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ABSTRACT

Motivation: In the past few years, human genome structural
variation discovery has enjoyed increased attention from the
genomics research community. Many studies were published to
characterize short insertions, deletions, duplications and inversions,
and associate copy number variants (CNVs) with disease. Detection
of new sequence insertions requires sequence data, however, the
‘detectable’ sequence length with read-pair analysis is limited by the
insert size. Thus, longer sequence insertions that contribute to our
genetic makeup are not extensively researched.
Results: We present NovelSeq: a computational framework to
discover the content and location of long novel sequence insertions
using paired-end sequencing data generated by the next-generation
sequencing platforms. Our framework can be built as part of a
general sequence analysis pipeline to discover multiple types of
genetic variation (SNPs, structural variation, etc.), thus it requires
significantly less-computational resources than de novo sequence
assembly. We apply our methods to detect novel sequence insertions
in the genome of an anonymous donor and validate our results by
comparing with the insertions discovered in the same genome using
various sources of sequence data.
Availability: The implementation of the NovelSeq pipeline is
available at http://compbio.cs.sfu.ca/strvar.htm
Contact: eee@gs.washington.edu; cenk@cs.sfu.ca
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1 INTRODUCTION
It is estimated that 19–40 Mb of human genomic sequence is missing
from the human genome reference assembly (Li et al., 2009).
Although the Human Genome Project (HGP) revolutionized the
field of genomics, human sequences that are not represented in the
reference genome leads to incomplete genome analyses. The missing
sequences can even harbor undiscovered exons or other types of
sequences of functional importance. There is a need to discover the
loci and content of so-called ‘novel sequence insertions’ to build a

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first three authors
should be regarded as joint First Authors.

more comprehensive human reference genome to better analyze the
genomes of individuals from many different populations.

To date, one of the more promising methods to characterize longer
DNA segments that are not represented in the human reference
genome has been building sequence assemblies from unmapped
fosmid clone ends sequenced with the traditional Sanger-based
capillary sequencing (Kidd et al., 2008) and, then, sequencing the
entire fosmid clone (Kidd et al., 2010). However, the higher cost
of the capillary sequencing is prohibitive to characterize genomes
of thousands of individuals. Next-generation sequencing (NGS)
technologies make sequencing of thousands of genomes possible,
and for the first time, they give us the opportunity to discover
novel sequences across many human populations in order to build
better genome assemblies [or ‘pan genomes’ (Li et al., 2009)].
Various computational methods were developed in the recent years
to characterize structural variation, including deletions, insertions,
inversions and duplications, among human individuals using NGS
platforms (Medvedev et al., 2009). Characterization of longer novel
sequences remained elusive due to the shorter insert size and
sequence length associated with the NGS methods. For example,
applying the end-sequence profiling approach (Kidd et al., 2008;
Korbel et al., 2007; Tuzun et al., 2005; Volik et al., 2003), one
cannot discover insertions >100 bp when 200 bp insert size is used
with the Illumina platform (Bentley et al., 2008; Chen et al., 2009;
Hormozdiari et al., 2009). Currently, the only method applicable for
the discovery of long novel insertions using NGS technologies is
de novo sequence assembly (Chaisson and Pevzner, 2008; Li et al.,
2010; Simpson et al., 2009). However, this approach requires large
computational resources and requires further processing to anchor
the sequences to the reference genome.

Here, we present a computational framework to discover the
content of novel sequence insertions using the NGS platforms. We
test our methods with the high-coverage (42×) short-insert sequence
library generated from the genome of a Yoruba African individual
(NA18507) sequenced using the Illumina platform (Bentley et al.,
2008). We validate the content of the predicted novel sequence
insertions by comparing with sequences generated from fosmid
end-sequence assembly (Kidd et al., 2008), full fosmid sequencing
(Kidd et al., 2010) and de novo sequence assembly of the same
Illumina whole-genome shotgun (WGS) library (Li et al., 2009).
We show that our methods are reliable, and together with the
cost optimizations introduced by the NGS platforms, they can be
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Fig. 1. The overall approach of the NovelSeq pipeline. (a) We start by mapping the paired-end reads to the reference genome and then classify the paired-end
reads as OEA and orphan reads. (b) We then assemble the orphan paired-end reads using available de novo assembly algorithms and screen the contigs for
possible contamination. (c) We cluster the OEA reads into groups and find the insertion locus supported by each OEA cluster. (d) We assemble the unmapped
end-read in each OEA cluster (the OEA reads with different orientation of mapping should be assembled independently). (e) Finally, we merge the orphan
and OEA contigs to anchor the orphan contigs to the reference genome.

efficiently used to characterize the DNA sequences missing from
the reference assembly to obtain a more complete picture of human
genome diversity.

A ‘novel sequence insertion’ refers to an insertion of a sequence
into the donor genome where no subsequence with high similarity
to the inserted sequence exists in the reference genome. We aim
to identify novel sequence insertions in a high-coverage sequenced
donor genome through our computational pipeline NovelSeq.

Note that the insertions of repeat sequences such as SINEs
and LINEs, and segmental duplications do not constitute as novel
sequence insertions since paralogs of the same repeat sequence
exists elsewhere in the reference genome assembly. Therefore, the
algorithms presented here will not be able to predict such repeat
sequence insertions unless the inserted sequence is highly divergent
from other existing copies. For algorithms specifically designed for
repeat sequence (or more formally, transposon) insertion detection,
see the recent paper by Hormozdiari et al. (2010).

In Section 2, we will present the general approach of the NovelSeq
pipeline divided into five different phases. In Section 3, we will give
the details of our algorithms, and finally in Section 4, we will discuss
the results of the NovelSeq pipeline.

2 APPROACH
Paired-end read mapping: the computational pipeline begins
by mapping the WGS paired-end reads onto the reference
genome using mrFAST (Alkan et al., 2009) and identifying
orphan reads and one-end anchored (OEA) reads. The paired-
end reads where neither end-read1 sequences can be mapped
(with >95% sequence identity) to the reference genome are
classified as orphan reads. Following the nomenclature previously
described (Kidd et al., 2008, 2010), if only one end-read is mapped
onto the reference genome, such paired-end reads are classified
as OEA.

A hypothesis that can explain the existence of these orphan
and OEA paired-end reads in a sequenced donor genome is as
follows. The unmapped reads of the OEA pairs and the orphan
paired-end sequences both belong to novel sequence insertions
(Fig. 1a).
Orphan assembly and contamination removal: using
available de novo assembly algorithms such as EULER-SR

1Each end sequence of a paired-end read is referred to as end-read.
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(Chaisson and Pevzner, 2008) and ABySS (Simpson et al., 2009),
we assemble all orphan reads into longer contigs. These contigs
may later be identified as novel insertion sequences in the donor
genome. In addition, we perform an initial screening of the contigs
using BLAST (Altschul et al., 1990) and remove any contig that
contains sequences from known contaminants (e.g. Epstein–Barr
virus, Escherichia coli, cloning vectors, etc). As a second test
to remove the mapping artifacts, we remove the contigs that can
be aligned to the reference genome with a sequence identity of
>99%. One reason that such contigs were generated from the reads
classified as orphans due to low-quality sequence at the tails of
the reads, and thus remained unmapped. However, those reads
can still be assembled into reliable contigs since both ABySS and
EULER build de Bruijn graphs from 25 bp subsequences of the
reads, effectively discarding the sequence tails causing the mapping
artifacts.
OEA read clustering: we use a novel clustering algorithm mrCAR
(micro-read Cluster Anchored Reads) to cluster the OEA reads
based on their mapping orientations and locations in the reference
genome such that those OEA reads that support the same insertion
in the donor genome are grouped together. Note that for each
potential novel sequence insertion prediction, there exists a group
of OEA read alignments with ‘+’ orientation (denoted as OEA+,
the single end-read that has an alignment on the reference genome
is aligned to the forward strand), and a second group of OEA read
alignments with ‘−’ orientation (denoted as OEA−, the single end-
read is aligned to the reverse strand). In the remainder of this
article, we use the term OEA cluster to describe the two groups
of OEA reads that are both mapped to different strands yet support
the same novel sequence insertion. Also note that for all pairs of
OEA+ and OEA− clusters that support the same insertion, the
OEA+ cluster should be mapped to the proximal location, and
the corresponding OEA− cluster should be mapped to the distal
location.

The objective of mrCAR is to identify the OEA clusters efficiently
such that, with a minimum number of novel sequence insertion
prediction, all OEA paired-end reads are ‘explained’ (i.e. for every
OEA paired-end read oeai, there exists an insertion prediction that
is supported by oeai).
The local assembly of the OEA clusters: we assemble all unmapped
end-reads in the OEA clusters that were created in the previous
step into two OEA contigs using a local assembly routine,
mrSAAB (micro-read Strand-Aware Assembly Builder). For each
OEA cluster, the goal is to assemble the unmapped reads in each
OEA+ cluster into a single contig (i.e. OEA+ contig) and the
unmapped reads in each OEA− into another single contig (i.e. OEA
contig).
Anchoring orphan contigs using the OEA contigs: in the final stage
of the NovelSeq pipeline, we aim to merge the OEA contigs (from
both + and − strands) with the orphan contigs. Through this merging
step, we both provide more read support for the orphan contigs and
obtain the approximate anchoring position of the novel sequence
insertion to the reference genome.

Our merging algorithm mrBIG (micro-read Big Insertion Gluer)
aims to report the maximum number of orphan contigs that can be
merged with OEA contigs with high support (defined as the length
and sequence identity of the overlapping base pairs, see Section 3.4).
mrBIG is based on an algorithm for maximum weighted matching
in bipartite graphs (West, 2001).

3 METHOD

3.1 Notations and definitions
Here, we present the notations and definitions that we use in the rest
of this article. We define the set of paired-end reads of a sequenced
donor genome as R={pe1,pe2,...,pen}. Each paired-end read pek can
be mapped to multiple locations on the reference genome. The set of
all alignments of pek is defined as Align(pek)={a1pek,a2pek,...,ajpek}.
Structural variation discovery algorithms using read-pair analysis start by
calculating the observed distance between the two end-reads of a paired-end
read. This distance is referred to as the insert size (denoted by InsSize). The
InsSize is assumed to be in a range of [�min,�max] and can be calculated as
previously described (Tuzun et al., 2005).

An alignment of a paired-end read to the reference genome is concordant,
if the distance between the aligned end-reads is within the expected range of
[�min,�max], and the paired-end alignment orientation is +− (i.e. the end
read which was aligned on the proximal location is on the + strand, and its
matepair is mapped to a distal location on the − strand).

The set of one-end anchored reads is represented as OEA and the set of
orphan reads is represented as Orph. Note that Orph, OEA⊂R. The end-reads
in OEA can also be mapped to multiple locations on the reference genome.
For all pe∈OEA, alignment of pe is defined as ape= (loc(ape),or(ape)),
where loc(ape) is the map location and or(ape)∈{+,−} is the alignment
orientation of the mapped end-read.

3.2 Clustering the OEA reads
In this section, we formally describe a greedy algorithm, named mrCAR, to
identify the OEA clusters. We first mathematically formulate the conditions
required by a group of OEA reads that support the same novel insertion. Next,
similar to the approach introduced in Hormozdiari et al. (2009) to cluster
the discordant paired-end reads, we present an efficient greedy algorithm to
find the minimum number of OEA clusters such that all OEA reads would
‘support’ at least one insertion [i.e. a maximum parsimonious explanation
of all OEA reads (Hormozdiari et al., 2009)]. We remind the reader that
although the map location of an OEA read serves as a guide to detect the
insertion breakpoint of the novel sequence, the possibility of multiple map
locations for an OEA read makes detecting the correct position a challenging
task.
Clustering rules: a set of OEA reads clu⊂ OEA supports the same insertion
if the following conditions hold:

• For every pair of OEA read alignments ρF ∈clu and ρR ∈clu (without
loss of generality we assume that ρF aligns to the forward and ρR aligns
to the reverse strand), the map location of ρF is proximal to the map
location of ρR.

• The maximum pairwise distance between the map locations of the OEA
reads in clu with the same mapping orientation must be less than the
maximum InsSize, �max.

• The distance between the map locations of two OEA reads with
different mapping orientations should not exceed twice the maximum
InsSize, 2·�max.

Note that an OEA cluster c is called a ‘maximal valid cluster’ if no more
OEA read alignment can be added to c that all the conditions noted above
remain valid. Through an iterative method, we find all such maximal valid
clusters in polynomial time. We first order all OEA read alignments based
on their loc value, and then traverse the genome from left to right. For
each genome position k, we consider a window of size 2�max +1 centered
at k. Every OEA alignment inside the first half of the window with a +
orientation, and every OEA alignment on the second half of the window
with a − orientation is considered as one potential maximal valid cluster.
Finally, a pairwise comparison is performed between all overlapping clusters
detected in the previous step and only the maximal clusters are reported.
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Selecting the minimum number of clusters: we define the Maximum
Parsimonious Insertion Detection (MPID) problem as follows. Given a set of
OEA clusters where each cluster potentially indicates a novel insertion, our
goal is to select the minimum number of clusters (i.e. to minimize the total
number of insertions) such that all OEA reads are aligned to the reference
genome. We model this problem as a set cover problem and provide an
O(logn) approximation solution. Note that the set of all OEA reads is the
universe of elements, and the clusters created in the previous step are the
sets that are selected to cover this universe. MPID is a necessary step since
an OEA read can be present in multiple clusters.

3.3 Local assembly of the OEA clusters
The next step is to assemble the unmapped reads of OEA clusters that were
created by the clustering algorithm and selected by the set cover approach. In
each cluster, the OEA reads with mates that map to the + strand and the reads
with mates that map to the − strand should be assembled into OEA+ and
OEA− contigs independently. However, the available de novo assemblers
including EULER and ABySS do not provide the option of assembling the
reads of only a single strand.2 Using single end-reads, both ABySS and
EULER consider the reverse complements of the read sequences as well.
We therefore develop a local assembly routine that makes use of the fact
that all unmapped reads from a single OEA cluster originate from the single-
strand reciprocal to the mapping orientation of the anchored reads from the
same cluster. During the traversal of the assembly graph, we do not allow
two consecutive OEA reads such that the mapping locations of their mates
(from the corresponding paired-end reads) are too far from each other. The
map location order of the anchored reads dictates the approximate positions
of the unmapped reads in the local OEA assembly. The confidence interval
for this position information depends on the InsSize distribution.

Our local assembly routine is based on the standard overlap-layout-
consensus graph approach. Note that this routine can also be implemented
with an Eulerian path approach using a de Bruijn graph (e.g. through a
modification to ABySS or EULER). Next, we briefly present this routine.
Traversal of the overlay graph: we first construct the overlay graph for all
unmapped reads in an OEA cluster whose mates are anchored to the same
strand.

Note that there will be two disjoint assembly graphs representing two
different strands for each OEA cluster. Given a pair of nodes u,v in the
overlay graph (representing two OEA reads), we add a weighted directed
edge connecting u with v if there exists an overlap between the suffix of u
and the prefix of v. The assigned weight of the noted edge will be a function of
the suffix–prefix overlap between them. We implemented a greedy heuristic
to find an assembly of the reads using both the edge weights and the extra
information of the mapping locations of the other mates.

3.4 Merging the OEA and orphan contigs
Given the set of OEA and orphan contigs, we aim to find the maximum
number of orphan contigs that can be merged with OEA contigs. We do not
allow an orphan contig to merge with a pair of OEA contigs (oea+ and oea−)
if the score of the prefix–suffix match between the two ends of the orphan
contig and oea+ and oea− is less than a user-defined threshold.

We mathematically model this problem as a maximum-weight bipartite
matching problem, and give an exact solution based on the Hungarian
method (West, 2001).

Let Orphco ={or1,or2,...,ork} be a set of orphan contigs and OEAco =
{oea1,oea2,...,oeav} be a set of OEA contigs where oeaj is a pair of two
OEA contigs from the local assembly of the OEA cluster with id j [i.e. oeai =
(oeai+ ,oeai− )]. We aim to assign each element in Orphco (e.g. ori ∈Orphco)
to an element in OEAco (e.g. oeaj ∈OEAco) such that the summation of
(i) the alignment score between the prefix of ori and the suffix of oeaj+ and

2Personal communication with the developers of these tools.

Fig. 2. Merging the orphan contigs with OEA clusters. Note that each OEA
cluster is in fact composed of two contigs with different orientations that
together represent an insertion. Each orphan contig is shown as a green node
and each OEA cluster (as a 2-tuple) is represented with a red node. The edge
weights are assigned as the total alignment score of suffix–prefix matches
between the OEA clusters and the orphan contigs.

(ii) the alignment score between the suffix of ori and the prefix of oeaj− is
maximized.

We reduce this problem to the maximum-weight matching problem in a
bipartite graph G(U,V ,E) where G is defined as follows (Fig. 2):

• ∀ori ∈Orphco : ∃ui ∈U

• ∀oeaj ∈OEAco : ∃vj ∈V

• The weight of edge (ui,vj) is a function of the overlap between the first
�max base pairs of ori and oeaj+ and the overlap between the last �max

base pairs of ori with oeaj− .

4 EXPERIMENTAL RESULTS
We tested our framework using the WGS sequence library
generated from the genome of an anonymous Yoruba African
donor (NA18507) generated with the Illumina Genome Analyzer
platform (Bentley et al., 2008). The genome of NA18507 has
been previously studied by many groups (Alkan et al., 2009;
Chen et al., 2009; Hormozdiari et al., 2009; Lee et al., 2009) to
discover structural variation and copy number polymorphism. This
dataset contains ∼3.5 billion sequence reads (∼1.7 billion pairs) of
length 36–41 bp with an InsSize of ∼209 bp (Bentley et al., 2008;
Hormozdiari et al., 2009). The InsSize distribution of this dataset
was previously presented in Hormozdiari et al. (2009).
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Fig. 3. Length distribution (log scale) of the ABySS (red) and EULER
(green) contigs (≥200 bp).

4.1 Novel sequence insertion map
4.1.1 Preprocessing Similar to the prescreening methodology
used in Hormozdiari et al. (2009), we removed any paired-end reads
from consideration if either (or both) end sequence has an average
phred (Ewing and Green, 1998) quality value less than 20, or if
either (or both) sequence contains more than 2 unknown (i.e. N)
nucleotides.

4.1.2 Mapping to the reference genome After the preprocessing
step, we mapped all the remaining ∼2.2 billion end sequences
to the human genome reference assembly (UCSC build 36) using
mrFAST (Alkan et al., 2009), allowing for edit distance ≤2. Note
that mrFAST returns all possible map locations of read sequences,
thus an OEA read can be aligned to multiple locations in the
reference genome. In total, 15173562 pairs of reads (30347124
end-sequences) were identified as orphans, while 83662790 reads
were identified as OEAs.

4.1.3 Orphan assembly Using ABySS (Simpson et al., 2009),
we assembled the orphan paired-end reads into 4154 contigs of
size ≥200 bp (N50 = 995). In the rest of this article, we call these
contigs as ABySS contigs. As an independent assessment, we also
generated the sequence assembly of the orphans using the EULER
(Chaisson and Pevzner, 2008) algorithm, which we call EULER
contigs. EULER returned 4564 contigs of size ≥200 bp (N50 = 730).

4.1.4 Contamination removal Next, we screened the orphan
contigs to test for contamination. Using BLAST (Altschul et al.,
1990), we compared the orphan contigs with the nt database
(http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastdb.html), and
removed the contigs that align to consensus sequences of known
contaminants (E.coli, bacteriophage, herpesvirus, plasmid, Epstein–
Barr, bacteria, etc.) from further consideration. In total, 39 contigs
were removed from the ABySS contig set as contamination, where
the majority were due to Epstein–Barr, a virus commonly used for
cell immortalization. Figure 3 shows the length distribution of the
ABySS contigs of length ≥200 bp after the contamination removal.
Note that out of 4115 ABySS contaminant-free contigs (≥200 bp),
1984 are ≥500 bp and 778 are ≥1 kb in size. Among the EULER
contaminant-free contigs, 1690 are ≥500 bp and 582 are ≥1 kb.

(a)

(b)

(c)

Fig. 4. Venn diagrams depicting pairwise comparisons of novel sequence
assemblies generated by ABySS, EULER, SOAPdenovo (Li et al.,
2009, 2010) and fosmid end-sequences using phrap. Note that we provide
two numbers at the intersections, corresponding to the numbers of contigs
in each set that are almost identical to the contigs in the reciprocal set.
We also provide the total length of those contigs in brackets. The numbers
given in parenthesis, next to SOAPdenovo, correspond to the number of
contigs with at least 200 bp. (a) The comparison of ABySS and fosmid
contigs (left), and the comparison of EULER and fosmid contigs (Kidd et al.,
2008) (right). (b) The comparison of ABySS and SOAPdenovo contigs (Li
et al., 2009) (left), and the comparison of EULER and SOAPdenovo contigs
(right). (c) The comparison of ABySS and EULER contigs (left), and the
comparison of SOAPdenovo (Li et al., 2009) and fosmid contigs (Kidd et al.,
2008) (right).

We then mapped the orphan contigs to the human genome
reference assembly (both build35 and build36) using BLAST in
order to remove the orphan contigs with high sequence identity with
the reference genome. Of ABySS contigs, 493 of length ≥200 bp
could be mapped onto either build35 or build36 with >99% sequence
identity (548 of EULER contigs). We removed such contigs from
consideration in the remainder of the NovelSeq pipeline. See Step
2 in Section 2 for the explanation of this filtering. The remaining
ABySS contigs (n = 3622, Fig. 4a) had a total length of 2.66 Mb,
while the remaining EULER contigs (n = 3977, Fig. 4a) had the a
total length of 2.37 Mb of the sequence.

4.1.5 OEA clustering and orphan anchoring We used our
clustering algorithm followed by the set cover approach to cluster the
OEA reads, and obtained 10 560 sets of OEA clusters with a high
support3 on each side (i.e. both + and − strands). Each side (or
strand) of the detected OEA clusters were independently assembled
using our local assembly routine, mrSAAB. Resulting OEA contigs
were then processed together with the orphan contigs in the last

3We considered the OEA clusters supported by ≥10 OEA reads in both
strands, where ≥20 OEA reads were required to support the cluster in
at least one strand.
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Table 1. Two different result sets depending on the minimum length of the
orphan contigs considered for the merging phase

NA18507 # merged Same locus Different locus

Minimum length (bp) 500 200 500 200 500 200

ABySS 78 113 37 50 10 21
EULER 85 130 35 51 14 23

For both ABySS and EULER contigs, we show the number of orphan contigs that are
merged with an OEA contig (and hence anchored) with an alignment score ≥50. Same
locus (table header) indicates the number of orphan contigs with high sequence identity
to a novel insertion sequence detected by fosmids and loci in concordance with the
fosmid-based predictions. Different locus (table header) indicates the number of orphan
contigs with high sequence identity to a novel insertion sequence detected by fosmids
but with loci not in concordance with the fosmid-based predictions.

phase of the NovelSeq pipeline, mrBIG. In summary, we anchored
130 EULER contigs and 113 ABySS contigs independently to the
reference genome using the NovelSeq pipeline. In the merging phase
of the orphan and OEA contigs (mrBIG), NovelSeq requires the
alignment score between the orphan contig and the OEA contig to
be ≥50. The alignment score is calculated as the score of the local
alignment under affine gap model, where the match score is +1,
mismatch penalty is −1 and gap penalties are −16 and −4 for gap
opening and gap extension, respectively. The minimum requirement
for the alignment score is an user-defined parameter in the NovelSeq
pipeline. Clearly, the lower alignment score one chooses at the
merging phase, the more orphan contigs can be anchored to the
reference assembly.

Recently, Kidd et al. end sequenced all fosmid clones (∼40 kb
each) generated from the genome of the same individual (NA18507)
using the traditional Sanger method and built a map of novel
insertions with high-quality sequence information (Kidd et al.,
2008). We used this dataset to test the accuracy of the NovelSeq
pipeline. As shown in Table 1, we anchored >70% of the orphan
contigs (with high sequence identity to a novel sequence insertion
detected by fosmids) to locations concordant with the fosmid-based
predictions. Our concordance rate increases to 78% for ABySS
contigs of length ≥500 bp. Note that some of the fosmid sequences
were not anchored to the human genome reference assembly, thus
we were not able to test the accuracy of the loci we predicted for
the contigs that are highly identical to such fosmid sequences.

We need to re-emphasize that anchoring a novel insertion is not an
easy task if there are repeat sequences (that also are not represented
in the reference genome) at the flanks of the inserted sequence. Note
that the dataset used here is generated by the Illumina platform and
the insert size is very small (average size 209 bp, SD 8.25 bp). Any
anchoring strategy that utilizes the OEA concept would fail to do
so in such cases, since the OEA read pair will be too short to span
over the flanking repeat if the repeat length is larger than the insert
size (e.g. an Alu element is typically 300 bp). For a more reliable
OEA/orphan anchoring step, longer insert sizes are required.

4.2 Comparison of the orphan contigs with the
NA18507 fosmid shotgun sequence library

We compare the sequence content of both ABySS and EULER
contigs with a set of 2509 sequence contigs assembled from one-
end anchored fosmid end sequences as previously described by

Kidd et al. (2008). This fosmid resource was end-sequenced using
capillary technology, and in the remainder of this article, we
denote the sequence assembly generated from this dataset as fosmid
contigs. Using cross_match (Green, 2010) with default parameters,
we observed that 1789 (∼71%) fosmid contigs overlap with the
ABySS contigs, and 1754 (∼70%) fosmid contigs overlap with the
EULER contigs. Figure 4a shows the comparison between ABySS
and EULER contigs against the fosmid contigs. Next, we compared
both ABySS and EULER orphan contigs with a total of 4.8 Mb of
novel sequence in NA18507 sequences found by a recent study by
Li et al. (2009) (n = 7330; Fig. 4b) based on whole-genome de novo
sequence assembly using SOAPdenovo (Li et al., 2010). The reader
can easily verify that de novo sequence assembly using the entire
next-generation shotgun sequence read library requires extensive
computational resources that are not needed by our method. The high
amount of overlap between ABySS and EULER contigs with the
contigs found by Li et al. (2009) also validates the sequence content
of ABySS and EULER contigs. Figure 4c depicts the comparison
betweenABySS and EULER contigs and the SOAPdenovo (Li et al.,
2009) and fosmid contigs.

Note that a close inspection of the sequences detected by
SOAPdenovo and missed by ABySS and EULER revealed that 2054
contigs missed by ABySS and 2096 contigs missed by EULER are
<200 bp, which we removed from consideration in our analysis.
We further analyzed the contigs found by SOAPdenovo and missed
by ABySS, and using BLAST, we found that 119 contigs can
be aligned to sequences from known contaminants (the majority
to Epstein–Barr) with >90% sequence identity, requiring at least
80 bp alignment length (total of 136 kb). Of the 119 contigs, 97 are
>200 bp, the longest contig is 6765 bp. Note that when we used
blast, with parameters identical to the ones used for the analyses of
ABySS and EULER contigs, only 92 of SOAPdenovo contigs were
aligned to either build35 or build36.

4.3 Comparison with WGS libraries and the Venter
genome

Finally, we used BLAST to compare the contaminant-free orphan
contigs generated by ABySS (n = 4115) and EULER (n = 4525) with
the WGS library generated from the genome of the same individual
(NA18507) using Sanger sequencing, WGS library generated from
the genome of Craig Venter (Levy et al., 2007), as well as the
sequence assembly of the Venter genome [HuRef (Levy et al.,
2007)]. In Table 2, we also provide comparisons against human
genome reference assembly (both build35 and build36). We consider
two category of 99% and 95% sequence identity to call a hit in the
database search. In addition, we provide the comparison statistics
separated by the minimum contig length (i.e. ≥200 and ≥500 bp).
We observe that the novel sequences detected in NA18507 genome
are also found in the Venter genome, suggesting that these sequences
correspond to rare deletions in the reference genome assembly.

5 DISCUSSION AND CONCLUSION
The completion of the HGP in 2003 was a major step towards
understanding our genetic makeup. Although it is invaluable for
genome research, the reference genome assembly is not a global
representative of all haplotypes and a host of human genome
sequences remain missing. Due to the cost of traditional sequencing
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Table 2. The comparison of NA18507 orphan contigs with the WGS
libraries and the Venter genome

NA18507 Database ≥200 bp ≥500 bp

95% 99% 95% 99%

ABySS build35 616 481 236 174
ABySS build36 611 475 222 159
ABySS NA18507 (fosmid end-seq.) 2305 1944 1253 1076
ABySS Venter WGS 3028 2938 1811 1798
ABySS HuRef 3815 3763 1512 1488

EULER build35 670 530 123 100
EULER build36 660 522 114 92
EULER NA18507 (fosmid end-seq.) 2530 2169 1055 933
EULER Venter WGS 4193 4131 1542 1536
EULER HuRef 3272 3127 1329 1309

For different cases, the number of orphan contigs with a high similarity to each library
is given. Contigs that were aligned to build35 or build36 were also included.

technologies, the characterization of such sequences, commonly
referred to as ‘novel insertion sequences’ (or alternatively deletion
alleles in the reference genome) remained elusive. However, with
the introduction and continuous evolution of NGS technologies,
it is now possible to detect and characterize these sequences in
the hopes of building a human ‘pan-genome’ (Li et al., 2009).
de novo sequence assembly methods (Chaisson and Pevzner, 2008;
Li et al., 2010; Simpson et al., 2009) are developed to address
the computational challenges of this issue; however, one needs to
invest significantly in computational resources due to the excessive
memory and CPU requirements of such methods. We designed
our pipeline, NovelSeq, to efficiently assemble the novel sequence
insertions and build maps of insertion by anchoring the sequences
back into the reference genome assembly. An important aspect of
our framework is that it can be applied as a post-processing step
after the completion of read mapping to analyze other types of
genetic variation such as SNP and structural variation discovery.
We validated our predictions by comparing the sequence content
and the anchor position independently assessed by other groups
using (i) fosmid end sequence analysis, (ii) full fosmid sequencing
and (iii) de novo sequence assembly using data generated from
the genome of the same individual. In addition, we compared the
sequence content of our novel sequence predictions with the WGS
dataset and the assembly of the Venter genome. The significant
overlap between the sequences detected in two different genomes
suggest rare deletions in the reference genome.

To better understand the human genome variation and
evolution, as well as genotype–phenotype associations, we need
to build comprehensive genome assemblies. The NGS platforms
now give us the opportunity to target genomes from many
populations, as exemplified by the 1000 Genomes Project
(http://www.1000genomes.org). The next challenge will be the
full characterization of these ‘novel insertions’ to discover new
promoters, exons and other functional elements.
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