix inverse (as implemented in Venables and Ripley, 1999)
and the shrinkage estimator; in what follows the generalized inverse is used.

2.1.2 Dempster’s T1. For the same simplified hypothesis Dempster (1958)
suggested an approximate T2 test, avoiding the problem of singular matrix
inverse

T1 =
n1n2

n1+n2
(X̄ −Ȳ )(X̄ − Ȳ )T

trS
(2)

asymptotically distributed as F-statistics under special conditions (see
Srivastava and Du, 2008 for details).

2.1.3 N-statistic. For testing the hypothesis H: F = G against a fixed
alternative F �= G Klebanov et al. (2007) and Baringhaus and Franz (2004)
proposed test statistic

Nn1,n2 = n1n2

n1 +n2

⎡
⎣ 1

n1n2

n1∑
i=1

n2∑
j=1

L(Xi,Yj)− 1

2n2
1

n1∑
i=1

n2∑
j=1

L(Xi,Xj)

− 1

2n2
2

n1∑
i=1

n2∑
j=1

L(Yi,Yj)

⎤
⎦ (3)

Here we consider only L(X,Y )=‖X −Y‖, the Euclidean distance in Rp. In
the original papers several other kernel functions L were suggested as well
(see Baringhaus and Franz, 2004; Klebanov et al., 2007).

2.1.4 Univariate tests. Tian et al. (2005) suggested averaging the values
of t-statistic for individual genes and testing the hypothesis of no association
between gene sets and phenotypes with label permutations. This approach
again tests the simplified hypothesis of no differences in mean expressions
between two phenotypes. Here we consider two sign independent statistics:
average absolute values of t−statistic and average squared t-statistic

�t,1 = 1

p

p∑
i=1

|ti|, (4)

�t,2 = 1

p

√√√√
p∑

i=1

t2
i , (5)

because the possibility that the same gene set has to include both, highly up-
and down-regulated genes cannot be excluded.

2.2 Simulation setup
We simulated two samples of equal size, N /2 from the p-dimensional normal
distribution N(0,�) and N(µ,�) representing two biological conditions with
different outcomes under the following global and local settings.
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(i) Global settings

(A) The number of genes (the dimensionality of the vector), p was
set to mimic the typical number of genes in a biological pathway,
p = (20, 60, 100). The sample size was N = 40 for all simulations.

(B) In order to test the ‘detection call’ for different statistics under
different local settings (see below) the parameter γ , indicating the
proportion of genes in a pathway under alternative hypothesis,
was introduced. That is in a given pathway only γ p genes were
changing their expression between phenotypes. For every p, γ

was set to be 0.25, 0.5 or 0.75.

(C) In all experiments, the correlation coefficients between pairs of
genes (rij = sij /siisij,i �= j) were set to 0.1, 0.5 or 0.9, respectively,
reflecting the assumptions of approximately uncorrelated data,
medium correlations and highly correlated gene expression data.

(ii) Local settings

(A) The mean vector for the first biological condition was fixed as
0 and all components µi of the mean vector, µ for the second
biological condition were set to change from 0 to 2 with the step
of 0.25, that is µ was varied from µ= (0,...,0) to µ= (2,...,2).
The diagonal elements of the covariance matrix, i.e. variances of
individual genes, were set to 1.

(B) For both biological conditions the mean vectors were set to 0 and
for the second biological condition s2

ii were set to change from 1
to 5 with the step of 1.

For every fixed local setting (A or B) the samples were simulated under
all varieties of global settings, giving in sum 3×3×3×2 = 54 different
simulated data sets.

In order to assess how good the five tests under investigation control
the Type I error rate we estimate it numerically from 1000 replications
of the data set. We estimate the Type I error by the observed proportion
of 1000 replications of the data set, simulated under the null hypothesis,
where the alternative hypothesis was falsely accepted. We also estimate the
empirical power by the observed proportion of 1000 replications of the data
set, simulated under the alternative hypothesis, where the null hypothesis
was correctly rejected. For all of these simulations we assumed a significance
level α = 0.05.

2.3 Biological data sets
To study the performance of different statistics on real biological data we
consider two biological examples, frequently used in the literature with
regards to differentially expressed gene sets.

2.3.1 Gene expression patterns in NCI-60 cell lines (p-53 data set). The
first example comprises 50 samples of NCI-60 cell lines differentiated based
on the status of the p53 gene: 17 cell lines carrying normal p53 gene
and 33 cell lines classified as currying mutated p53 (Subramanian et al.,
2005). This data set was also analyzed by Liu et al. (2007), to compare
the performance of three methods, Global Test, ANCOVA Global Test and
SAM-GS (see Liu et al., 2007 for detail). Expression data and pathways
(C2 functional gene sets, as defined in Subramanian et al., 2005) were
downloaded from GSEA web site (‘Molecular Signature Database’). We
excluded pathways with <15 genes, and studied differential expression of
369 sets. Data were normalized using Variance Stabilization (Huber et al.,
2002) as recommended (Liu et al., 2007).

2.3.2 Acute lymphoblastic leukemia samples (ALL data set). The second
example is a large data set from a clinical trial of ALL. Similar to Jiang
and Gentleman (2007) we considered only two groups of patients with ALL:
those having BCR/ABL fusion gene (37 cases) and those tested negative
for this fusion (42 cases). Data were preprocessed as described (Jiang and

Gentleman, 2007). As gene sets we considered KEGG (Kanehisa and Goto,
2000) pathways with more than 10 members.

For all statistics P-values were obtained from permutations (1000). For
the sake of comparison to the results of Liu et al. (2007) and Jiang and
Gentleman (2007), we fixed the same threshold for all P-values (0.001),
followed as much as possible to their data preprocessing steps and did not
consider correction for multiple testing. The later helps to avoid selection
of a specific multiple testing procedure, influencing the results significantly
(Dudoit and van der Laan, 2008). In these settings we present all pathways,
found differentially expressed by at least one out of four tests (due to the
similarity of Dempster’s and �t,2 in the simulation studies we dropped the
former test for biological data. This similarity is actually expected, because
Dempster’s test is not truly multivariate in a sense it does not account for a
comlex correlation structure).

3 RESULTS

3.1 Simulation studies
3.1.1 Estimated Type I error rate. Table 1 presents the results
of our simulations to estimate the attained significance levels of the
five tests. As can be seen all tests provide rather good estimates of
α = 0.05 when µ = 0 under different parameter settings. It should
be noted that Hotelling’s T2 always provides slightly conservative
estimates of Type I errors, while all other tests are more liberal.

3.1.2 The empirical power of tests when the mean expression vector
changes. Figures 1–3 show the power curves of multivariate and
univariate tests under the local setting A. Generally, among all
factors (namely dimensionality, detection call gamma and pairwise
correlations), the correlations impact the power of the tests in the
most effective way.

When the pairwise correlation is set to 0.1 (Fig. 1) the power of
two univariate tests namely �t,1,�t,2and two multivariate tests,
namely N-statistic, T1, is virtually the same (the power of �t,1
is lower when the detection call is equal to 0.25; Fig. 1, left-
most column). The pathway’s dimensionality slightly influences the
slope of the power curve. When the detection call is set to 0.5 all
four statistics reach ∼100% power when the mean expressions are
0.5 different given the pathway size is 100, 90% power given the
pathway size is 60 and 80% power given the pathway size is 20
(Fig. 1, middle column). The detection call influences the power in

Table 1. Attained significance levels of the Hotelling’s T2, N-statistic �t,1,
�t,2 and T1

Parameters T2 N-statistic �t,1 �t,2 T1

rij =0.1

p = 20 0.048 0.058 0.051 0.046 0.049
p = 60 0.046 0.050 0.051 0.049 0.048
p = 100 0.043 0.055 0.058 0.063 0.061
rij =0.5

p = 20 0.048 0.053 0.051 0.051 0.049
p = 60 0.048 0.044 0.053 0.048 0.049
p = 100 0.043 0.056 0.052 0.053 0.054
rij =0.9

p = 20 0.048 0.057 0.049 0.048 0.047
p = 60 0.048 0.046 0.051 0.050 0.050
p = 100 0.044 0.056 0.056 0.055 0.056
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Fig. 1. The power curves of five tests. The mean expression vector is
changing, the variance is fixed to 1, for correlation of 0.1 among genes.
Parameter ‘genes’ is a number of genes in a gene set. Parameter ‘gamma’
corresponds to detection call.

Fig. 2. The power curves of five tests. The mean expression vector is
changing, the variance is fixed to 1, for correlation of 0.5 among genes.
Parameter ‘genes’ is a number of genes in a gene set. Parameter ‘gamma’
corresponds to detection call.

a similar manner. When the pathway size is set to 60, the power of
all four statistics reaches ∼100% power when the mean expressions
are 0.5 different given the detection call is 0.75, 90% power given
the detection call is 0.5 and 70% power given the detection call is
0.25 (Fig. 1, middle row).

Fig. 3. The power curves of five tests. The mean expression vector is
changing, the variance is fixed to 1, for correlation of 0.9 among genes.
Parameter ‘genes’ is a number of genes in a gene set. Parameter ‘gamma’
corresponds to detection call.

When pairwise correlations are small (0.1) in all settings
Hotelling’s T2 has lower power in comparison to other tests. The
dimensionality of the pathway influences the power of T2 in the
similar way as the power of all other statistics. In contrast, the
detection call influences the power of T2 to a smaller extent: to
reject the null hypothesis T2 needs only several components of the
mean vector to be significantly different (see below).

When the pairwise correlations are set to 0.5 or 0.9 (Figs 2 and 3)
the power of all statistics is generally lower, but the power of �t,1
is influenced the most when the detection call is set to 0.25. For the
pathway size of 100 and a detection call of 0.75, the power curves
for other four statistics are nearly identical (Figs 2 and 3, upper
rows). However, under the presence of correlations even the best-
performing N-statistic reaches the power of 100% only when the
mean expressions are 1.5 different.

An interesting observation is that there is a narrow area of
parameter values where Hotelling’s T2 is the best statistics (Figs 2
and 3, top left). For higher correlations (>0.1) low gamma (<0.5)
and large gene sets (>60) there are intervals of mean differences
for which Hotelling’s T2 slightly outperforms N-statistic. The
difference in power is small but we will see in the results section
for the biological data that this effect is relevant. Aside from these
special parameter settings Hotelling’s T2 gives almost always the
lowest power compared to all other tests.

3.1.3 The empirical power of tests when the mean expression vector
is fixed and the variances are changing. Figure 4 shows the power
curves of multivariate and univariate tests under the local setting B.
Only N-statistic has the power to test the full hypothesis F = G
against a fixed alternative F �=G (Fig. 4). All other statistics have no
power at all. This is expected, because the other tests were designed
for testing different hypothesis. For a pathway, changes in the
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Fig. 4. The power curves of five tests. The mean expression vector is fixed,
the variance is changing from 1 to 5 for correlation of 0.1, 0.5 and 0.9 among
genes.

Table 2. Gene sets in the p53 data sets with P ≤0.001, discovered in at least
one test (Hotelling’s T2, N-statistic, �t,1, �t,2 )

Gene set ID T2 N-statistics �t,1 �t,2 γ a

Cell_Cycle ≤0.001 0.017 0.073 0.05 12.3

Cell_cycle_checkpointII ≤0.001 0.012 0.096 0.101 12.5

Cell_cycle_regulator 0.111 ≤0.001 0.009 0.008 21.4

CR_CELL_CYCLE ≤0.001 0.022 0.078 0.052 11.3

DNA_DAMAGE_SIGNALLING ≤0.001 0.003 0.016 0.006 18.0

g2Pathway 0.076 ≤0.001 0.013 0.007 22.7

badPathway 0.197 ≤0.001 ≤0.001 ≤0.001 26.8

bcl2family_and_reg_network 0.807 0.003 ≤0.001 ≤0.001 21.3

ceramidePathway 0.05 ≤0.001 ≤0.001 ≤0.001 27.7

chemicalPathway 0.129 0.001 0.002 ≤0.001 20.5

CR_DEATH ≤0.001 0.012 0.007 ≤0.001 15.3

hivnefPathway 0.011 0.009 ≤0.001 ≤0.001 18.2

mitochondriaPathway 0.005 ≤0.001 ≤0.001 ≤0.001 30.3

p53hypoxiaPathway 0.247 0.018 ≤0.001 ≤0.001 27.5

p53Pathway 0.009 ≤0.001 ≤0.001 ≤0.001 32.5

radiation_sensitivity 0.382 0.02 ≤0.001 ≤0.001 27.1

SA_FAS_SIGNALLING 0.009 ≤0.001 ≤0.001 ≤0.001 34.8

SA_G1_AND_S_PHASES ≤0.001 ≤0.001 ≤0.001 ≤0.001 37.5

SA_PROGRAMMED_CELL_DEATH ≤0.001 ≤0.001 ≤0.001 ≤0.001 37.5

aThe percent of genes, changing their expression between two phenotypes in a gene set.

variance of the pathway given the same mean vector might indicate
the presence of differential regulation under different phenotypes,
and should be as interesting as changes in the average expression
itself. It appears that this case can be detected by the N-statistic
while all other test statistics are insensitive.

3.2 The analysis of biological data
3.2.1 The power of tests to detect differentially expressed gene sets
for p-53 data set. In sum, different statistics detected 19 gene sets
at the given significance level (P <0.001), differentially expressed
between cancer cell lines with and without p53 mutation (Table 2).
Among them, 13 were also reported in Liu et al. (2007) study and
six were found in this study for the first time. We note that the
sum of squared t-statistics has the highest power [13 significantly

(a) (b)

Fig. 5. Agreement among tests statistics. Venn diagrams for (a) the p53 data
set and (b) the ALL data set.

differentially expressed pathways, Table 2, Fig. 5a] and the result of
�t,1 is a subset of the result of �t,2.

While the results of N-statistic and two univariate tests
almost coincide at the more liberal significance level (e.g.
P < 0.01), for several pathways P-values from Hotelling’s T2

are rather high. On the other hand, four gene sets (Cell_Cycle,
cell_ cycle_checkpointII, DNA_damage_signalling and CR_CELL_
CYCLE) were reported exclusively by Hotelling’s T2 and cannot
be detected by other statistics even at the 0.01 liberal threshold
(except DNA_damage_signalling, detected at 0.01 threshold by
�t,2). These sets represent the major of the functional targets of p53
activity, namely the regulation of cell cycle progression and DNA
damage signaling, and include p53 itself and its multiple targets.
Therefore, one may consider the failure of other statistics to identify
correctly these sets as a false negative error. In what follows we
provide plausible, yet empirical explanation of the reasons behind
sporadically high P-values of Hotelling’s T2 and unexpected false
negative errors of other statistics.

First, we note that generally when P-values from Hotelling’s
T2 are high, the distributions of pairwise correlation
coefficients in two groups are rather different. For example,
for bcl2family_and_reg_network the P-value of Hotelling’s T2

is the largest: 0.807 (Table 2). For this set the distributions of
pairwise correlations in two groups are drastically different and
average pairwise correlations are 0.027 and −0.004, respectively
(Supplementary Fig. 1). For two other gene sets with the
largest P-values from Hotelling’s T2 (radiation_sensitivity and
p53hypoxiaPathway, P-values are 0.382 and 0.247, respectively)
the situation is similar (Supplementary Fig. 1). It might be that in
these cases the assumption of equal covariance for two samples is
violated and the power of the test is dropped.

The presence of false negative errors for the other statistics can
be explained if we introduce the measure of the percentage of
individually changing genes in a gene set. Let us measure this
quantity using absolute values of the t-statistic and consider that
the gene is changing if its t-statistic is more than 1.96 (the factual
value of the threshold here does not matter; it should simply
reflect the presence of change). For the gene sets, detected by
Hotelling’s T2 only (Cell_Cycle, cell_cycle_checkpointII, DNA_
damage_signalling and CR_CELL_CYCLE) this measure is much
lower (12.3, 12.5, 18.0 and 11.3%, respectively), as compared to
other gene sets (Table 2 and Supplementary Fig. S1). Thus the
other statistics cannot detect the overall expression changes in a
set when only few genes are actually changing, in contrast with the
high sensitivity of Hotelling’s T2.
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There are two pathways, reported by univariate tests only, even
if we consider the more liberal significance level (e.g. P <0.01):
radiation_sensitivity and p53hypoxiaPathway. These pathways were
also reported by Liu et al. (2007), include p53 and its targets, and
should be considered as true positives.

3.2.2 The power of tests to detect differentially expressed sets for
ALL data set. Overall for the ALL data set the four tests gave
more homogeneous results compared to the p53 data set, probably
because of the larger ALL sample size (79 slides) of the ALL data
set. Thirty-five KEGG pathways were found differentially expressed
by at least one of the four tests at the given significance level
(P ≤0.001) (Supplementary Table 1). Multivariate and univariate
tests detected simultaneously eight pathways (Fig. 5b). In four cases,
P-values of �t,1 and in four cases Hotelling’s T2 were larger than
0.05 (Supplementary Table 1). As before, the failure of �t,1 to
detect differential expression among sets can be explained by the
small percent of individual genes in a set actually changing their
expression (Supplementary Table 1 and Supplementary Fig. S2).
The failure of Hotelling’s T2 test might be related to the violated
assumption of equal covariance for two samples (Supplementary
Fig. S2). Among 35 sets, 13 were also reported by Jiang and
Gentleman (Jiang and Gentleman, 2007) as differentially expressed.

4 DISCUSSION
The analysis of differentially expressed gene sets is an effective way
to overview the underlying biological trends in gene expression
data sets. There is a rich body of statistical tests available for
finding gene sets, differentially expressed between two phenotypes.
Several comparative studies address the relative performance of
these tests (Jiang and Gentleman, 2007; Liu et al., 2007; Song and
Black, 2008), one suggests a special treatment of gene sets analyses
for prokaryotes (Tintle et al., 2008) and one builds a complete
‘taxonomy’ of the testing procedures (Ackermann and Strimmer,
2009). Here we emphasize that the most fundamental difference
among these approaches is formulated in terms of the null hypothesis
they test.

We have studied the relative power of popular univariate and
multivariate tests for several simulated and two biological data sets.
We considered two gene-level statistics, the average of the absolute
and the squared t-tests for individual genes in a gene set, and three
multivariate statistics, Hotelling’s T2, N-statistic and Dempster T1.
Although for three of these statistics the tested null hypothesis is
different, their relative performance on simulated data is similar. All
tests perform reasonably well in estimating the Type I error rate.
Among the three parameters varied in simulations (the magnitude
of pairwise correlations among gene expressions, the number of
genes changing their expression in a set and the size of a gene set)
the magnitude of pairwise correlations has the largest influence on
the power of all tests. Despite the general belief that multivariate
tests, accounting for a complex interdependence structure between
genes might have a better power compared to univariate tests this
study demonstrates that the use of multivariate statistics does not
lead to a substantial gain in power when correlations are present
and high. When correlations are low both, the number of genes
changing their expression in a set and the size of a set have only
slight influence on the power (except Hotelling’s T2), in contrast to
the case of high correlations. For the poor performance of Hotelling’s

T2 there are two possible explanations in our opinion. First, the
numerical estimation of the generalized inverse may be unstable for
conditions relevant for the analysis of microarray data. Second, this
may depend directly or indirectly on an altered correlation structure
in both conditions because they form the underlying basis for the
generalized inverse of the combined covariance matrix. For both
reasons additional studies are necessary. On the other hand, the
power of Hotelling’s T2 rises quickly when the number of genes
changing in a set and the set’s size increase when correlations
are low. In sum, the performance of all tests coincides when the
correlations are low, the gene set size is large and the percent of
genes changing their expression is high. However, the beneficial
combinations of all these factors may rarely happen in true biological
data and the performance of these tests might be different for real
data set.

The analysis of biological data again demonstrates that there are
some aspects in gene expression data that cannot be efficiently
modeled. From the Venn diagrams shown in Figure 5a and b one
can see that Hotelling’s T2 is a more important test for biological
data than one might expect from the simulation results in Section 3.
This is not only a surprise but strongly indicates that the simulation
technique lacks important characteristics from real biological data.
Also, for the p53 data set, �t2 has slightly higher power than
N-statistic, while N-statistic always slightly outperforms all other
tests on simulated data. On the other hand, for simulated as well as
biological data, the results of �t1 are subsets of the results of �t2.
Similarly, the good performance of Hotelling’s T2 when the number
of genes changing their expression in a gene set is small is captured
in both, simulated and biological data. That is, the simplified model
assuming a multivariate normal distribution for gene expressions
adequately reflects some, but not all properties of the biological
data.

The intersection of significant gene sets, found by different tests
in p53 and ALL data is substantial. However, Hotelling’s T2 is able
to find gene sets which are not discovered by other tests, where only
about 11–12% of all genes are changing their expression. This is
because Hotelling’s T2 involves all variables symmetrically and can
equally detect changes for a single variable, for all, or for the subset.
One can expect that the sets reported exclusively by Hotelling’s T2

constitute false negative errors for other tests in the case of p53 data,
because these sets directly include p53 together with its functional
targets. We also note that for the p53 and ALL data sets, on the
average only 20–25% of genes in the gene sets are actually changing
their expression (Table 2, Supplementary Table 1). This observation
adds more evidence to the motivation of (Mootha et al., 2003) for
studying gene sets instead of individual genes.

Here we studied two univariate and three multivariate self-
contained tests for detecting differential expression of gene sets. All
these tests can be distinguished by their underlying null hypotheses,
leaving only three conceptually different statistical tests with respect
to the null hypotheses. It should be noted that these three null
hypotheses cover the vast majority of the current universe of self-
contained tests. The three best-performing tests for these hypotheses
(sum of squared t-tests, Hotelling’s T2 and N-statistic), find common
but also complementing gene sets differentially expressed. Due
to complementing null hypotheses, each test projects on different
aspects of the data and for this reason, their simultaneous use for the
analysis of biological data leads to an increased power as compared
to individual tests.
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