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ABSTRACT

Summary: Next generation sequencing (NGS) technologies have
enabled de novo gene fusion discovery that could reveal candidates
with therapeutic significance in cancer. Here we present an open-
source software package, ChimeraScan, for the discovery of
chimeric transcription between two independent transcripts in high-
throughput transcriptome sequencing data.
Availability: http://chimerascan.googlecode.com
Contact: cmaher@dom.wustl.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
High-throughput transcriptome sequencing (RNA-Seq) facilitates
detection of aberrant, chimeric RNAs (Maher et al., 2009a;
Maher et al., 2009b). Methods for chimera detection have already
uncovered recurrent classes of clinically relevant gene fusions in
prostate (Palanisamy et al., 2010) and lymphoid cancers (Steidl
et al. 2011). Therefore, the continued development of accurate and
efficient software tools for chimera discovery is of major clinical
significance. To this end, we have developed a chimera discovery
methodology, or ChimeraScan, and offer it as open-source software
package for the community to utilize for their own sequencing
efforts. ChimeraScan includes features such as the ability to process
long (>75 bp) paired-end reads, processing of ambiguously mapping
reads, detection of reads spanning a fusion junction, integration with
the popular Bowtie aligner (Langmead et al., 2009), supports the
standardized SAM format and generation of HTML reports for easy
investigation of results. Overall, we believe that the ChimeraScan
will facilitate the discovery of additional gene fusions that may serve
as clinically relevant targets in cancer.

2 METHODS
Initial paired-end alignment: ChimeraScan uses Bowtie to align paired-end
reads to a combined genome-transcriptome reference. An indexing program
creates the combined index from genomic sequences (FASTA format) and
transcript features (UCSC GenePred format). Paired alignments within
the fragment size range (default: 0–1000) are referred to as concordantly
mapping reads (Fig. 1A). ChimeraScan uses these alignments to estimate the

∗To whom correspondence should be addressed.

A

B

Fig. 1. ChimeraScan flowchart. (A) Paired-end reads failing an initial
alignment step are segmented and realigned to detect discordant reads.
Discordant reads that pass filter criteria are realigned across putative
chimeric junctions. (B) Chimera with encompassing (blue) and spanning
(red) segments detected during realignment.

insert size distribution of the library, which will later be used to filter out
likely false positive chimeras.

Trimmed paired-end alignment: read pairs that could not be aligned
concordantly are trimmed into smaller segments (default = 25 bp) and
realigned. Trimming increases the chance that neither read alignment spans
a chimeric junction, thereby improving sensitivity for nominating chimeras.

Nomination of chimera candidates: the trimmed alignments are scanned
for evidence of discordant read pairs, or reads that align to distinct references
or distant genomic locations (as determined by the fragment size range) of the
same reference. Reads aligning to overlapping transcripts are not considered
discordant. ChimeraScan clusters the discordant reads and produces a list of
putative 5′–3′ transcript pairs that serve as chimera candidates.

Detection of reads spanning the chimeric junction: ChimeraScan builds
a new reference index from the set of putative chimeric junction sequences,
and realigns candidate junction-spanning reads to this index. Candidate
spanning reads are either (i) discordant reads with trimmed alignments
bordering a junction or (ii) unmapped reads whose mates align to a predicted
chimera (Fig. 1B). A read that spans a junction by more than a minimum
‘anchor’ length is denoted as a ‘spanning’ read. We compute the required
‘anchor’ length separately for each chimera by insisting that the number of
bases overlapping its junction be greater than number of homologous bases
between the 5′ and 3′ genes at the breakpoint plus the number of mismatches
allowed.
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Filtering false-positive chimeras: after spanning reads are incorporated,
ChimeraScan filters chimeras with few supporting reads (default is <3 reads)
and chimeras with fragment sizes far outside the range of the distribution
(default is >99% of all fragment sizes). When isoforms of the same gene
support a fusion ChimeraScan only retains the isoform(s) with highest
coverage.

Reporting chimeras: ChimeraScan produces a tabular text file describing
each chimera, and optionally generates a user-friendly HTML page with links
to detailed descriptions of the chimeric genes.

3 RESULTS
To evaluate the results from ChimeraScan, we applied it to three
well-characterized cancer cell lines known to harbor multiple
chimeric transcripts: VCaP (prostate cancer, 2×53 bp) (Tomlins
et al., 2005), LNCaP (prostate cancer, 2×34 bp) and MCF7 (breast
cancer, 2×35 bp) (Hampton et al., 2009; Volik et al., 2006).
Sequence data are deposited in GenBank under the accession
number GSE29098. We aligned to human genome (VR-hg19) and
UCSC known transcripts (December 2010), allowing for up to
two mismatches and no >100 alignments per read. The trimmed
alignment step was performed with 25 bp segments.

As our initial benchmark, we confirmed that ChimeraScan
was able to recapitulate experimentally validated candidates, our
‘gold standard’ (Supplementary Table 1) (Maher et al., 2009b).
ChimeraScan was able to detect 9/10, 4/4 and 12/13 chimeras from
VCaP, LNCaP and MCF-7, respectively.

In addition to recapitulating previously reported results, we
have identified novel candidates that demonstrate ChimeraScan’s
ability to identify and prioritize high-quality chimeras. Overall,
ChimeraScan nominated 335 novel chimeras (78 in VCaP,
105 in LNCaP and 152 in MCF7) from the three cell
lines (Supplementary Table 2–4). Interestingly, we detected an
interchromosomal rearrangement TBL1XR1-RGS17 detected in the
MCF-7 cell line. While not originally reported within NGS data
(Maher et al., 2009b), TBL1XR1-RGS17 was previously detected by
a paired-end diTag approach and experimentally confirmed (Ruan
et al., 2007). Another novel candidate was the intrachromosomal
rearrangement, NDUFAF2-MAST4, in VCaP that is supported by
just two encompassing reads and one spanning reads. The ability
to identify a high-quality spanning read that uniquely confirms the
fusion junction (Supplementary Table 2), thereby increasing our
confidence in NDUFAF2-MAST4, demonstrates the sensitivity of
ChimeraScan.

We next compared ChimeraScan with publicly available tools
deFuse (McPherson et al., 2011), shortFuse (Kinsella et al., 2011)
and MapSplice (Wang et al., 2010) using the 10 experimentally
validated VCaP chimeras (Supplementary Table 5). While deFuse
nominated the fewest chimeras, it only detected 60% of the true
positives. In comparison, ChimeraScan detected 90% of the true
positives from 78 predicted chimeras. Of the remaining programs,

MapSplice nominated 400 chimeras while detecting 60% of the true
positives and ShortFuse nominated 245 chimeras while confirming
70% of the true positives. Overall, these results suggest that
ChimeraScan is among the more stringent programs while enriching
for true positives.

4 CONCLUSION
Here, we present an optimized publicly available chimera discovery
methodology for identifying novel therapeutically targetable gene
fusions in human cancers. Our results suggest that ChimeraScan
produces a stringent list of predictions that are enriched with
true positives. Furthermore, due to its trimmed alignment steps
we believe ChimeraScan will be scalable when longer reads are
available to provide increased coverage of fusion junctions. Overall,
we feel that with the existing features ChimeraScan is a user-friendly
tool that will enable other research groups to make discoveries within
their own RNA-Seq data collections.
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