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ABSTRACT

Motivation: As improved DNA sequencing techniques have
increased enormously the speed of producing new eukaryotic
genome assemblies, the further development of automated gene
prediction methods continues to be essential.

While the classification of proteins into families is a task heavily
relying on correct gene predictions, it can at the same time provide
a source of additional information for the prediction, complementary
to those presently used.
Results: We extended the gene prediction software AUGUSTUS
by a method that employs block profiles generated from multiple
sequence alignments as a protein signature to improve the accuracy
of the prediction. Equipped with profiles modelling human dynein
heavy chain (DHC) proteins and other families, AUGUSTUS was run
on the genomic sequences known to contain members of these
families. Compared with AUGUSTUS’ ab initio version, the rate of
genes predicted with high accuracy showed a dramatic increase.
Availability: The AUGUSTUS project web page is located at
http://augustus.gobics.de, with the executable program as well as
the source code available for download.
Contact: keller@cs.uni-goettingen.de; mario.stanke@uni-greifswald.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
With ever faster and cheaper sequencing techniques, the amount
of available nucleotide sequence data is growing rapidly. In
comparison, the process of accurately annotating the generated data
is still lagging far behind. Fully automated annotation is essential
here as the sheer amount of data make manual inspection, even
as a secondary step, impossible on the whole. Thus, improving
gene prediction tools that perform automated annotation of protein-
coding regions as accurate as possible is becoming increasingly
important for the generation, for example, of the corresponding
protein sequence data.

∗To whom correspondence should be addressed.

In eukaryotes, the computational identification of the gene
structure (in simplified terms, the locations of the protein-coding
exons in a nucleotide sequence) is a complex and error-prone task.
The most direct approach is pursued by ab initio methods that do not
need any input but the genomic target sequence itself. Commonly,
sequences are considered the result of a random process, and the
outcome is the gene structure that is most likely to randomly produce
the target sequence. Parameters for the underlying probabilistic
model, often a Generalized Hidden Markov Model (GHMM), are
derived from a training set of gene structures verified as accurate.
As in any probabilistic approach, the prediction accuracy is limited
already by constraints inherent to the model, even if it is a perfect
description of the data.

In order to overcome these theoretical bounds, it is necessary to
employ extrinsic sources of information that give hints whether an
interval of the sequence is, for example, a coding exon. These gene
finding methods are usually based on alignments with informant
sequences: comparative methods make use of similarities with the
DNA of closely related species, transcript-based methods map
sequences to the target genome that are known to be expressed
(such as ESTs or RNA-Seq) while homology-based methods try
to map transcripts of related genes. Current approaches combine
these methods, some including an ab initio gene prediction. Gene
structures found by these methods are the starting point for the
pipelines generating reference annotations for genomes (Harrow
et al., 2009).

RNA-Seq (transcriptome sequencing with next-generation
sequencing methods, Metzker, 2010) promises major advances for
gene finding; however, currently the accuracy of RNA-Seq-based
gene prediction suffers from mapping ambiguities and partially
contained introns, especially in complex genomes.

Homology-based gene predictors, such as Genewise (Birney
et al., 2004) and Exonerate (Slater and Birney, 2005), can determine
gene structures by mapping a single protein sequence to the
target genome, others like Projector (Meyer and Durbin, 2004)
combine homology-based and comparative approaches. Cui et al.
(2007) presented a combined homology-based and comparative gene
finding method that extends the prediction beyond the homologous
part to a complete gene structure but requires an established gene
structure for the informant sequence. Protein queries highly identical
to the target sequence can be mapped with BLAT (Kent, 2002); the
software Scipio (Keller et al., 2008) can refine a mapping provided
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by BLAT such that the precise exon–intron structure of a gene is
automatically recovered from the query.

The gene prediction program AUGUSTUS (Stanke and Waack,
2003) is able to incorporate hints from external sources to combine
them with an ab initio prediction (Stanke et al., 2006a, b, 2008).
The method employed in AUGUSTUS is completely generic
as to the source of the hints and the way they have been
generated; in practice, however, they are almost always derived from
alignment-based methods (Stanke et al., 2006a, 2008), including
the use of peptides from proteomics experiments (Castellana et al.,
2008).

At a later stage of the genome annotation pipeline, an important
task is the classification of proteins into families and subfamilies
based on sequence similarities. A correct classification obviously
relies on accurate gene predictions. Conversely, membership to a
family is a potential source of information that can be made available
already to the gene prediction. This information is commonly
stored in protein family databases that are easily accessible, for
example via InterPro (http://www.ebi.ac.uk/interpro/, Hunter et al.,
2009), quickly growing and often equipped with precomputed
models (also called signatures) in the form of profile-HMMs,
multiple sequence alignments (MSAs) and similar representations.
Furthermore, researchers specialized on specific families will be
interested in tools that enable them to use their existing sequence
repositories to improve the prediction on newly available nucleotide
data.

While almost every resource of protein family signatures offers
its own methods to classify protein query sequences supplied
by the user (bundled by InterProScan, Quevillon et al., 2005),
these methods cannot be applied directly to (eukaryotic) genomic
sequences, without the prior knowledge of the gene structure, and
hence the coding sequence. On the other hand, most protein-based
gene finding methods map single sequences rather than protein
signatures. The program Genewise has an HMM mode that can
perform a combination of gene prediction and protein signature
recognition using a profile-HMM (of one family at a time) in place
of a single protein sequence.

Here, we present a novel approach that uses what we call a hybrid
method as it combines the existing ab initio model with the protein
signature as an additional model for protein family membership
of the resulting transcripts. It is implemented as an extension (the
protein profile extension, PPX) to the program AUGUSTUS. In this
approach, evidence from complementary sources, such as RNA-Seq,
can be used simultaneously.

2 APPROACH
With the integration of a protein model into gene prediction,
we pursue two goals: first, the identification of members of a
given protein family and, more importantly, an increased accuracy
of the prediction designed especially to improve identification
rates.

In AUGUSTUS-PPX, protein families are modelled by block
profiles. In this context, a block is an ungapped and highly conserved
section of a MSA. The concept of a block was first introduced by
Henikoff and Henikoff (1991), and then used to classify proteins
in the Blocks database (Henikoff et al., 1999; Pietrokovski et al.,
1996).

Very similarly, collections of blocks, together with the ranges of
admissible distances between consecutive blocks, have been used
as protein signatures, referred to as fingerprint (Attwood and Beck,
1994), and currently collected in the PRINTS database (Attwood
et al., 2003), a member database of InterPRO.

A block profile is a collection of position-specific frequency
matrices, each describing the amino acid distribution in a block,
similar to a profile-HMM. However, in contrast to profile-HMMs,
sequence motifs modelled by blocks have a fixed length with no
insertions or deletions permitted inside a block. Along the full
length of a MSA, non-conserved regions alternate with blocks. These
inter-block sequence parts are modelled in a block profile only by
constraining their length.

In the extended version of AUGUSTUS, one block profile at a
time can be provided as an additional input, representing a particular
protein family of interest. Here, we will refer to it as a protein profile
as it models a gene with respect to its protein sequence.

AUGUSTUS predicts genes using a GHMM, in which each of the
states corresponds to the biological meaning of the sequence (exon,
intron, intergenic, etc.); this turns a gene structure into a sequence
of states, together with their sequence coordinates, also called a
parse. The well-known Viterbi algorithm is used to compute the
highest scoring among all possible parses. In a GHMM, the score
corresponds to the joint probability that the model generates the
target sequence using the parse.

The profile extension to AUGUSTUS evaluates, for each
candidate gene structure, a similarity score of the predicted transcript
to the profile, giving a bonus to genes matching the profile. While
the gene prediction takes place in genomic space, the protein profile
models the protein sequence that the predicted gene translates to.

Although profile-HMMs can be a more powerful sequence model,
block profiles were chosen here as a protein signature because the
integration into the existing GHMM requires a reduced complexity.
This is compensated by the use of the ab initio model that can better
predict the less conserved sequence parts.

The coordinates of the protein model are mapped to the input
DNA sequence when considering a candidate gene structure. Genes
consisting of multiple exons will induce a mapping of partial
profiles, where blocks may be disconnected by introns. Inter-block
regions impose a constraint on exon length between blocks, but
modelling nucleotide composition in them is left to AUGUSTUS’
exon model.

Genes that show no evidence for similarity to all of the blocks
in the profile are predicted the same way they would without the
profile extension. This is an advantage over purely homology-
based approaches, which cannot predict regions without sufficient
homology. On the other hand, exons containing distant blocks can be
forced to belong to the same gene, addressing the split gene problem
common to ab initio approaches: while the predicted coding regions
of a long gene may largely agree, they are frequently mispredicted
as several shorter ones.

Instead of using the output of a separate program as source of
extrinsic information, as is the case in the hints approach introduced
by Stanke et al. (2006b), the mapping of the block profile to the
target sequence is created in parallel to the ab initio prediction,
with a mutual interaction between both.

The profile can be complemented with information about
conserved intron positions (relative to the protein sequence), among
the members of a protein family. This intron profile is a type of
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information that is already lost when dealing with MSAs but can be
very valuable for the gene prediction.

3 METHODS

3.1 Block profiles representing protein families
3.1.1 Scoring function defined by block profiles A set of n blocks can be
transformed into a set of frequency matrices, one for each block, containing
the column-specific frequencies of amino acids.

The order of the blocks is assumed to be preserved throughout all
sequences in the family. For each b, the interval Ib =[dmin

b ,dmax
b ] specifies

the range of admissible distances between consecutive block motifs (or, in
the cases b=0, b=n, between the first/last block motif and the sequence
start/end, respectively).

We call such a collection of frequency matrices, together with the range
intervals Ib, a block profile, in analogy to other profiles generated from MSAs.
For the sake of brevity, we will use the term block also for the particular
matrix that represents it. A block profile does not contain probabilities for
insertions or deletions, and it does not model the sequence regions between
blocks.

From each frequency matrix, odd ratios are obtained by dividing each
entry by the random (background) distribution of amino acids, and used
as the scoring matrix R(b) for block b. If s=s0 ...sw−1 is an amino acid
sequence, its similarity to block b of length w is expressed by the odds
ratio score of s, the product of the respective entries of the scoring
matrix: ρ(b)(s)=R0(s0) · ... ·Rw−1(sw−1). More generally, a partial block

score ρ(b)
[j..k](s)=Rj(s0)· ...·Rk(sk−j) can be defined if s is a (shorter) sequence

of length k−j+1.
To classify a given protein sequence s of length w as a block hit, we turn

the scoring function into a decision function by requiring ρ(s)>τ, with a
block-specific threshold τ=τ(b), which is controlled by global parameters
θsens and θspec that give upper bounds for the expected error rates in the
respective models for blocks and background sequences (for details see the
Supplementary Material).

3.1.2 Generating block profiles To convert a MSA into a block profile that
can be used as input to AUGUSTUS, we provide separate tools that compute
frequency matrices from each conserved ungapped region in the alignment.
By the definition of a block, each member sequence of the family must
contain all motifs that are part of a block, without insertions or deletions.
Only a minimum number (usually set to 6–10) of subsequent gapless columns
will actually form a block. These columns we call usable for conversion to a
block profile. Additional restrictions might be imposed, for example on the
degree of conservation in a block column.

Large protein families may be composed of subfamilies characterized by
domains that are shared only by a subset of all sequences. If no domain is
present in all member sequences, a family cannot be described appropriately
by one single block profile. A possible solution is to convert the alignment
associated with each subfamily into a separate block profile. In the next
subsection, we present a different approach of determining a ‘core’alignment
that can be transformed into a profile.

Once blocks have been extracted from an alignment, or retrieved from
the PRINTS or Blocks databases, PSSMs can be calculated by determining
column-wise relative frequencies. In our conversion scripts, we follow the
methods used for the Blocks database: a position-specific weighting scheme
(Henikoff et al., 1990) is applied in order to avoid over-representation
of similar motifs, and pseudo counts are determined by regularizing
the position-specific counts with BLOSUM matrices. Range intervals are
determined from an alignment by taking minimum and maximum lengths
of inter-block sequence parts among all aligned sequences or taken directly
from a database.

The restriction that no insertions or deletions occur in a block motif
can be relaxed, either by splitting a block into two to allow insertions in

Fig. 1. A profile-DNA mapping. The translated transcript (above) contains
four block motifs (in red) m0,...,m3, separated by inter-block sequence (in
grey) of length db. The coding gene (below) consists of six exons; sequences
coding for the block motifs are shown in red. Block hits may appear inside
an exon (m0,m1) or be disconnected by one or more introns (m2,m3).

a central position of a large block or by merging amino acid distributions of
neighbouring positions. This way, also profile-HMMs (e.g. given in HMMER
format)—also containing frequency tables, but equipped with deletion and
insertion states—can be used for conversion into block profiles.

3.1.3 Preprocessing of MSAs For the preparation of MSAs found in
PFAM, we implemented an algorithm that iteratively discards sequences
from an alignment until in both a required number of usable columns is
reached (see above), and the estimated overall profile size (the number of
usable columns multiplied with the number of used sequences) reaches a
maximum. To this end, each column in an input alignment is categorized:
Either

(1) it contains only a small number of gaps (removing the corresponding
sequences would turn it into a block column) or

(2) it contains only a small number of non-gap characters (making it a
candidate for complete removal from the alignment).

Columns that do not fall into these two categories are already determined to
be inter-block columns at this stage, as well as isolated columns that cannot
be extended to a block of minimal length.

Now, each column in the alignment can be considered as a potential start
of a block of minimal length. Each sequence is in conflict with the block
starting there if there is a deletion (the sequence has a gap in a column of
Category 1) or an insertion (the sequence has a residue character in a column
of Category 2) within the minimum number of columns after the fixed block
start.

In each iteration, we use a heuristic to pick a new block start to be
introduced by removing its conflicting sequence set from the alignment,
based on the expected new profile size of the alignment; this is repeated
until that size cannot be increased further by removing more sequences. The
resulting subalignment can now be described by a block profile.

3.2 Evaluating profile-DNA mappings
A block profile is mapped to the DNA sequence σ by specifying the start
locations (t0,...,tn−1) of the segments coding for potential block motifs. We
denote any such mapping by ψ. Since blocks may be interrupted by introns,
the full mapping is well defined only when a candidate gene structure φ is
also given, as depicted in Figure 1. In this case, ψ is valid if all tb lie on
exons belonging to the same gene, and the inter-block regions on the protein
sequence have admissible lengths dmin

b ≤db ≤dmax
b .

The score of the mapping is defined by the odds ratio of the candidate
block motifs mb on the protein sequence

ρ(σ;φ;ψ)=ρ(0)(m0)· ... ·ρ(n−1)(mn−1). (1)

Several genes may be equipped with mappings ψ1,ψ2,...,ψr , resulting in
a total score of

ρ(σ;φ;ψ1,...,ψr )=ρ(σ;φ;ψ1)· ... ·ρ(σ;φ;ψr ).

Formally, ρ can be defined to be 0 for invalid mappings. When provided
with a protein profile, the Viterbi algorithm will search for the best-scoring
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Fig. 2. Calculating Viterbi variables at DNA position t, for substate (b,i), b=
1, i<0. The score is maximized for all gene structures that have a mapping
to block motif m0 at a fixed distance to the current position. In any parse
continuing from this substate, the transcript must have a block motif m1

starting between dmin
1 and dmax

1 from m0. This determines the admissible
range of block starts on the following exon (unless it is short enough to fit
into the inter-block region). The bonus awarded to the Viterbi variable for
this mapping is ρ(0)(m0).

combination of gene structure and compatible profile-DNA mappings. More
precisely, it determines φ,ψ1,...,ψr maximizing the combined score

P(φ,σ) ·ρ(σ;φ;ψ1,...,ψr ),

where the joint probability P(φ,σ) for gene structure and sequence is
multiplied with the profile bonus ρ(σ,φ,ψ) for each candidate transcript
equipped with a valid mapping ψ. Thus, only if a gene is compatible to
a profile mapping with a score high enough to compensate for a lower
ab initio score, the prediction with the profile will differ from the prediction
without. In particular, on sequences where no members of the protein family
are identified, the result will be identical to the ab initio prediction. For
performance reasons, we consider for the evaluation of the profile bonus
only mappings that consist of block hits (each of the ρ(b) must exceed their
threshold τ(b)).

In the underlying sequence model, multiplying with ρ effectively amounts
to replacing the background model with the block model, for the emission
probabilities.

3.3 Integration into AUGUSTUS’ state model
Iterating over all DNA positions, the Viterbi algorithm computes the scores
of optimal partial parses (candidate gene structures) ending in the current
position, and stores them in variables indexed by position and last state,
each state representing a different sequence type, strand or reading frame.
The state model AUGUSTUS uses has been described in Stanke and Waack
(2003).

When equipped with a protein profile, the score assigned to a parse is
modified as described above: for each gene in the parse that is compatible
with a profile-DNA mapping, the score is to be multiplied with the best
possible profile bonus; each exon in the gene contributes the bonus for the
block (part) hits that overlap with it.

When the algorithm arrives at a position in the DNA, it must consider
all partial profile mappings that started before and can be continued beyond
this position, having a particular position within the profile aligned to the
current DNA position (see Fig. 2). This position determines the conditions
for the mapping to be continued; thus, a separate score has to be stored at
that position for each profile position. To this end, the original state space of
AUGUSTUS was extended by a set of substates attached to the main state,
representing the position in the profile, specified as a pair of integers (b,i)
denoting block (b) and position i relative to the block (i≤0 before a block,
and i>0 inside a block). As shown in Figure 2, if i is negative, it determines
the admissible range for the start of block b on the next exon.

The substates serve as additional indices for the Viterbi table labelling
the entries that the combined scores are stored. For a partial profile mapping
ending at the substate (b,i), the profile score multiplied to the ab initio score
is given by Equation (1), except that the product is truncated at the current
position: ρ(0)(m0)· ... ·ρ(b−1)(mb−1) ·ρ(b)

[0..i−1](mb) (the last factor is a partial
block score included only in the case i>0, see Fig. 3). The maximum of all

Fig. 3. Calculating Viterbi variables at DNA position t, for substate (b,i), b=
2, i>0. The score is maximized for all gene structures that have a mapping
to the truncated block motif m2 of length i at the end of the exon. Any parse
continuing from here must have the next exon starting with the remainder
of the motif. The bonus awarded to the Viterbi variable for this mapping is
ρ(0)(m0)·ρ(1)(m1)·ρ(2)

[0..i−1](m2).

combined scores ending in the same substate is then the value stored in the
table.

In general, substates can be used to model side conditions that influence
the score of a parse, for example if constraints on the exon length are imposed,
or for the exclusion of spliced stop codons. Here, substates are aligning the
profile to the exon ends.

The emission probability of an exon in the extended version depends on
the substates on both ends: it gets a bonus equal to the maximum score
of all profile mappings on the exon that are compatible to the substates.
Each pair of substates gives rise potentially to a different profile bonus. New
substate variables are calculated by maximizing the combined score, over
all predecessor positions and predecessor substates.

In introns, the emission probabilities remain unchanged, but intron states
as well need to be equipped with substates to indicate a potential profile
position they are mapped to.

Genes on the backward strand are evaluated essentially in the same way
as genes on the forward strand; however, in this case, the profile is mapped
to the DNA ‘backwards’, starting with the C-terminus. Correspondingly, the
substates on the backward strand refer to blocks and columns in reverse
order: the first motif is evaluated by the last block in the profile, starting
with the last block column.

Since the model attaches a high number substates to every main state of
the original model, an exhaustive evaluation of all combinations of block
locations and substates would cause an explosion of running time and
memory requirements; therefore, most of the substate entries are eliminated
or shared between main states in order to control the computational cost.
We store substate scores dynamically, reserving memory only for non-zero
entries. See the Supplementary Material for details on speed-up strategies.

3.4 Fast preliminary block hit search
To make it possible a perform profile-based prediction on all relevant
regions in a genome, a fast preliminary search algorithm was devised for
determining the genomic regions that are likely to contain genes matching
the profile, without determining detailed gene structures. The algorithm
was implemented in a separate executable that can be used before running
AUGUSTUS. Given a target sequence and a protein profile, it performs the
following steps:

• Building a seed collection: for each of the 8000 possible triplets of
amino acids, the positions in the profile are stored where that triplet is
likely to occur.

• Determining block hit candidates: iterating over the target sequence,
each 9-tuple is tested for being a seed. Any segment covered at least
25% by seeds for a block is considered for exhaustive evaluation. This
prefiltering step is very fast, since it consists of a simple lookup with
amino acid triples as keys.

• Exhaustive evaluation of candidates: given a block start offset, partial
scores ρ[j..k](aj ..ak) are maximized where a0..aw−1 is the translated
DNA segment. This interval is stored as a partial block hit if its size
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reaches the minimal block width and the (partial) block threshold is
exceeded.

• Assembling block hits to profile hits: each block hit is extended to a
series of block hits by joining neighbouring hits, allowing for blocks
being skipped. Using dynamic programming, sequences of block hits
are determined that are highest scoring for all contained blocks, and
returned as profile hits.

This algorithm is fast enough to be run on whole genomes with a high
number of profiles. In order to determine the regions, AUGUSTUS-PPX is
then run on.

4 DATASETS

4.1 Dynein heavy chain family
Dynein heavy chain (DHC) proteins belong to the longest proteins
in eukaryotes comprising more than 4000 amino acids. They can
be grouped into several subfamilies that are either responsible
for intracellular transport and mitosis or part of the complex
microtubule-based structures in cilia and axonemes. In mammals,
most of the DHC genes are spread in up to hundred exons over
several hundred thousand of base pairs. The 16 human DHC
sequence fall into 10 subfamilies DHC1 to DHC9 and DHC11.

The DHC genes have all been manually assembled and verified
because existing gene prediction programs were not able to correctly
predict the gene structures over such long distances. For 13 of the 16
human DHC sequences, cDNA data are available and has been used
for prediction. The remaining three DHC sequences, and the DHC
genes of the other organisms, have been manually assembled based
on comparative analysis of the metazoan homologs in the subfamily.

The manually created and curated MSA of the DHC family
proteins, currently comprising more than 1600 DHC sequences,
has been the best control and guide during this process. These
manually assembled and verified DHC sequences are regarded
as almost correct predictions and taken as reference sequences
for the test runs. The DHC data are available from CyMoBase
(http://www.cymobase.org, Odronitz and Kollmar, 2006).

From a complete sequence alignment of all DHC members
available from CyMoBase, the alignment of the human sequences
was converted into block profiles that were used as input in the test
runs of AUGUSTUS.

A total of 96 DHC proteins out of 6 species were chosen as
reference sequences; these were human, mouse, chicken, the Clawed
frog and the Owl limpet, a sea snail. The range of members and
subfamilies varies slightly between species.

4.2 PFAM alignments
To assess the performance of the profile extension on a wider set
of protein families, five additional profiles were produced from
MSAs downloaded from the PFAM database. The families were
chosen randomly from the set of all families that had a minimum
average length of at least 400 residues, and a minimum of 30 human
representatives in them. Short alignments that cover only single
domains were not considered, since AUGUSTUS-PPX is designed
for the case of full-length protein signatures.

From each alignment, a core alignment was produced
with the procedure described in Section 3.1. Typically, about 60%
of the sequences were discarded in order to maximize the size of
the usable part of the alignment. Among the core sequences, a total

of 46 human sequences remained that were taken as reference and
were downloaded from UniProt.

4.3 Genomic reference sequences
From the protein sequences chosen as reference set, i.e. the 96 DHC
proteins from 6 species, and the 46 human sequences from the PFAM
alignments tested, we produced reference gene structures. We used
the program Scipio (Keller et al., 2008; Odronitz et al., 2008) to
reproduce the exact exon/intron structure of the given proteins.

The reference genes for the DHC family consisted of 75 exons
on average, spanning a length from 30 up to 450 kb. Depending
on the quality of the assembly, frame shifts occur sporadically, and
reference gene structures in some cases do not cover the full protein
sequence. However, they can be considered complete with respect
to the reference genome; the corresponding parts may have been
determined from unmapped contigs or from cDNA analysis.

5 RESULTS AND DISCUSSION

5.1 Setup of runs
AUGUSTUS was run on the regions containing the reference genes,
both in the ab initio and PPX versions, and the results were compared
with the reference genes. The DHC genes were chosen as examples
as their size makes their prediction prone to difficulties like the
split gene problem. The human DHC used in the runs consisted of
42 blocks with a total length of 1214 sites (columns), the largest
block having a motif length of 134.

In a second set of runs, allowing for the scenario that no ortholog
to the target sequence is known, the human ortholog to the test
sequence was removed from the alignment used to generate the
profile, so that the remaining sequences all had <60% identity to the
target sequence (‘ex-ortholog’).

We also ran Genewise in HMM mode on the reference
regions, with default parameters and supplied with a profile-
HMM in HMMER format, automatically generated from the same
alignments, including the ex-ortholog ones. While Genewise has
been succeeded by faster tools such as Exonerate in the case of
single-protein queries, we are not aware of any other program that
can perform a spliced alignment of a profile-HMM to a genomic
sequence.

In order to compare a single-query mapping approach designed
for high homology, cross-species searches with human queries for
their orthologs were executed with Scipio, using default parameters.

Finally, to examine a random set of various reference proteins,
runs were performed with the profiles generated from the five PFAM
alignments, comparing AUGUSTUS-PPX to AUGUSTUS ab initio
and Genewise. Here, we ran a low-similarity scenario by taking out
from the alignments all sequences with >60% identity.

Apart from the block hit thresholds, no further tunable parameters
were introduced to AUGUSTUS. The parameters have not been
adjusted for the runs.

5.2 Assessment of the prediction quality
5.2.1 Results of the DHC runs The task of recognizing a gene
as a member of the DHC protein family was accomplished by
AUGUSTUS-PPX in almost all cases. Four sequences were not
identified as DHCs, three from less similar subfamilies and one
case with an incomplete genomic reference sequence. Instead, these
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Table 1. Accuracy of DHC runs

Species AUGUSTUS-PPX AUGUSTUS
ab initio

Scipio cross-
species

Genewise

Full Ex-ortho Full Ex-ortho

Highly accurate genes (%)
Human 62.5 62.5 31.3 N/A 93.8 6.3
Mouse 72.2 61.1 22.2 88.9 55.6 0.0
Chicken 58.3 50.0 8.3 8.3 16.7 0.0
Frog 44.4 38.9 0.0 5.6 11.1 0.0
Zebrafish 57.1 35.7 57.1 7.1 14.3 0.0
Snail 44.4 44.4 5.6 0.0 11.1 0.0

Total 56.3 49.0 11.5 36.5 34.4 1.0

Exon level sensitivity (%)
Range 86–94 84–91 78–85 32–86 59–80 46–50
Average 89.6 87.5 81.3 63.5 70.9 49.2

Exon level specificity (%)
Range 76–92 75–91 77–88 52–88 74–85 68–72
Average 85.0 82.9 80.3 76.5 79.3 69.6

Comparing the results of AUGUSTUS-PPX with AUGUSTUS ab initio, single-
sequence cross-species search (Scipio) and Genewise in HMM mode. ‘ex-ortho’ refers
to runs with orthologs of target genes removed from the MSA. Highly accurate genes
are those predicted with at least 95% sensitivity and 85% specificity.

genes were predicted identically to the ab initio version. Scipio
(run only where human orthologs were there) and Genewise failed
to identify two more sequences, and did not make a prediction in
these cases. In the ex-ortholog scenario, Genewise left 14 sequences
unidentified.

Table 1 shows prediction accuracy of the testing scenarios,
compared with the ab initio version, Scipio and Genewise. At
exon level, there is significant gain in sensitivity compared with
the ab initio version, with almost 40% of the previously missed
or mispredicted exons corrected, throughout the tested species.
Specificity was overall increased slightly, but showed a decrease
in some of the more distant species. Genewise is somewhat weaker
in predicting exact splice sites, resulting in lower accuracy than
AUGUSTUS ab initio, even when using the full profile.

With genes consisting of more than 70 exons, the requirement that
a gene is predicted entirely correctly has to be relaxed somewhat
when assessing prediction quality at the gene level. We calculated
the rate of highly accurate genes, meaning that the overlap of
prediction and reference is at least 95% of the reference and 85%
of the prediction. On the human sequences, Genewise obtained the
best results, with all genes but one predicted with high accuracy.
In contrast to Genewise, AUGUSTUS-PPX maintained a high
prediction rate on the more distant species and in the ‘ex-ortholog’
scenario. The protein-based prediction tools benefit especially from
joining predicted exons to a single gene. The single-query-based
Scipio predictions deteriorate strongly with evolutionary distance.

5.2.2 Effects of the protein extension There are various ways the
profile can improve the prediction, as illustrated in Figure 4. A gene
with complementary block hits on them, previously mispredicted as
two genes, is now joined to one. This is an important advantage that
protein-based gene finders have in comparison to ab initio tools.

Overall, specificity was improved to a lesser extent; in some
genes, we observed a deterioration of specificity at exon level when

Fig. 4. A section of an example result of AUGUSTUS-PPX, shown in
GBrowse, with the effects of the protein extension highlighted by a red box.
One exon containing a block hit is added, one false positive exon removed
to satisfy the distance constraints and two genes are joined into one.

Fig. 5. Another GBrowse example, with false positive exons highlighted
that are due to a missing block enforced by the profile extension.

using the profile, while in others it was clearly improved. These
heterogenous results are caused by block hits enforced by the profile,
leading to a number of false positive exons added to the prediction,
as shown in Figure 5. This occurred both in cases of low homology
and incomplete assemblies. We addressed this issue by performing
a third set of runs based on the fast block search (see below).

5.2.3 Runs with profiles generated from PFAM alignments
Results of the runs on the 46 reference genes from the five PFAM
protein families are shown in Table 2. Exon level sensitivity and
rate of highly accurate genes were improved, to varying extent, in
all five cases. The number of completely correct genes rose from
10 (21.7%) to 14 (30.4%). In all but 1 of the 46 cases, the genes
were identified by AUGUSTUS-PPX as members of their families.
Results deteriorated only slightly when we restricted the profile to
low identity, and occasionally even improved (removing similar
sequences can lead to more blocks in the profile or prevent false
positive block hits); two more sequences were not recognized as
members. Genewise did not reach the accuracy of AUGUSTUS
ab initio.

5.3 Further testing
5.3.1 Fast block search A fast block search (see Section 3.4)
was performed prior to the actual AUGUSTUS runs, outputting
the profile hits in the form of a list of blocks found there. Missing
blocks were then removed from the DHC profile used for another
AUGUSTUS-PPX prediction. With the filtered profile, no exons
were added by enforced block hits, resulting in a higher exon
specificity in all species (results shown as Supplementary Material).
Generally, a fast block search is also needed to determine the regions
for the gene prediction; it takes about the same time as the ab initio
gene prediction, while the profile extension runs considerably slower
(roughly 100 times for the large DHC profile). Run on the human
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Table 2. Accuracy of PFAM runs

Family AUGUSTUS-PPX AUGUSTUS
ab initio

Genewise

Full <60%

Highly accurate genes at 95/85 (%)
HSP70 87.5 87.5 75.0 0.0
Aldedh 77.8 55.6 66.7 0.0
AA_permease 53.3 53.3 33.3 0.0
Cullin 28.6 28.6 0.0 0.0
Sec1 28.6 42.9 14.3 0.0

Total 56.5 54.3 39.1 0.0

Completely correct genes (%)
30.4 28.3 21.7 0.0

Exon level sensitivity (%)
Range 84–94 85–95 81–87 11–57
Average 89.0 88.7 88.8 39.3

Exon level specificity (%)
Range 72–92 71–89 65–89 25–77
Average 80.5 78.9 75.9 57.7

AUGUSTUS-PPX was compared with AUGUSTUS ab initio and Genewise. ‘<60’
refers to a profile with a maximum sequence identity of 60% to the target sequence,
analogously to ‘ex-ortho’ above.

genome, no false positive hits were observed with the DHC profile;
however, they cannot be excluded for shorter profiles.

5.3.2 Interoperability with external evidence We ran
AUGUSTUS on the human sequences with manually edited
hints and the DHC profile simultaneously. When supplied with the
hints for the exons still missing in the original predictions, those
were predicted correctly in general, unless there were non-standard
splice sites. This showed that in principle there is the potential
of adding the advantages of complementary methods, such as
RNA-based evidence.

6 CONCLUSION
The gene prediction program AUGUSTUS was extended by a
method combining protein-family based gene finding with an
ab initio prediction. Equipped with protein signatures, prediction
accuracy could be improved considerably, especially on full-gene
level on very long genes. The extrinsic protein data significantly
improves the gene prediction compared with existing programs
when sequence data only from distant species was available.

The presented approach is complementary to transcript-based
methods, and easily combined with them, offering the potential of
a further improvement of prediction accuracy.

Block profiles are a protein signature suitable for aiding gene
prediction. The approach for extending the model is generic and
can be used to describe other types of constraints, for example
on coding sequence length. Future plans include the integration

of intron profiles, containing information about conserved intron
positions.
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