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ABSTRACT

Summary: High-throughput RNA sequencing (RNA-seq) is rapidly
emerging as a major quantitative transcriptome profiling platform.
Here, we present DEGseq, an R package to identify differentially
expressed genes or isoforms for RNA-seq data from different
samples. In this package, we integrated three existing methods,
and introduced two novel methods based on MA-plot to detect and
visualize gene expression difference.
Availability: The R package and a quick-start vignette is available
at http://bioinfo.au.tsinghua.edu.cn/software/degseq
Contact: xwwang@tsinghua.edu.cn; zhangxg@tsinghua.edu.cn
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
High-throughput sequencing technologies developed rapidly in
recent years. These technologies can generate millions of reads in
a relatively short time and at low cost. Using such platforms to
sequence cDNA samples (RNA-seq) has been shown as a powerful
method to analyze the transcriptome of eukaryotic genomes (Wang
et al., 2009). RNA-seq can provide digital gene expression
measurement and is regarded as an attractive approach competing
to replace microarrays for analyzing transcriptome in an unbiased
and comprehensive manner.

Up to now, there are few handy programs for comparing RNA-
seq data and identifying differentially expressed genes from the data,
although some recent publications have described their methods for
this task (Bloom et al., 2009; Marioni et al., 2008; Tang et al.,
2009). Here, we present DEGseq, a free R package for this purpose.
Two novel methods along with three existing methods have been
integrated into DEGseq to identify differentially expressed genes.
The input of DEGseq is uniquely mapped reads from RNA-seq data
with a gene annotation of the corresponding genome, or gene (or
transcript isoform) expression values provided by other programs
like RPKM (Mortazavi et al., 2008). The output of DEGseq includes
a text file and an XHTML summary page. The text file contains
the expression values for the samples, a P-value and two kinds of
Q-values for each gene to denote its expression difference between
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libraries. The XHTML summary page contains statistic summary
report graphs as shown in Figure 1A.

2 METHODS
RNA sequencing could be modeled as a random sampling process, in which
each read is sampled independently and uniformly from every possible
nucleotide in the sample (Jiang and Wong, 2009). Under this assumption
the number of reads coming from a gene (or transcript isoform) follows a
binomial distribution (and could be approximated by a Poisson distribution).
Based on this statistical model, Fisher’s exact test and likelihood ratio test
were proposed to identify differentially expressed genes (Bloom et al., 2009;
Marioni et al., 2008). The two methods have been integrated into DEGseq.

2.1 MA-plot-based method with random sampling
model

Using the statistical model described above, we proposed a novel method
based on the MA-plot, which is a statistical analysis tool having been
widely used to detect and visualize intensity-dependent ratio of microarray
data (Yang, et al., 2002). Let C1 and C2 denote the counts of reads
mapped to a specific gene obtained from two samples, with Ci ∼ binomial
(ni, pi), i = 1,2, where ni denotes the total number of mapped reads
and pi the probability of a read coming from that gene. We define M =
log2C1− log2C2, and A = (log2C1+ log2C2)/2. It can be proved that under
the random sampling assumption the conditional distribution of M given
that A = a (a is an observation of A), follows an approximate normal
distribution (see Supplementary Methods Section 1). For each gene on the
MA-plot, we do the hypothesis test of H0: p1 = p2 versus H1: p1 �= p2. Then
a P-value could be assigned based on the conditional normal distribution
(see Supplementary Materials for detail).

2.2 MA-plot-based method with technical replicates
Though it has been reported that sequencing platform has low background
noise (Marioni et al., 2008; Wang et al., 2009), technical replicates would
still be informative for quality control and to estimate the variation due
to different machines or platforms. We proposed another MA-plot-based
method which estimates the noise level by comparing technical replicates in
the data (if available). In this method, a sliding-window is first applied on
the MA-plot of the two technical replicates along the A-axis to estimate the
random variation corresponding to different expression levels. A smoothed
estimate of the intensity-dependent noise level is done by loess regression,
and converted to local standard deviations (SDs) of M conditioned on A,
under the assumption of normal distribution. The local SDs are then used
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Fig. 1. (A) An example of the summary report page generated by DEGseq.
(B) The plot generated by DEGseq showing whether the variation between
technical replicates can be largely explained by the random sampling model.
The red lines correspond to the ‘theoretical’4-fold local SD of M conditioned
on A according to the random sampling model calculated by the method
described in Section 2.1, and the blue lines show the 4-fold local SD of
M estimated by the comparison of technical replicates (as described in
Section 2.2). See Supplementary Methods Section 3 for detail. (C) An
example of differentially expressed genes (red points) identified between
kidney and liver by the MA-plot-based method with random sampling model
at an FDR of 0.1%. The red lines show the ‘theoretical’ 4-fold local SD of M
according to the random sampling model. (D) An example of differentially
expressed genes (red points) identified between kidney and liver by MA-
plot-based method with technical replicates at an FDR of 0.1%. Blue points
are from the replicates (kidneyR1L1 and kidneyR1L3), and the blue lines
show the 4-fold local SD of M for the two technical replicates.

to identify the difference of the gene expression between the two samples
(see Supplementary Materials for detail).

2.3 Multiple testing correction
For the above methods, the P-values calculated for each gene are adjusted
to Q-values for multiple testing corrections by two alternative strategies
(Benjamini and Hochberg, 1995; Storey and Tibshirani, 2003). Users can
set either a P-value or a false discovery rate (FDR) threshold to identify
differentially expressed genes.

2.4 Dealing with two groups of samples
To compare two sets of samples with multiple replicates or two groups
of samples from different individuals (e.g. disease samples versus control
samples), we employed the R package samr (Tibshirani et al., 2009)
in DEGseq. The package samr implemented the method described in

Tusher et al. (2001), which assigns a score to each gene on the basis of
change in gene expression relative to the SD of repeated measurements and
uses permutations of the repeated measurements to estimate FDR.

3 APPLICATION EXAMPLES
We applied DEGseq on the RNA-seq data from Marioni et al. (2008).
The RNA samples from human liver and kidney were analyzed using
the Illumina Genome Analyzer sequencing platform. Each sample
was sequenced in seven lanes, split across two runs of the machine,
and two different cDNA concentrations (1.5 pM and 3 pM) were
tested for each sample. We used the refFlat gene annotation file
downloaded from UCSC Genome browser and chose the method
proposed by Storey and Tibshirani (2003) to correct P-values for
multiple testing.

We first checked whether the variation between technical
replicates could be explained by the random sampling model. This
was done with the ‘checking’ feature in DEGseq (Supplementary
Material) on kidney sample sets kidneyR1L1 (sequenced in Run 1,
Lane 1) and kidneyR1L3, which were generated at same cDNA
concentration. Figure 1B shows that the variation can be almost
fully explained by the random sampling model, which supports the
notion that technical replicates of this dataset have little technical
variation (Marioni et al., 2008). And none of the gene was falsely
identified as differentially expressed between the two replicates
by each method at an FDR of 0.1%, respectively (Supplementary
Table 1). However, samples sequenced at different concentrations
showed larger variance (Supplementary Fig. S1A).

We next applied DEGseq to compare the samples from kidney
(kidneyR1L1) and liver (liverR1L2). For the MA-plot-based
method that needs technical replicates, we used kidneyR1L1 and
kidneyR1L3. More than 6000 genes were identified as differentially
expressed by each method at an FDR of 0.1%, respectively. And the
lists of differentially expressed genes given by different methods
are quite consistent with each other (Supplementary Table S2).
Figure 1C and 1D shows the results given by the MA-plot-based
method with random sampling model and with technical replicates,
respectively. And Supplementary Figure S1 shows the results given
by the likelihood ratio test and Fisher’s exact test.

4 DISCUSSION
In some application, researchers may have several replicates
sequenced under each condition. Current observations suggest that
typically RNA-seq experiments have low technical background
noise (which could be checked using DEGseq) and the Poisson
model fits data well. In such cases, users could directly pool the
technical replicates together to get higher sequencing depth and
detect subtle gene expression changes. Otherwise the methods that
estimate the noise by comparing the replicates are recommended.
DEGseq also supports users to export gene expression values in a
table format which could be directly processed by edgeR (Robinson,
2009), an R package implementing the method based on negative
binominal distribution to model overdispersion relative to Poisson
for digital gene expression data with small replicates (Robinson and
Smyth, 2007).

DEGseq supports using expression values based on either the
raw reads counts or normalized gene expression values like RPKM
(Mortazavi et al., 2008). But for the methods based on the random
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sampling model, we suggest using the raw counts, which better fits
the random sampling model.

DEGseq can also be applied to identify differential expression of
exons or pieces of transcripts. Users can define their own ‘genes’and
compare the expression difference of these ‘genes’using DEGseq by
simply providing their own annotation files in UCSC refFlat format.
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