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ABSTRACT

Motivation: For the past few decades, many statistical methods
in genome-wide association studies (GWAS) have been developed
to identify SNP–SNP interactions for case-control studies. However,
there has been less work for prospective cohort studies, involving the
survival time. Recently, Gui et al. (2011) proposed a novel method,
called Surv-MDR, for detecting gene–gene interactions associated
with survival time. Surv-MDR is an extension of the multifactor
dimensionality reduction (MDR) method to the survival phenotype
by using the log-rank test for defining a binary attribute. However,
the Surv-MDR method has some drawbacks in the sense that
it needs more intensive computations and does not allow for a
covariate adjustment. In this article, we propose a new approach,
called Cox-MDR, which is an extension of the generalized multifactor
dimensionality reduction (GMDR) to the survival phenotype by using
a martingale residual as a score to classify multi-level genotypes
as high- and low-risk groups. The advantages of Cox-MDR over
Surv-MDR are to allow for the effects of discrete and quantitative
covariates in the frame of Cox regression model and to require less
computation than Surv-MDR.
Results: Through simulation studies, we compared the power of
Cox-MDR with those of Surv-MDR and Cox regression model for
various heritability and minor allele frequency combinations without
and with adjusting for covariate. We found that Cox-MDR and
Cox regression model perform better than Surv-MDR for low minor
allele frequency of 0.2, but Surv-MDR has high power for minor
allele frequency of 0.4. However, when the effect of covariate is
adjusted for, Cox-MDR and Cox regression model perform much
better than Surv-MDR. We also compared the performance of Cox-
MDR and Surv-MDR for a real data of leukemia patients to detect
the gene–gene interactions with the survival time.
Contact: leesy@sejong.ac.kr; tspark@snu.ac.kr

1 INTRODUCTION
Recently, massive amounts of information for single-nucleotide
polymorphisms (SNPs) across the whole genome have become
available from high-throughput technology, which allows genome-
wide association studies (GWAS) to be performed. As recently
reviewed by Manolio (2010), nearly 600 genome-wide association
studies covering 150 distinct diseases and traits have been reported,
with nearly 800 SNP-trait associations reported as significant under
P< 5 × 10−8. However, it is noted that the effective sizes of the
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loci identified via GWAS are relatively small, and these individual
loci may not be useful in assessing risk in personal genetics, as
mentioned by Moore and Williams (2009).

In early GWAS, statistical methods for identifying susceptibility
have considered a single SNP at a time and have selected a
subset of the top few SNPs from a ranked list of SNPs. Then,
replication studies have been implemented to determine whether
these associations held for other samples. Some of the replication
studies, however, show that significant associations are not found
from the top ranked list. Recently, this single-locus approach has
been moved into a multiple-loci approach because most complex
diseases are associated with multiple genes and their interactions.
However, the traditional parametric approach, such as the logistic
regression model, has limited power in detecting non-linear patterns
of interaction and needs a large amount of study samples when
multiple SNPs and gene–gene interactions are considered.

As a dimensional reduction strategy, Ritchie et al. (2001) proposed
the multifactor dimensionality reduction (MDR) method, which
is a computationally efficient method for detecting non-linear
patterns of gene–gene interactions in genetic association studies. The
MDR method is a non-parametric and genetic model-free approach
that efficiently identifies higher-order interactions between genes
and/or gene–environmental factors with binary phenotype. The main
idea of MDR is to reduce multi-dimensional genotypes into one-
dimensional binary attributes by pooling genotypes of multiple SNPs
using a well-defined classifier. More studies on MDR have been
published by Hahn et al. (2003), Moore (2004) and Hahn and Moore
(2004). In addition, many modifications and extensions to MDR
have been published, which include the use of odds ratios (Chung
et al., 2007), log-linear models (Lee et al., 2007), generalized linear
models (Lou et al., 2007), methods for imbalanced data (Velez
et al., 2007), methods for dealing with missing data (Namkung
et al., 2009), and model-based methods (Calle et al., 2008). Among
these previous studies, the generalized multifactor dimensionality
reduction (GMDR) method proposed by Lou et al. (2007) includes
both dichotomous and continuous phenotypes and allows for the
adjustment of covariates such as age, sex and other clinical variables.

In a prospective cohort study, survival time has been one
of the important phenotypes in studies of associations with
gene expression levels measured by high-throughput microarray
technology. Recently, Gui et al. (2010) proposed a novel approach
for identifying gene–gene interactions with survival times using SNP
information in the frame of MDR, called Surv-MDR. The Surv-
MDR method modifies MDR’s constructive induction algorithm to
classify multi-level genotypes as high- and low-risk groups using a
log-rank test instead of case control ratios. In addition, balanced
accuracy is replaced by log-rank test statistics and is used as a
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score to determine the best model. Surv-MDR was shown to have
better performance than that of traditional Cox regression models
through simulation experiments and was successfully applied to the
identification of SNP–SNP interactions associated with survival time
in bladder cancer data (Andrew et al., 2009).

Although Surv-MDR was shown to be powerful in gene–
gene interaction analysis for survival times, Surv-MDR has major
drawbacks in its application to GWAS. First, Surv-MDR requires
very intensive computations by computing log-rank test statistics
for all possible combinations of SNPs. Second, Surv-MDR cannot
allow for covariate adjustment, although adjustment of individual-
specific covariates is very important in association studies because
the true genetic associations with the survival phenotype may be
confounded by the covariates such as age, sex, race and stage.

To overcome these drawbacks, we propose a new approach, called
the Cox-MDR method, which is an extension of GMDR to the
survival time using the martingale residual as a score obtained from a
Cox model. The Cox model has been the most widely used to access
the effects of risk factors on survival times since a proportional
hazards assumption was proposed in the framework of the regression
model by Cox (1972). In the Cox model, the effect of covariates
is multiplicative with the hazard rate and is easily estimated
without any consideration of the hazard function if the proportional
hazards assumption holds. Since the martingale residual is difference
between the counting process and the integrated intensity function
in the Cox model, it can be intuitively interpreted as the excess
deaths (Therneau et al., 1990). The Cox-MDR uses this martingale
residual to identify the association between potential genetic factors
and the survival time. The martingale residual of each individual is
obtained from the reduced model with no SNP effect and is used
as a new classifier of high- and low-risk groups whereas all of the
other MDR procedures are kept unchanged. The effects of covariates
are adjusted in the reduced Cox model from which the martingale
residual is produced.

We compare the power of Cox-MDR with those of Surv-MD and
Cox regression model through simulation studies with 40 different
penetrance models listed by Velez et al. (2007). These 40 models
were constructed under combinations of four different heritability
and two different minor allele frequencies. The power comparison
is made under without and with adjusting for covariates.

2 METHOD: COX-MDR
In this section, we introduce a Cox model and describe how Cox-
MDR is constructed by incorporating the martingale residual into
the frame of GMDR.

Let T∗
i and C∗

i denote the survival time and censoring time
for the ith individual, respectively. Let Ti = min(T∗

i ,C∗
i ) be the

observed time and let δi = I(T∗
i �C∗

i ) be an indicator for uncensored
observation. The observed data consists of (Ti, δi) pairs as well as
covariates that may be vector-valued and/or time-varying, notated as
Xi(t). Here we consider only time-fixed covariates, notated as Xi. The
counting process formulation replaces the pair of variables (Ti, δi)
with the pair of functions (Ni(t),Yi(t)), where Ni(t)= I(Ti � t, δi= 1)
and Yi(t)= I(Ti � t). Here, Ni(t) is a counting process that represents
the number of observed events by time t for the ith individual and
Yi(t) is a predictable process that represents the risk set at time t.

The Cox model assumes a hazard function of the following form

λi(t|X,Z)=λ0(t)exp(X ′
iβ+Z ′

iγ )

Here, λ0(t) is an baseline hazard function, Xi is the predictor
variable vector coding gene–gene and gene–environment interaction
of interest, Zi is the vector coding for the covariates and β and γ

are the corresponding parameter vectors to Xi and Zi, respectively.
Then, we call β the target effects and γ the covariate effects.

We propose a new method, called Cox-MDR, using a martingale
residual value of the ith individual to classify each cell of multi-
locus genotype combinations into either high- or low-risk groups.
The martingale residual for the ith individual is obtained from the
null model of no target effects (i.e. β =0) and is specified as follows:

Mi(∞)=Ni(∞)−
∞∫

0

λ0(s)Yi(s)exp(Z ′
iγ )ds.

As shown in the equation above, the martingale residual is the
difference between the observed and the expected events under
the null model with no SNP effects. The sign and the magnitude
of the martingale residual would reflect the association of SNPs on
the hazard rate. Each individual with a positive martingale residual is
classified as a case, whereas one with a negative martingale residual
is classified as a control. For each multi-locus genotype combination
of SNPs, we calculate the sum of the martingale residuals of those
patients who have the corresponding genotype and use it to classify
each cell into either high- or low-risk groups. In practice, we assign
each cell as high risk if the sum of martingale residuals within that
cell is greater than or equal to zero and as low risk otherwise. In
Cox-MDR, the martingale residual obtained from the Cox model
transforms the continuous survival time into a binary attribute.
Hereafter, the MDR’s constructive algorithm can be easily applied
to the survival time data.

The process of classifying each cell into high- and low-risk groups
is summarized as follows:

(1) Assume that there are a total of M SNPs in the dataset. For a
given dataset, fit a reduced Cox model with no SNPs effect,
adjusting for covariates. Obtain martingale residuals from the
fitted Cox model.

(2) For a given k-way interaction, select k SNPs among M SNPs
and construct all possible k-way contingency tables using
these k SNPs.

(3) For each multi-locus genotype combination defined by the k
SNPs, calculate the sum of martingale residuals over those
individuals who have the corresponding genotype.

(4) If the sum of martingale residuals is positive, classify the
cell corresponding to this genotype as a high-risk group.
Otherwise, classify the cell as a low-risk group.

The Cox-MDR method shares the same reduction strategy as MDR
except for replacing the case-control ratios by the sum of the
martingale residuals in each cell. For each dataset, balanced accuracy
is used to evaluate all possible k-way interactions and to identify the
best model. The balanced accuracy has been proposed by Velez et al.
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(2007) and is defined as the average of the sensitivity and the
specificity as follows:

BA= 1

2

(
TP

TP+FN
+ TN

TN +FP

)
. (1)

Here, TP denotes the true positives, TN true negatives, FP false
positives and FN false negatives, respectively. Then, Cox-MDR uses
10-fold cross-validation to determine the best model similarly as
implemented in MDR.

As mentioned in Lou et al. (2007), the validity of the GMDR
method depends on the availability of an appropriate statistic that
can provide a measure of the association between the putative
factors and the phenotype. Since the martingale residual reflects the
unexplained part beyond what is explained by the adjusted covariates
with excluding the genetic factors, we can evaluate whether genetic
factors have an independent association with the survival time using
this martingale residual. In fact, the martingale residual of a Cox
model can be easily obtained from a statistical package such as
SAS or the R statistical language. The threshold of classification is
taken as zero because the expectation of the martingale residual is
zero and a positive martingale residual implies that there are more
events observed than expected under the model of no SNP effect.
In addition, the best combination of genotypes is selected by the
balanced accuracy defined in Equation (1) of the MDR procedure.

3 SIMULATION RESULTS
Through simulation studies, we compare the power of Cox-MDR
with those of Surv-MDR and Cox regression model without and
with adjusting for covariates. For comparison, the simulation setting
is constructed similar to that of Gui et al. (2010).

We consider 2 disease-causal SNPs among 10 unlinked diallelic
loci with the assumption of Hardy–Weinberg equilibrium and
linkage equilibrium. For the covariate adjustment, we consider only
one covariate which is associated with the survival time but has
no interactions with any SNPs. We generate simulation datasets
from different penetrance functions, which define a probabilistic
relationship between a status of high- or low-risk groups and SNPs.
We consider eight different combinations of two different minor
allele frequencies of (0.2, 0.4) and the four different heritability of
(0.1, 0.2, 0.3, 0.4). For each of the 8 heritability-allele frequency
combinations, a total of 5 models were generated, which yields 40
epistatic models with various penetrance functions, as described by
Velez et al. (2007).

Let fik be an element from the ith row and the kth column of
a penetrance function. Assuming that SNP1 and SNP2 are the two
disease-causal SNPs, we have the following penetrance function:

fik =P(high risk |SNP1= i, SNP2=k).

We generate 200 high-risk patients and 200 low-risk patients from
each of the 40 penetrance models to create one simulated dataset.
For each dataset, we implement 10-fold cross-validation and repeat
this procedure 10 times to reduce the fluctuations due to chance
divisions of the data. As a result, we generate 100 datasets for each
model. We simulate the survival time from a Cox model specified
as follows:

λ(t|X,Z)=λ0(t)exp(xβ+zγ ).

Here, x is an indicator variable with value 1 for the high-risk group
and 0 for the low-risk group, and we set β = 1, γ = 0.0, 1.0, 2.0

Table 1. Power comparison of Cox-MDR with Surv-MDR and Cox
regression model on 40 epitasis models when there is no covariate effect
(γ =0.0)

MAF∗ Heritability Surv-MDR Cox-MDR Cox-regression

0.2 0.1 0.108 0.212 0.066
0.2 0.2 0.266 0.486 0.266
0.2 0.3 0.408 0.678 0.612
0.2 0.4 0.530 0.784 0.806
0.4 0.1 0.170 0.130 0.032
0.4 0.2 0.594 0.354 0.266
0.4 0.3 0.748 0.654 0.500
0.4 0.4 0.920 0.776 0.794

∗MAF: Minor allele frequency.

and z is an adjusting covariate generated from N(0,0.5). In addition,
the baseline hazard function follows a Weibull distribution with the
shape parameter of 5 and the scale parameter of 2, and the censoring
time is generated from a uniform distribution, U(0,4).

For the power comparison, we ran Surv-MDR and Cox-MDR
on 100 simulated datasets for each of 40 models, including 2
disease-causal SNPs, and we selected the best model over all
possible two-way interaction models without and with adjustment
of covariates, respectively. The power of Cox-MDR is defined in
the same manner as that of Surv-MDR in Gui et al. (2011), in
which the power is estimated as the percentage of times Surv-MDR
correctly chooses the 2 disease-causal SNPs as the best model out of
each set of 100 datasets for each model. In addition, we ran a Cox
regression model with each single SNP and estimated the power
as the percentage of times that both the two disease-causal SNPs
had univariate P-value < 0.05. Tables 1, 2 and 3 show the power
of Surv-MDR, Cox-MDR and Cox-regression model without and
with adjustment of covariates when the covariate effect is γ =
0.0, 1.0, 2.0, respectively. In Tables 1, 2 and 3, the power is the
average of all powers across the same combinations of heritability
and minor allele frequencies. Since the Surv-MDR method cannot
allow the adjustment of covariate, the power of Surv-MDR is the
same regardless of adjustment of covariate.

For type I error, we also evaluate the performance of Cox-MDR
when there is no SNP effect on the survival time. In other words,
we check whether the type I error is well preserved under the null
hypothesis. To do this, we select randomly 20 datasets from each
of 40 models and remove the 2 disease-causal SNPs, which create
a total of 800 null datasets. We ran Cox-MDR on 800 datasets and
estimated the percentages of times that Cox-MDR included the 2
disease-causal SNPs in the chosen model out of 800 datasets. From
the simulation result, the type I error is estimated as 0.02, which
is smaller than the nominal level of 0.05. When we tried to select
randomly 100 datasets from each of 40 models, which is a total of
4000 null datasets, the type I error varied from 0.014 and 0.040,
which is also consistently smaller than 0.05.

As shown in Table 1, the power trend varies over the combinations
of minor allele frequency and heritability. The power of three
methods steadily increases as the heritability increases from 0.1 to
0.4 though the degree of increase is different over three methods
depending on the minor allele frequency. Under the minor allele
frequency of 0.2, the power of Cox-MDR is better than those of
Cox regression model and Surv-MDR when the heritability is up
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Table 2. Power comparison of Cox-MDR with Surv-MDR and Cox regression model on 40 epitasis models, with and without adjusting covariates when the
effect of covariate is γ =1.0

Without adjustment With adjustment

MAF∗ Heritability Surv-MDR Cox-MDR Cox-regression Cox-MDR Cox-regression

0.2 0.1 0.058 0.144 0.024 0.202 0.052
0.2 0.2 0.132 0.314 0.092 0.510 0.254
0.2 0.3 0.250 0.474 0.252 0.642 0.580
0.2 0.4 0.384 0.612 0.478 0.812 0.838
0.4 0.1 0.126 0.110 0.016 0.150 0.038
0.4 0.2 0.372 0.224 0.132 0.356 0.302
0.4 0.3 0.560 0.458 0.248 0.664 0.500
0.4 0.4 0.746 0.544 0.446 0.760 0.806

∗MAF: Minor allele frequency.

Table 3. Power comparison of Cox-MDR with Surv-MDR and Cox regression model on 40 epitasis models with and without adjusting covariates when the
effect of covariate is γ =2.0

Without adjustment With adjustment

MAF* Heritability Surv-MDR Cox-MDR Cox-regression Cox-MDR Cox-regression

0.2 0.1 0.038 0.084 0.008 0.196 0.060
0.2 0.2 0.066 0.180 0.032 0.502 0.300
0.2 0.3 0.114 0.244 0.066 0.648 0.600
0.2 0.4 0.124 0.342 0.090 0.798 0.858
0.4 0.1 0.054 0.064 0.006 0.156 0.040
0.4 0.2 0.154 0.082 0.034 0.374 0.312
0.4 0.3 0.250 0.202 0.056 0.658 0.510
0.4 0.4 0.388 0.280 0.128 0.764 0.786

∗MAF: Minor allele frequency.

to 0.2. However, when the heritability is 0.3 and 0.4, the power of
Cox-MDR is similar to that of Cox regression model but higher than
that of Surv-MDR. However, under the minor allele frequency of
0.4, the power of Surv-MDR is substantially higher than those of
Cox-MDR and Cox regression model.

On the other hand, as shown in Tables 2 and 3, when the covariate
is not adjusted for, the power of all methods is severely reduced. For
example, when the minor allele frequency is 0.4 and the heritability
is 0.4, Surv-MDR, Cox-MDR and Cox regression model have
the maximum power of 0.388, 0.280 and 0.128, respectively in
Table 3 (γ =2.0) whereas the corresponding powers are 0.746, 0.544
and 0.446 in Table 2 (γ =1.0), respectively. This implies that the
power of all methods decreases substantially when the effect of
covariate is large and it is not adjusted for. It is noted that there
is a similar trend of power when the effect of covariate increases
from 2.0 to 3.0 (data not shown). However, the deteriorating power
is recovered by adjusting for covariate as shown in Tables 2 and
3. This rationale sounds reasonable because the power of Cox-
MDR and Cox regression model increases greatly after adjusting
for covariate. As a result, the adjustment of covariate is critically
important to detect gene–gene interaction, especially when the effect
size of covariate is large. However, Surv-MDR cannot adjust for
the covariate and has low power when the covariate is strongly
associated with the survival time. On the other hand, Cox-MDR

consistently keeps reasonable power while adjusting for covariate
even when the effect of covariate is large. Cox regression model
also maintains the moderate power like Cox-MDR.

In summary, the simulation results show that Surv-MDR has
a good power only when the minor allele frequency is 0.4 and
heritability is more than 0.3. Since Surv-MDR cannot adjust for
covariate, there is no gains in power by adjusting for covariate and
has worse power when the effect size of covariate is larger. On the
other hand, Cox-MDR has reasonable power across all combinations
of minor allele frequency and heritability and gains substantial
power by adjusting for covariate. Cox regression model also has
comparable power with Cox-MDR though it is more sensitive to
low heritability. This implies that it is very important to adjust for
covariates when some of confounding factors are associated with
the survival time in detecting significant gene–gene interactions.
The availability of covariate adjustment is an important advantage
of Cox-MDR and Cox regression model over Surv-MDR.

4 REAL EXAMPLE
We analyze a real example of leukemia patient data to illustrate
the procedure of Cox-MDR and compare it with Surv-MDR. The
data consist of 97 acute myeloid leukemia (AML) patients with
demographic and clinical variables and 139 SNPs information.
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Table 4. Top three models identified by Surv-MDR with main effect and without main effect

With all 139 SNPs With 118 SNPs after removing 21 SNPs having strong main effect

Models TSSC TSSC Coeff. P P∗ Models TRSC TSSC Coeff. P P∗

One-way One-way
NT5C3 rs12155477 25.435 25.595 −0.045 0.844 0.00936 NT5C3 rs12155477 25.607 25.595 −0.045 0.844 0.00936
SLC29A1 rs7753792 20.257 16.398 2.326 0.003 0.05509 DCK rs4694362 11.238 11.291 0.429 0.145 0.07387
DCTD rs13139377 13.951 13.659 0.767 0.003 0.28089 TYMS rs1004474 10.825 10.730 0.156 0.487 0.04114

Two-way Two-way
NT5C3 rs12155477 and
DCTD rs13114435

42.880 43.174 −0.083 0.839 0.01828 DCK rs4694362 and
NT5C3 rs12155477

38.108 37.876 0.556 0.234 0.00189

NT5C3 rs12155477 and
DCTD rs6552621

42.732 43.143 −0.101 0.804 0.00856 NT5C3 rs12155477 and
TYMS rs2847153

37.328 37.464 0.100 0.722 0.00152

NT5C3 rs12155477 and
DCTD rs17331744

42.662 43.038 −0.088 0.830 0.00816 NT5C3 rs12155477 and
NT5C3 rs7776847

36.978 37.465 3.317 0.012 0.00873

TRSC: Training score; TSBA: Testing score; Coeff.: the estimated effect size of the corresponding SNP effect; P: P-value of main and two-way interaction effects in the Cox
regression model, P*: permutation P-value of main and two-way interaction effects.

Table 5. Top three models identified by Cox-MDR with main effect and without main effect

With all 139 SNPs With 118 SNPs after removing 21 SNPs having strong main effect

Models TRBA TSBA Coeff. P P∗ Models TRBA TSBA Coeff. P P∗

One-way One-way
TYMS rs1004474 0.665 0.665 0.156 0.487 0.00037 TYMS rs1004474 0.665 0.665 0.156 0.487 0.00037
TYMS rs2847153 0.633 0.633 0.206 0.324 0.00194 TYMS rs2847153 0.633 0.633 0.206 0.324 0.00194
CDA rs10799647 0.629 0.630 −0.723 0.076 0.00001 CDA rs10799647 0.629 0.630 −0.723 0.076 0.00001

Two-way Two-way
CDA rs12404655 and
TYMS rs1004474

0.719 0.712 −1.125 0.098 0.00001 CDA rs12404655 and
TYMS rs1004474

0.719 0.712 −1.125 0.098 0.00001

CDA rs532545 and
TYMS rs2847153

0.705 0.704 −0.216 0.591 0.00973 CDA rs532545 and
TYMS rs2847153

0.705 0.704 −0.216 0.591 0.03013

CDA rs10916824 and
TYMS rs1004474

0.713 0.704 −1.211 0.117 0.00138 MTHER rs9651118 and
TYMS rs1004474

0.721 0.703 −0.714 0.038 0.00035

TRBA: Training balanced accuracy; TSBA: Testing balanced accuracy; Coeff.: the estimated effect size of the corresponding SNP effect; P: P-value of main and two-way interactions
in the Cox regression model; P*: permutation P-value of main and two-way interaction effects.

Among those, 40 patients were dead and 57 patients were alive until
the termination of study. We consider two variables of age and sex
as adjusting covariates in comparing the power of Cox-MDR and
Surv-MDR. Likewise the simulation results, we implement Cox-
MDR with and without adjusting for covariates up to two-way
interactions whereas Surv-MDR is implemented without adjustment
of covariate.

First, we ran Surv-MDR and Cox-MDR with all of 139 SNPs
for one- and two-way models and the effects of age and sex were
adjusted for Cox-MDR. Since the available sample size is only 97
and censoring is heavy, 10-fold cross validation provides too small
test set to evaluate the best model. Instead, we implemented 2-fold
cross validation with a replication of 100 times and listed the top
3 one- and two-way models in the first column of Tables 4 and 5,
respectively. Secondly, we fitted a univariate Cox model with each
SNP adjusting for age and sex and listed 21 SNPs that have P-value
<0.05 in Table 6. Since the MDR method is known to be useful

to detect the epistatic models, we removed these 21 SNPs from the
dataset and re-ran Surv-MDR and Cox-MDR without SNPs having
strong main effects likewise the procedure of Gui et al. (2010). The
top three one- and two-way models from these results were listed in
the right hand side in Tables 4 and 5, respectively. In addition, we
displayed P-value obtained from the Cox regression model and the
permutation P-value.

As can be seen in Table 4, for Surv-MDR, the results with
all139 SNPs are quite different from those with 118 SNPs after
removing 21 SNPs having significant main effect because the
2 SNPs, SLC29AL rs7753792 and DCTD rs13139377, were
detected to be top 3 main effects but these 2 SNPs did not
have significant permeation P-values in detecting the two-way
interactions when all 139 SNPs were considered. However, when
118 SNPs were considered, NT5C3 rs12155477 was selected as
the top one-way model and also appeared in detecting two-way
models.
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Table 6. 21 SNPs with main effect under P-value (<0.05) from a univariate
Cox model adjusting for age and sex

SNP Coeff. P-value FDR∗

SLC29A1 rs7753792 2.3255 0.0029 0.1313
DCTD rs13139377 0.7668 0.0033 0.1313
DCTD rs17331744 0.7435 0.0118 0.1313
DCTD rs7663494 0.7435 0.0118 0.1313
DCTD rs3886768 0.7435 0.0118 0.1313
DCTD rs13148414 0.7435 0.0118 0.1313
DCTD rs17331968 0.7435 0.0118 0.1313
DCTD rs10520543 0.7435 0.0118 0.1313
DCTD rs9990999 0.6316 0.0128 0.1313
DCTC rs13116494 0.6316 0.0128 0.1313
DCTD rs13116598 0.6316 0.0128 0.1313
DCTD rs3811810 1.1114 0.0133 0.1313
DCTD rs13114435 0.7336 0.0134 0.1313
DCTD rs6552621 0.7224 0.0138 0.1313
DCTD rs7688234 0.6226 0.0146 0.1313
DCTD rs13101260 0.6064 0.0151 0.1313
SLC29A1 rs1057985 −0.5770 0.0228 0.1866
DCTD rs10009825 0.6555 0.0264 0.2038
SLC29A1 rs507964 −0.5195 0.0380 0.2780
CDA rs10916824 −1.0402 0.0447 0.3093
DCTD rs17272827 0.5684 0.0467 0.3093

∗False discovery rate

On the other hand as shown in Table 5, for Cox-MDR, the results
with all 139 SNPs are almost the same as those with 118 SNPs except
for one- or two-way models, since the top 3 SNPs were not detected
significantly by the single SNP approach using a Cox model. Among
those, TYMS rs1004474 and TYMS rs2847153 also appear in top
three two-way models. It is noted from Tables 4 and 5 that no pairs
were commonly detected as two-way models by both Surv-MDR
and Cox-MDR.

In order to compare the performance of Surv-MDR and Cox-
MDR, we plot the survival curves for the high- versus low-risk
groups by the attribute of SNPs pairs selected as two-way models
in Figures 1 and 2. In Figure 1, two plots display the survival
curves for high- and low-risk groups defined by the attributes
of two-way models by Surv-MDR with P-values of the log-
rank test for the equality of two survival curves. The Surv-MDR
attribute in Figure 1A is defined by NT5C3 rs12155477 and DCTD
rs13114435 and significantly separate two survival curves with
P=0.001. However, the Surv-MDR attribute of NT5C3 rs12155477
and NT5C3 rs7776847 do not separate two survival curves clearly
as shown in Figure 1B. The two survival curves cross in the early
time and yield no significant log-rank test result with P=0.339. The
other attributes also separate two survival curves significantly (data
not shown).

Similarly, we plot the survival curves for high- and low-risk
groups by the attributes of two-way models defined by Cox-MDR
in Figure 2. Two plots of Figure 2A and B show the significant
separation of the survival curves for high- and low-risk groups with
the significant P-values for the log-rank test.

It is noted that the SNPs defined as attributes of Surv-MDR and
Cox-MDR are not included in the list of Table 6 because these cannot
be detected to be significantly associated with the survival time for
the single SNP approach with a Cox model.As shown in Tables 4 and

Fig. 1. AML survival curves for the high-risk versus low-risk groups by the
attribute of SNP pairs selected by Surv-MDR. (A) NT5C3 rs12155477 and
DCTD rs13114435 (B) NT5C3 rs12155477 and NT5C3 rs7776847

Fig. 2. AML survival curves for the high-risk versus low-risk groups by
the attribute of SNP pairs selected by Cox-MDR. (A) CDA rs12404655 and
TYMS rs1004474 (B) MTHER rs9651118 and TYMS rs1004474

5, the univariate Cox regression P-values of NC5C3 rs12155477,
TYMS rs1004474 and TYMS rs2847153 are 0.844, 0.487 and 0.324,
respectively. However, Surv-MDR and Cox-MDR select these SNPs
in one-way and two-way models and the combinations of these SNPs
make subjects separate high- and low-risk groups significantly. This
implies that there may be gene–gene interactions associated with the
survival time which cannot be detected by ordinary approach using
a Cox model.

5 DISCUSSION
To identify the complexity of gene–gene and/or gene–environment
interactions on common diseases, many plausible approaches have
been developed by extending existing methods into a more general
framework. In this article, we propose the Cox-MDR method by
extending the main idea of GMDR to the survival phenotype. Cox-
MDR uses the martingale residual of the Cox regression model
as a score to classify multi-loci genotype combinations into high-
and low-risk groups. Since the martingale residual reflects the
unexplained part beyond what is explained by the adjusted covariates
excluding the genetic factors, we can evaluate whether genetic
factors have an independent association with the survival time using
the martingale residual.

Through the simulation study, we compared the performance of
Cox-MDR to those of a Cox regression model and Surv-MDR. All of
the three methods showed the common trend that the power increases
steadily as heritability increases from 0.1 to 0.4 although the degree
of increase varies depending on the minor allele frequency and the
effect size of covariate. When the minor allele frequency is 0.2,
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Cox-MDR and Cox regression model have higher power than Surv-
MDR but Surv-MDR has higher power than Cox-MDR and Cox
regression model when the minor allele frequency is 0.4 regardless
of the effect size of covariate.

It is noted that the power of three methods decreases substantially
as the effect size of covariate increases from 1.0 to 2.0 as shown
in Tables 2 and 3. It might be that the association of gene–
gene interaction on the survival time could be confounded by
the unadjusted covariates. This can be seen that after adjusting
for covariate, Cox-MDR and Cox regression model recover the
reasonable power regardless of the effect size of covariate, whereas
Surv-MDR has worse power as the effect size of covariate becomes
larger. This implies that the adjustment of covariates is very
important to detect multi-loci genetic effects on the survival
time when the genetic effect on the survival time is commonly
confounded by demographic or clinical covariates, such as age, sex,
race and blood pressure. Both Cox-MDR and Cox regression model
have great advantages over Surv-MDR due to feasibility of adjusting
for covariate.

From the result of real data analysis, it is noted that the top ranked
SNP pairs identified by Surv-MDR and Cox-MDR separate the
survival curves for the high- and low-risk groups significantly except
for one case. Each of these SNPs has no significant main effects in
the Cox model but the gene–gene interaction effect defined by their
pairs has substantial impact on the separation of two survival cures
between high- and low-risk groups.

Comparing Cox-MDR and Surv-MDR, Surv-MDR is a non-
parametric approach based on the log-rank test statistic whereas
Cox-MDR is a semi-parametric approach based on the martingale
residual of a Cox model. When Surv-MDR calculates a log-rank
test statistic to pool multiple combinations of genotypes into two-
level attributes, each log-rank test statistic is comparing the survival
time between samples with and without the genotype combination.
For example, we consider two-way interactions between SNP1 with
allele A and a and SNP2 with B and b, in which there are nine
possible genotypes from the combinations of SNP1 and SNP2. For
the cell of genotype (AA, BB), Surv-MDR computes a log-rank
test statistic comparing the survival time between samples with the
genotype (AA, BB) and without this genotype. However, for the cell
of genotype (Aa, BB), those patients who have the genotype of (AA,
BB) are also used for computing the log-rank test statistics as the
alternative group for comparing the survival time between samples
with a genotype of (Aa, BB) and without this genotype combination.
In this way, each individual contributes several times to compute the
log-rank test statistic as either one of the samples with or without the
genotype of interest. This overlapping usage may cause distinctions
between high- and low-risk groups to become contaminated, which
yield rather low power. However, the martingale residual of each
individual is taken into account once to discriminate each cell
into high- or low-risk groups, such as the case-control ratios
in MDR.

The execution time of our Cox-MDR has linear relationship
with sample size and combinations of SNPs. We expect that Cox-
MDR can evaluate 5 × 109 combinations (e.g. pairwise interactions
between 100k SNPs) with 1000 samples and 10 cross validation
in ∼6.4 days on a workstation with Intel Xeon 2.4GHz CPU and
12G RAM. If Cox-MDR is extended to parallel computing system,

our Cox-MDR can be feasible to analyze pairwise interactions for
GWAS.

In conclusion, Surv-MDR needs more intensive computations for
a large number of SNPs and has a big weakness with which there
is no way to adjust for covariates whereas, Cox-MDR requires less
intensive computations by using the martingale residual score and
has a great advantage of being able to adjust for covariate. Moreover,
the Cox-MDR method could be extended to other types of high-
dimensional data such as copy number variation (CNV) and next
generation sequencing (NGS) data.

For the next research topic, we plan to work on using the
standardized residual for the parametric regression models in the
frame of GMDR. Our key idea can be extended to the parametric
regression models with various error distributions such as Weibull,
log-normal and logistic distributions.
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