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ABSTRACT

Motivation: The discovery of novel gene fusions can lead to a better

comprehension of cancer progression and development. The emer-

gence of deep sequencing of trancriptome, known as RNA-seq, has

opened many opportunities for the identification of this class of gen-

omic alterations, leading to the discovery of novel chimeric transcripts

in melanomas, breast cancers and lymphomas. Nowadays, few com-

putational approaches have been developed for the detection of chi-

meric transcripts. Although all of these computational methods show

good sensitivity, much work remains to reduce the huge number of

false-positive calls that arises from this analysis.

Results: We proposed a novel computational framework, named

chimEric tranScript detection algorithm (EricScript), for the identifica-

tion of gene fusion products in paired-end RNA-seq data. Our simu-

lation study on synthetic data demonstrates that EricScript enables to

achieve higher sensitivity and specificity than existing methods with

noticeably lower running times. We also applied our method to pub-

licly available RNA-seq tumour datasets, and we showed its capability

in rediscovering known gene fusions.

Availability: The EricScript package is freely available under GPL v3

license at http://ericscript.sourceforge.net.
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1 INTRODUCTION

The identification of genomic rearrangements in cancer research

plays a main role to investigate causes and development of the

disease. Gene fusions are common alterations in which two genes

are fused, leading to the production of a chimeric transcript that

may have a new or altered activity. Gene fusions are well-known

mechanisms for oncogene activation in leukaemias, lymphomas

and sarcomas (Mitelman et al., 2007), but recent studies found

novel chimeric transcripts also in common epithelial cancers,

such as prostate cancers (Tomlins et al., 2005) and non–small-cell

lung cancer (Soda et al., 2007). The past few years have seen the

emergence of several high-throughput sequencing platforms that

enable to sequence hundreds of millions of short sequences

(reads) simultaneously and have routinely being applied to

genome, epigenome and transcriptome studies.

The sequencing of trancriptome (Mortazavi et al., 2008;

Nagalakshmi et al., 2008), known as RNA-seq, has been

widely used for the study of abundance estimation (Jiang and

Wong, 2009), RNA editing (Picardi et al., 2010), identification of

novel transcripts (Robertson et al., 2010) and splicing variants

detection (Trapnell et al., 2010; Wang et al., 2010). In 2009,

Maher et al. (2009) proposed a new methodology to comprehen-

sively catalogue functional gene fusions in cancer by using

paired-end (PE) transcriptome sequencing data. The basic idea

behind their approach was the identification of paired reads

mapping against different genes (discordant alignments).

Following this original approach, several studies for the detec-

tion of gene fusions have been carried out, Pflueger et al. (2011)

found non-ETS gene fusions in human prostate cancer, Berger

et al. (2010) identified 11 novel melanoma gene fusions produced

by underlying genomic rearrangements and 12 novel read-

through transcripts, Edgren et al. (2011) detected 24 novel and

3 previously known fusion genes in breast cancer cells and Steidl

et al. (2011) found highly expressed gene fusion involving the

major histocompatibility complex class II transactivator CIITA

in KM-H2 cells.

At present, several computational approaches have been de-

veloped for the detection of chimeric transcripts in RNA-seq

data. FusionSeq (Sboner et al., 2010) identifies gene fusions by

means of a two step analysis, identification of potential fusions

based on PE mapping and the application of a sophisticated

filtration cascade to filter out analysis artifacts. DeFuse

(McPherson et al., 2011) is a software package that uses clusters

of discordant paired-end alignments to perform a split read

alignment analysis for finding fusion boundaries. ChimeraScan

(Iyer et al., 2011) is a tool that implements the original compu-

tational methodology followed by Maher et al. (2009).

FusionMap is able to search for gene fusion products in both

single-end and paired-end sequencing by using ‘seed reads’ (Ge

et al., 2011). TopHat fusion implements several changes to the

TopHat aligner, all designed to enable the discovery of fusion

transcripts (Kim and Salzberg, 2011). ShortFuse (Kinsella et al.,

2011) detects chimeric transcripts RNA-seq data by using both*To whom correspondence should be addressed.
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unique and ambiguously mapping read pairs. Although all of
these computational methods show good sensitivity in dis-
covering chimeric transcript events, much work remains to

reduce the huge number of false-positive results that arises
from this kind of analysis.
Here, we present a novel computational method, named

EricScript (chimERIC tranSCRIPT detection algorithm), for
the detection of chimeric transcripts in PE RNA-seq data. The
novelty of our approach consists in an efficient recalibration

process of the exon junction reference that enables to increase
sensitivity and specificity and to reduce running times. Moreover,

we introduce a set of scores that enable to distinguish with high
precision between true chimeric transcripts and false-positive
events and reduce the large amount of calls generated from

data analyses. To evaluate the performance of EricScript, we
generated synthetic datasets of different read length simulating
different levels of coverage, and we compared it with other four

state-of-the-art algorithms. The synthetic datasets were also used
to train an adaptive boosting (AdaBoost) classifier to rank ana-

lysis results. We implemented the procedure that we used to
simulate gene fusions in the EricScript package. Our simulation
study demonstrates that EricScript enables to achieve higher sen-

sitivity and specificity than existing methods with noticeably
lower running times. We also applied our method to publicly
available PE RNA-seq tumour dataset, and we showed its cap-

ability in rediscovering known gene fusions.

2 METHODS

EricScript is a computational framework (see Fig. 1) that uses a combin-

ation of four alignment processes to identify fusion transcript signatures.

It comprises the following steps:

� Mapping of the reads against the transcriptome.

� Identification of discordant alignments and building of the exon

junction reference.

� Recalibration of the exon junction reference.

� Scoring and filtering the candidate gene fusions.

The first alignment [performed by Burrows–Wheeler alignment (BWA)

(Li and Durbin, 2009)] is used to identify discordant alignments and to

build an exon junction reference. This step is followed by the mapping of

all the reads against this novel reference to detect reads that are not

properly mapped (i.e. partially mapped and unmapped reads). To pre-

cisely estimate the exact borders of the junctions, our method performs a

further local realignment [performed by BLAT (Kent, 2002)] of the not

properly mapped reads against the exon junction reference. The last

mapping procedure allows for the identification of the spanning reads,

that is, the reads that span across the junctions and produce a list of

candidate fusions. Finally, EricScript estimates a probability score for

each predicted fusion and uses several heuristic filters to remove analysis

artifacts.

2.1 Transcriptome reference

EricScript includes a pre-built transcriptome reference for the alignment

process and the retrieval of information about genes. The set of genes we

consider for the analysis of chimeric transcripts is created by including the

Ensembl genes with the HUGO Gene Nomenclature Committee

(HGNC) identifier (Seal et al., 2011). The sequences of each gene are

built by joining the sequences of the exons from the different transcript

isoforms (exon-union model). We distribute EricScript with the latest

version of Ensembl Genes (http://www.ensembl.org); therefore, no

other reference is required to perform the analysis.

2.2 Identification of discordant reads

The first essential step in chimeric transcripts identification from PE

RNA-seq data is to select reads for which each mate of the fragment

aligns against different genes with opposite orientation. Although our

approach is independent by the short-read aligner, we decided to use

the BWA tool, as it reaches the best balance between sensitivity, specifi-

city and computational time (Ruffalo et al., 2011). The BWA mapping of

all the reads against the pre-built Ensembl transcriptome is used to iden-

tify discordant alignments. To increase the sensitivity of BWA in dis-

covering discordant alignments (especially when the length of the reads

is �75nt), the parameter ntrim allows EricScript to trim PE reads to a

selected value only for this alignment (see Supplementary Material).

EricScript enables to choose discordant alignments supported by a min-

imum number of the reads (minreads) and a minimum mapping quality of

the supporting reads (MAPQ). The set of reads that map to the same

pairs of genes in the same orientation are considered by EricScript to

build a reference of putative gene fusion events (Fig. 2a and

Supplementary Material). Discordant alignments between paralogous

genes (Ensembl Paralogous Human Genes) are filtered out and not con-

sidered for the downstream analysis.

The usage of exon-union model together with BWA allows us to ex-

ploit the MAPQ’s BWA estimation. In fact, the quality of the mapping

assigned by BWA to each alignment is an excellent way to reduce false-

positive results in the mapping process (Ruffalo et al., 2011). Moreover,

exon-union model reports all the exons once, allowing us to completely

exploit the MAPQ information, mainly by excluding discordant align-

ments with MAPQ lower than a selectable threshold value.

2.3 Candidate exon junction reference

The identification of discordant alignments enables to build the candidate

exon junction reference that will be used to search for split-read signa-

tures. For each set of discordant alignments (i.e all the discordant reads

that map against the same couple of genes), 50-gene is identified by the

signature of forward reads (first reads of the pairs) mapping to it, whereas

Fig. 1. The computational pipeline of EricScript
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the reverse reads are exploited to identify 30-gene. Let R5 (R3) be the

genomic region encompassing all the alignments of crossing reads to

50-gene (30-gene). Let the m (n) candidate exons for 50-gene (30-gene) be

all exons overlapping R5 (R3). As schematically illustrated in Figure 2b

and c, exon junction reference is generated by joining together the se-

quences of the m exons of 50-gene with the n exons of 30-gene, according

to the strand of transcription of both the genes. Bearing this in mind, the

candidate exon junction will result from the union of the last nucleotide

of the m-th exon with the first nucleotide of the n-th exon, according to

the strand of transcription of both the genes.

2.4 Recalibration of the exon junction reference

Gene fusions can involve both fusions between genomic boundary of

exons and fusions between any genomic positions of the two exons.

Moreover, as we build the set of putative fusions by joining the exon

boundaries of the candidate 50–30 fused genes, our junction reference

strictly depends on the Ensembl transcriptome. Bearing this in mind,

all the reads are mapped against the exon junction reference, and the

reads that are not properly mapped (not properly mapped reads,

NPMRs) are identified. We define NPMRs as the reads that map for a

fraction of their length against the reference or are unmapped (Fig. 2b).

NPMRs represent the candidate set of reads that span a fusion boundary

and allow us to find fusions that involve middle of exons. Our pipeline

classifies reads as NPMRs if they are unmapped or their string for mis-

matching positions (i.e. MD:Z tag of SAM file) reports a mismatch, and

its mapping quality is40. Each NPMR is then locally realigned against

its corresponding junction by means of the BLAT aligner to predict the

existence of gaps43bp (see Supplementary Material for more details). As

schematically illustrated in Figure 2b and c, this step allows us to inves-

tigate whether the majority of the NPMRs predict a gap. This means that

when two or more gene fusion isoforms are expressed in a sample,

EricScript is able to only detect the transcript with the highest expression

level. The exon junction reference is then recalibrated by taking into ac-

count the predicted gap (Fig. 2d).

2.5 Mapping against the recalibrated reference

After the recalibration step, we build a novel reference that comprises

both the pre-built Ensembl transcriptome and the previously recalibrated

junction reference. All the reads are mapped against this augmented

reference by means of the BWA aligner. Putative gene fusion junction

is selected for downstream analysis, if there exist at least one read that

spans the junction.

2.6 Scoring the candidate fusions

As already reported by Edgren et al. (2011), we expect genuine fusion

junctions to be characterized by a ladder-like pattern of short reads align-

ment across the junctions. On the other hand, a typical false-positive

event because of a ‘wrong’ pattern is represented by short reads aligning

around to the same position (shifted at maximum of 2–3bp). To distin-

guish genuine from wrong patterns, we introduced three novel scores,

named genuine junction score (GJS), Edge Score (ES) and Uniformity

Score (US). To produce a single score, we trained an AdaBoost classifier

on the aforementioned scores that allows EricScript to rank predicted

gene fusions. To comprehend the parameters used to define these score,

refer to Figure 3.

2.6.1 GJS The aim of introducing GJS is to assign higher scores

to those gene fusions characterized by the presence of reads spanning a

comparable number of bases in both the genes. For each junction j,

duplicated spanning reads are considered only once. This set of nj, unique
reads is used to calculate the GJS as follows:

GJSj ¼

Pnj, unique
i¼1

Nðxij�, �Þ

Pnj, unique
i¼1

Nðzij�, �Þ

, ð1Þ

(a) (c)

(b) (d)

Fig. 2. A simplified scheme for illustrating the recalibration procedure of EricScript. (a) Identification of discordant alignments and construction of the

exon junction reference. The reads with the same colour belong to the same cDNA fragment, that is, they are mates. (b) Mapping of all the short reads

against the exon junction reference by means of the BWA aligner. The NPMRs are reported in grey colour. (c) Identification of NPMRs and local

realignment of them against the exon junction reference by using BLAT. The local realignment reports a gap (d) that allows EricScript to recalibrate the

exon junction reference. The mapping of all the reads against the augmented recalibrated reference (see text) enables the identification of the junction

spanning reads

Fig. 3. Coordinate system and variables for evaluating the scores of

EricScript
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where xi is the relative position of each read with respect to the junction,

N is the normal distribution with mean � ¼ �rl=2 and SD � ¼ rl=4 (rl is

the read length of the reads) and z is a vector made up of nj, unique ‘sham’

positions that would have minimum distance of �rl=2, that is, the pos-

ition for which reads span both the genes with the maximum number of

bases. The choice of using zi enables to constrain GJSj between 0 and 1.

To be clear, we report the following example: let’s assume we have two

cases (i) rl¼ 50, x¼�1, �5, �40, �5 and (ii) rl¼ 50, x¼ (�10, �25,

�30). For both the cases, the vector z¼ (�25,�24,�26). z has 3 elements

as the number of unique positions for both the examples we reported

(nj, unique ¼ 3), and its elements are the positions with minimum distance

for �rl=2. In case (i) we obtain a GJS¼ 0.31, whereas in case (ii)

GJS¼ 0.81.

2.6.2 ES For each junction j, we parted reads in two sets, reads

with relative position x4� rl=2 with respect to the junction (we marked

them by the right subscript) and reads with x � �rl=2 (we marked them

by the left subscript). We defined ES with the following formula:

ESj ¼ 1� 1:1

�xj, leftþrlþxj, right
2

� �
, ð2Þ

where the overlines represent the mean, and the 1.1 base is arbitrarily

chosen to soften variations in the exponent. The ES score allows us to

give lower score values to events with the majority of reads that fall in

proximity of the fusion junction or in proximity of –rl.

2.6.3 US The US score was conceived to assign higher scores to

events in which the number of spanning and crossing reads are compar-

able. For each junction j, US is defined as the follows:

USj ¼
minðnj, cross, nj, spanÞ

maxðnj, cross, nj, spanÞ
, ð3Þ

where nj, cross and nj, span are the number of crossing and spanning reads,

respectively.

2.6.4 AdaBoost classifier To better rank predicted gene fusions,

we used an AdaBoost classifier trained with synthetic data (see

‘Results’ section and Supplementary Material). As already reported by

McPherson et al. (2011), AdaBoost was selected because it enables to

improve the predictive power of each individual score and summarize

the aforementioned measures into a single score (we indicate it as

‘EricScore’).

2.7 Filtering the results

Filtering is an essential procedure when dealing with the detection of

chimeric transcripts, as several types of noise of both sequencing and

analysis process can lead to the detection of a large amount of gene

fusion artifacts (Edgren et al., 2011; Sboner et al., 2010). To this end,

we designed a set of heuristic filters with the aim of discarding these false-

positive events.

2.7.1 Duplicate reads We discard all the PE reads that exactly

map to the same position, as they may derive from polymerase chain

reaction or optical artifacts. We use the command rmdup of SAMtools

to remove these events.

2.7.2 Pattern of short reads Scoring the candidate fusions by

means of EricScore allows us to assign to each candidate a probability

score of ‘well’ pattern, and thus classify all the fusions for discriminating

between real transcripts and false-positive events.

2.7.3 Transcript similarity Reads mapping on homologue re-

gions of different genes can lead to chimeric transcript artifacts. To min-

imize these events, we use BLAT to map the 100bp sequence region

around the wild-type junction against the Ensembl transcriptome.

If BLAT finds that the 100bp window sequence map �80% of its

length against one of the two candidate fused genes, we remove the can-

didate fusion.

2.7.4 Junction homology The junction coming from fusion pro-

cess can be a homologue with other regions of the transcriptome. To take

into consideration these events, we map the 100bp sequence region

around the predicted junction against the Ensembl transcriptome with

BLAT. If BLAT finds a homology with other genes, EricScript reports

the percentage of homology, that is, the percentage of the bases of the

homologue gene(s) that overlaps the 100bp junction sequence.

2.8 Writing results

After the filtering process, EricScript reports the candidate fusions in two

tab-delimited files, one file contains all the predicted fusions, whereas the

other reports the fusions with EricScore40.5. For each predicted gene

fusion, EricScript outputs several information that include the names of

50 and 30 genes and their corresponding biological descriptions, the break-

point positions for both the genes, the sequence that arises from the

fusion process and the type of fusion (inter-chromosomal, intra-

chromosomal, read-through or cis-acting transcripts). Moreover, we

report the four scores (GJS, ES, US, EricScore) and the estimation of

gene expression of wild-type genes and of the gene fusion product by

using a read count approach (see Supplementary Material for more

details).

2.9 Implementation, requirements and availability

EricScript is written in perl, R and bash scripts. It requires the BWA

aligner to perform the mapping of the PE RNA-seq short reads against

the transcriptome, the SAMtools software package (Li et al., 2009) to

handle with the SAM/BAM files created during the analysis and the

BLAT tool to perform the local realignment of the NPMRs against the

exon junction reference. EricScript is freely available under GPL v3 li-

cense at http://ericscript.sourceforge.net.

3 RESULTS

3.1 Synthetic data

To assess a reliable estimation of the performance of EricScript,

we simulated PE RNA-seq data with synthetic gene fusions, and

we compared our method with ChimeraScan (Iyer et al., 2011),

DeFuse (McPherson et al., 2011), FusionMap (Ge et al., 2011)

and ShortFuse (Kinsella et al., 2011). We generated each

synthetic dataset with the following recipe: we randomly ex-

tracted 2 million short reads from the RNA-seq data of un-

treated human pulmonary microvascular endothelial cells

generated by Zhang et al. (2012) (SRA accession code:

SRX099065). This dataset is made of 10.3G PE 100bp reads

sequenced by the Illumina HiScan SQ (Illumina Inc., San

Diego, CA, USA). By aligning all the reads against the

Ensembl transcriptome database version 65 with BWA (version

0.6.2-r126), we estimated that cDNA fragments were generated

from cDNA fragments of length �164 and SD �48. The reads

were also trimmed to 50 and 75bp to evaluate the performance

of each algorithm for different read lengths. The purpose of

introducing these reads in our study is to simulate a background

of ‘synthetic’ gene activity. To simulate synthetic gene fusion

products, we sampled 50 50-transcripts and 50 30-transcripts
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from the Ensembl transcriptome database version 65. We created
two distinct datasets as follows:

� Intact exons (IE): Each sampled 50-transcript was joined
with the corresponding 30-transcript, and the breakpoints

for both transcripts were randomly chosen among all the

known splicing sites of synthetically fused genes.

� Broken exons (BE): Each sampled 50-transcript was joined

with the corresponding 30-transcript, and the breakpoints
for both transcripts were randomly chosen without exploit-

ing information of the known splicing sites of synthetically

fused genes.

From these novel references, we simulated 50, 75 and 100bp

PE reads by means of wgsim (http://github.com/lh3/wgsim) (with

-d 164 -r 0.0001 -R 0.001 -s 48). We varied the number of reads
generated by wgsim to simulate different levels of coverage (from

1 to 50). The final synthetic PE RNA-seq dataset is built by

merging, for each read length data, the background dataset
and the simulated gene fusions (for both IE and BE data).

Although such a synthetic dataset is an ideal and simplistic

case for simulating gene fusion processes, the use of it allows

us to objectively assess chimeric transcripts discovery algorithms.
To this end, we generated 50 synthetic PE RNA-seq datasets for

each read length data and for both BE and IE events (for syn-

thetic datasets and 15 000 synthetic gene fusions), and we ana-

lysed them by using EricScript (with minreads¼ 2, MAPQ¼ 1
and ntrim¼ 50), ChimeraScan, DeFuse, FusionMap and

ShortFuse (see Supplementary Material and Supplementary

Table S1 for more details). We compared the performance of
these algorithms by using the following statistical indices:

� True-positive rate (TPR) or detection sensitivity. We defined

TPR as the number of gene fusions correctly predicted by
the algorithm divided by the number of simulated fusions

(50).

� False-positive rate (FPR) or detection specificity. We defined

FPR as the number of predicted gene fusions that are not in
the list of simulated fusions divided by the number of de-

tected events.

� False-negative rate (FNR). FNR corresponds to the number

of undetected gene fusions divided by the number of simu-

lated fusions (i.e. 1- detection sensitivity).

� True-positive sequence rate (TPSR). TPSR is the number of
correctly determined junction sequences divided by the

number of correctly predicted gene fusions.

� Area under the curve (AUC). AUC is a measure of the ac-

curacy of each algorithm in discriminating between true-

and false-positive results. This parameter is estimated by
means of the receiver operating characteristic (ROC)

curve. Details on how ROC curves were built are available

in Supplementary Material.

The TPR, FPR and FNR statistical indices are useful to esti-

mate ‘detection accuracy’ of each algorithm. In fact, these meas-

ures considered all the calls, irrespective of scores assigned to the
identified fusion events. On the other hand, AUC and the ROC

curves reported in this manuscript enable us to evaluate ‘scoring

accuracy’ of each algorithm, which means the ability of such an

algorithm in discriminating between true- and false-positive

events.

The results of these analyses are reported in Figure 4, Table 1

and Supplementary Material. The ROC curves of Figure 4a and

Supplementary Figure S2 clearly show that our algorithm ob-

tains better performance than the other state-of-the-art methods

in distinguishing between true- and false-positive events.

EricScript outperforms the other methods in all the simulations

we performed with different read lengths for both BE and IE

datasets, with the exception of data with read length of 75 and

100bp in which FusionMap reaches similar results. Figure 4b

shows the capability of the five algorithms in identifying the

correct fusion genes versus the simulated coverage for all the

IE datasets, whereas Supplementary Figure S2b is related to

BE simulations. For both the datasets, when coverage is510�,

all the algorithms are not able to reliably discover fused

Fig. 4. Results of the simulation study among 150 synthetic IE datasets.

(a) Comparison between ROC curves obtained for EricScript and the

other state-of-the-art gene fusion detection methods. (b) TPR of

EricScript and the other fusion discovery methods versus coverage

(each point of the plot represents a bin of five values of coverage).

The legend of (a) is relative to both the plots
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transcripts. On the other hand, for IE data and for coverage

410�, our method detects gene fusions with TPR40.8 followed

by DeFuse that is able to discover almost 70% of the fusions we

simulated. ChimeraScan and FusionMap detect �60% of

gene fusion events. For BE data (Supplementary Fig. S2b),

ChimeraScan and ShortFuse lose their prediction capability,

whereas EricScript, DeFuse and FusionMap do not. The

strong performance of EricScript and DeFuse in BE data is be-

cause of the fact that both the algorithms detect fused transcripts

by a split-read approach, allowing them to identify fusions invol-

ving middle of exons. FusionMap performs well on these data-

sets, as we run it with G¼ 0 to not penalize non-canonical splice

patterns (Supplementary Material). Conversely, ChimeraScan

and ShortFuse are computationally designed to privilege fusions

involving known splicing sites. The results corresponding to dif-

ferent read lengths are reported in Supplementary Figures S3–S8.

In these plots, we observe that the overall performance of Defuse

and ShortFuse decreases, whereas the length of the reads in-

creases. This is because of two main reasons (i) these algorithms

have been calibrated on reads of 50 nt in size and (ii) at fixed

coverage, the longer are the reads, the smaller is the number of

discordant reads. Increasing read length does not affect

ChimeraScan, EricScript and FusionMap performance. The re-

sults reported in Table 1 and Supplementary Table S6 are ob-

tained by averaging across the 150 synthetic IE datasets and 150

synthetic BE datasets, respectively. The FPRs reported in these

Tables highlight that our algorithm outperforms the majority of

the other methods; the probability of EricScript to make a wrong

call is �0.15, whereas other algorithms obtain FPR values that

range between 0.15 (ShortFuse) and 0.63 (FusionMap).

However, it is important to note that FPR may be misleading,

as a tool could predict thousands of low scoring false-positive

results. This would affect FPR, even though these events are

easily discernable from true-positive results based on their low

score (see the comments aforementioned on ROC curves ana-

lysis) or on the fact that these events are supported by a few

number of supporting reads. In fact, when we consider calls

with predicted number of supporting reads45, all the algorithms

(especially FusionMap) show a strong increase in specificity (see

values in parentheses of Supplementary Tables S7–S12 and

Supplementary Fig. S9) to the detriment of a small decrease in

terms of sensitivity. The simulation study we performed also

shows that EricScript, DeFuse and FusionMap obtain excellent

results in reconstructing the correct fusion gene junction se-

quences, whereas ChimeraScan and ShortFuse do not output

this information (TPSR score). Table 1 also reports the average

computational time taken by each algorithm to complete the

analysis; ShortFuse obtains the best performance and requires

�80% less time than FusionMap. Although EricScript uses a

four-step alignment pipeline, it takes only 0.53h per CPUs to

perform the analysis. This is because of the fact that we use a

transcriptome instead of a genome reference to map the reads;

this feature does not allow EricScript to detect fusions involving

unannotated transcripts. Supplementary Tables S7–S12 report

the results relative to different read lengths and make clear the

aforementioned coverage effect. If we set ntrim¼ 0, EricScript is

also affected by coverage effect mainly for read length of 100bp

and coverage510� (Supplementary Tables S2 and S3). This is

the reason why we performed these analyses with ntrim¼ 50 for

read length of 75 and 100bp (see Supplementary Material for

more details).

3.2 Application to previously reported gene fusions

We applied EricScript to publicly available PE RNA-seq datasets

(Table 2) with the aim of evaluating its capability in discovering

previously characterized gene fusion products. We analysed the

NCI-H660 prostate cell line dataset for the TMPRSS2–ERG and

FOXP1–RYBP fusions (Pflueger et al., 2011; Sboner et al., 2010)

(see Supplementary Material for a comparison between

EricScript and DeFuse on these data), and we searched for the

23 validated gene fusions in the four breast cancer cell lines of

Edgren et al. (2011) (SRA accession: SRP003186). We run

EricScript on these datasets with two different sets of input par-

ameters, setting a withminreads¼ 2 andMAPQ¼ 1 and setting b

with minreads¼ 3 and MAPQ¼ 20. In both cases, EricScript

took �14 CPU h to complete the whole analysis on �60 million

reads. The results of the analyses are reported in Table 3.
With parameter setting a, our method predicted 489 fusions

(Supplementary File S1). It was able to detect 22 of the 25 known

fusions, and for all of them, EricScript is able to assemble the

correct sequence of the junction. In the BT-474 library, we pre-

dicted 9/10 validated gene fusion, whereas we missed the fusion

CPNE1–PI3. This fusion was filtered out by EricScript, as BWA

found three discordant alignments with MAPQ¼ 0 between

CPNE1 and both PI3 and RBM12, potentially indicating a

read-through between CPNE1 and RBM12. This situation also

happens for the ANKHD1–PCDH1 fusion in the SK-BR-3

sample. BWA found six discordant alignments with MAPQ¼ 0

between ANKHD1 and both PCDH1 and ANKHD1–

EIF4EBP3 (ENSG00000254996). EricScript identified all the

other validated fusions of SK-BR-3 dataset, including the

DHX35–ITCH fusion that, as reported by Kim and Salzberg

(2011), neither DeFuse nor TopHat fusion are able to detect.

In the KPL-4 cell line, we were able to detect all the known

fusions, whereas in the MCF-7 sample, our method was not

able to rediscover the RPS6KB1–TMEM49 fusion, as BWA

found no discordant read.
With setting b, EricScript predicted 20 of the 25 validated fu-

sions (see Supplementary File S2) and missed the events sup-

ported by less than three supporting reads (WDR67–ZNF704

Table 1. Comparison of statistical indices between EricScript and the

other gene fusion detection methods among the 150 synthetic IE datasetsa

Method TPR FPR FNR TPSRb AUC Timec

EricScript 0.75 0.15 0.25 40.99 0.90 0.53

ChimeraScan 0.58 0.40 0.42 — 0.72 0.76

DeFuse 0.58 0.39 0.42 40.99 0.76 1.3

FusionMap 0.54 0.63 0.46 40.99 0.80 1.6

ShortFuse 0.38 0.13 0.62 — 0.67 0.33

aAll the values are obtained by averaging across all the simulations we performed.
bChimeraScan and ShortFuse do not output fusion junction sequence.
cExpressed as CPU hours.
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and PPP1R12A–SEPT10). In this case, our method predicted

193 fusions.
Table 3 also shows that all the predicted known fusions with

the exception of DHX35–ITCH and TATDN1–GSDMB have

an EricScore of40.5 (11/22 present EricScore �0.90). In particu-

lar, the low score of TATDN1–GSDMB is because of a low

value of US (US �0.29, Supplementary Files S1 and S2); US

was introduced to assign a higher score to candidate fusion genes

in which the number of junction spanning single reads and

paired-end reads connecting the genes are similar. Although

this is a valid assumption for most fusion genes, it may not be

true for fusion genes in which only a short stretch of the 50 (or 30)

gene is present. Moreover, this measure is dependent on library

specific factors, including the length of the cDNA fragments and

lengths of the reads. Generating a specific dataset that simulates

these features for training our classifier would be useful to im-

prove the classification power of EricScore. Despite of that, these

results indicate that EricScore is reliable for discriminating be-

tween true- and false-positive calls also in real data. If we con-

sider only the predicted gene fusions with EricScore40.5, we are

able to significantly reduce the number of our set of calls; indeed,

we found 112 fusions for setting a and 84 fusions for setting b.

Table 3. EricScript results in the publicly available PE RNA-seq datasets of Edgren et al. (2011) and Sboner et al. (2010)a

Library 50 gene 30 gene Crossing readsb Spanning

readsc
EricScript

(setting a)

EricScript

(setting b)

EricScript

(correct sequence)

EricScore

NCIH660 TMPRSS2 ERG 18 15 3 3 3 0.97

NCIH660 FOXP1 RYBP 12 6 3 3 3 0.57

BT-474 ACACA STAC2 56 80 3 3 3 0.89

BT-474 VAPB IKZF3 41 32 3 3 3 0.97

BT-474 ZMYND8 CEP250 36 25 3 3 3 0.96

BT-474 RAB22A MYO9B 10 21 3 3 3 0.94

BT-474 SKA2 MYO19 8 9 3 3 3 0.97

BT-474 STARD3 DOK5 6 5 3 3 3 0.93

BT-474 LAMP1 MCF2L 5 2 3 3 3 0.88

BT-474 GLB1 CMTM7 6 4 3 3 3 0.68

BT-474 CPNE1 PI3 — — � � � —

SK-BR-3 TATDN1 GSDMB 118 463 3 3 3 0.29

SK-BR-3 RARA PKIA 13 10 3 3 3 0.78

SK-BR-3 ANKHD1 PCDH1 — — � � � —

SK-BR-3 CCDC85C SETD3 5 6 3 3 3 0.92

SK-BR-3 WDR67 ZNF704 2 4 3 � 3 0.73

SK-BR-3 CYTH1 EIF3H 31 24 3 3 3 0.95

SK-BR-3 DHX35 ITCH 3 4 3 3 3 0.33

KPL-4 BSG NFIX 20 18 3 3 3 0.90

KPL-4 PPP1R12A SEPT10 2 6 3 � 3 0.65

KPL-4 NOTCH1 NUP214 5 7 3 3 3 0.97

MCF-7 BCAS4 BCAS3 133 212 3 3 3 0.80

MCF-7 ARFGEF2 SULF2 16 40 3 3 3 0.91

MCF-7 RPS6KB1 TMEM49 — — � � � —

aThe scores are relative to EricScript with setting a.
bCrossing reads are the EricScript estimation of the number of reads that supports the discordant alignment.
cSpanning reads are the EricScript estimation of number of reads that covers the junction.

Table 2. RNA-seq datasets used for EricScript validationa

Reference Library Number of reads Read length Time (CPU hours)b Predicted fusions (setting a) Predicted fusions (setting b)

Sboner et al. (2010) NCIH660 6 512688 51 1.2 31 (7) 12 (5)

Edgren et al. (2011) BT-474 21 423697 50 3.8 193 (53) 84 (43)

Edgren et al. (2011) SK-BR-3 18 240246 50 3.4 180 (35) 61 (22)

Edgren et al. (2011) KPL-4 6 796443 50 1.1 39 (8) 15 (4)

Edgren et al. (2011) MCF-7 8 409785 50 1.4 46 (9) 21 (10)

aThe number of gene fusions identified by EricScript with EricScore40.5 is reported between parentheses.
bThe reported run time is for EricScript with setting a.
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4 CONCLUSION

In this work, we discussed a novel computational approach to

use discordant alignments of paired-end RNA-seq data to iden-

tify chimeric transcripts. Our method, named EricScript, makes

use of the local realignment of the sequence reads that align

across a gene fusion boundary to search for evidence of gene

fusion events. We introduced three novel scores for classifying

the ‘goodness’ of the distribution of the reads that span the junc-

tions. The results we obtained demonstrate that these

approaches, joined with the application of a filtering step, per-

form better than existing methods in distinguishing between real

fusions and false-positive events, resulting in a smaller but robust

set of calls. In fact, the analyses we performed on the synthetic

gene fusion datasets showed that EricScript obtains good results

in terms of both specificity and sensitivity with low-computa-

tional times. Moreover, our synthetic study demonstrated that

split read-based methods (EricScript and DeFuse) obtain better

performance than the other algorithms, and this is increasingly

true if gene fusions involving middle of exons occur. The large

amount of synthetic gene fusions we generated was also used to

train an AdaBoost classifier that allows us to assign a reliable

probability score to each predicted gene fusion event. The syn-

thetic data generator has been included in the EricScript pack-

age; the synthetic data will represent a good resource for new

developers when testing their methods. We also applied our al-

gorithm to five publicly available datasets, and we tested its cap-

ability in rediscovering previously characterized gene fusions.

Our analyses on both synthetic and real data demonstrated

that EricScript is reliable in assembling the correct sequence of

fusion junctions, allowing for the detection of chimeric events

with a resolution of 1 bp. The main limitation of our method is

the use of a transcriptome instead of a genome reference for

mapping reads. Although this option allows us to bring down

computational times, it does not enable us to discover gene fu-

sions involving unannotated transcribed regions. Recent reports

(Cabili et al., 2011) suggest that there are an abundance of unan-

notated tissue-specific genes; in this case methods, such as

DeFuse (McPherson et al., 2011), will be more appropriated to

screen fusions involving these genes.
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