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ABSTRACT

Summary: We developed Breakpointer, a fast algorithm to locate
breakpoints of structural variants (SVs) from single-end reads
produced by next-generation sequencing. By taking advantage of
local non-uniform read distribution and misalignments created by
SVs, Breakpointer scans the alignment of single-end reads to identify
regions containing potential breakpoints. The detection of such
breakpoints can indicate insertions longer than the read length and
SVs located in repetitve regions which might be missd by other
methods. Thus, Breakpointer complements existing methods to
locate SVs from single-end reads.
Availability: https://github.com/ruping/Breakpointer
Contact: ruping@molgen.mpg.de
Supplementary information: Supplementary material is available at
Bioinformatics online.
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1 INTRODUCTION
Identifying structural variants (SVs) from short sequencing reads
remains challenging. Existing next-generation sequencing (NGS)-
based methods for SV detection are primarily based on the analysis
of paired-end reads (PE) assuming that deviations from the expected
mapping distance are caused by SVs (Alkan et al., 2011; Medvedev
et al., 2009). Alternatively, to characterize SVs from single-end
reads (SE), split-read methods can be adopted to generate pseudo
PE (Smith, 2011; Ye et al., 2009). However, the short length of
the artificial PE limits the mappability and the size of detectable
insertions (up to medium size). Alternative SE-based methods are
needed to facilitate the discovery of breakpoints of longer insertions
and SVs located in repetitive regions.

SVs usually cause specific mapping artifacts in the vicinity of the
SV boundaries. Reads slightly crossing the breakpoint of an SV can
be mapped only if they contain a few bases of the variant (depending
on the allowed edit distance). This case usually leads to consistent
misalignments next to the breakpoint. Such misalignments have
already been used to clean SNP calls (Li, 2011) or to determine
the regions for local realignment (DePristo et al., 2011). In contrast,
reads spanning the breakpoint will be unmappable. Consequently,
on the left or right side of the SV boundary, fewer read alignments
will start or end, respectively (Fig. 1A and Supplementary Fig. S1).
Our tool Breakpointer locates SV breakpoints by analyzing both
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misalignment artifacts and local non-uniform read distribution
created by SVs.

2 METHODS
Given a small genomic region R of size w, the depth of coverage D is
defined as the number of reads (of length l) overlapping R. In addition, we
introduce ‘end-depth’ De as the number of only those reads starting/ending
(summarized as ‘ends’) within R. Assuming uniform coverage, under a given
D, De will follow a binomial distribution as: De ∼B(n=D,p= 2w

w+l ). Regions
containing the breakpoint of an SV will have higher De than expected,
because a lack of mappable breakpoint-spanning reads leads to a depth skew
toward ending reads. Some aligned reads slightly overlapping with the SV
will generate consistent mismatches around the breakpoint (Fig. 1A). Such
mismatches will only occur in the ends of the mappable reads but not in the
reads spanning R, e.g. reads from a wildtype allele. We summarize these
local mapping features around SV boundaries as ‘breakpoint signature’. To
capture this signature, Breakpointer proceeds in three stages (Fig. 1B):

First, using a sliding window of size w (� l), Breakpointer scans the
read alignment along a reference genome, calculates the pileup-corrected
sequencing depth D and end-depth De for each window. The skewness of
depth in each window is represented by the score SB, which is equal to the
negative logarithm (of base 10) of the P-value computed from a binomial
test. Windows with SB >1 are selected and then merged into non-overlapping
regions. For variable read length, Breakpointer groups reads based on their
length and generates SB based on weighted P-values (Supplementary Note).

Second, mismatch screening is performed on each merged region, with the
aim to enrich for those regions likely to encompass SV breakpoints. We only
consider mismatches located 10 bp from the read ends (referred as ‘ME’).
A score SM is assigned to a region with c positions showing MEs:

SM =
c∑

t=1

(−log10(Pt)) and Pt =
(

n

k

) k∏
i=1

εi.

n∏
j=k+1

(1−εj),

where Pt is the probability of seeing k MEs out of n reads at a position t in a
merged region, assuming that MEs are sequencing errors. εi is the maximum
of the Phred base-error rate at position t in read i or a local error rate computed
from the number of MEs in this region. We use local error rate because in
real data there are regions containing many mismatches despite high-quality
scores. Small gaps are treated as mismatches (taking ε of surrounding bases
for deletions). Regions with no MEs are removed since their depth skewness
are likely caused by technological artifacts or mappability.

Given a true SV event, unmappable breakpoint-spanning reads will match
the SV boundary including MEs. Thus, in the last step, each candidate
region is validated by detecting breakpoint-supporting reads in the unmapped
pool. The regions with no supporting unmappable reads are filtered out.
Breakpointer sorts the selected regions according to SB, SM and generates
two rank scores accordingly. A confidence score RC is assigned to each
region by combining the two ranks. Breakpointer requires sorted BAM
(Li et al., 2009) files as an input and outputs validated regions in GFF format.
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Fig. 1. (A) Depth skewness toward ending reads (small bar) and
misalignments close to the breakpoints (black vertical line) of SVs (black
bar). (B) Summary of Breakpointer algorithm. (C) Indel recall rate and
false positive rate (FPR) at different coverage levels in the simulation.
Recall: the breakpoint of an indel is encompassed by a prediction; FP: a
prediction is not overlapping with any implanted indels; ins: insertions.
(D) The fraction of predicted breakpoints by Breakpointer in the genome
of NA18507 overlapping with DIP database. The predictions are grouped
according to RC and SB score, respectively. Also shown is the fraction of
random regions overlapping with DIP.

3 RESULTS AND DISCUSSIONS

3.1 Simulation
We characterize the power of Breakpointer to locate the breakpoints
of known human indels (Mills et al., 2006) implanted into
chromosome X (Supplementary Note). The results, summarized
in Fig. 1C and Supplementary Fig. S2, highlight the ability of
Breakpointer to uncover the breakpoints of known indels with
various sizes at high sequencing coverages (recall >0.8 and FPR:
false positive rate <0.02 at >30× coverage). Breakpointer can
discover the breakpoints of insertions longer than the read length,
which is beyond the ability of split-read methods (Supplementary
Fig. S2).

3.2 Real data
Breakpointer is also tested on Illumina whole-genome sequencing
data from an Yoruban genome (NA18507, Bentley et al., 2008).
Predictions by Breakpointer are intersected with external variant
sets detected by alternative approaches from the same individual
(Kidd et al., 2008) and sets from population studies (Mills et al.,
2011a, b). The fraction of Breakpointer predictions overlapping
with DIP (deletion/insertion polymorphisms detected by capillary
sequencing a part of NA18507 genome) increases with combined

rank score RC (Fig. 1D), suggesting that the breakpoint signature
represents true SV breakpoints.

Predictions overlapping known SVs were comparable between
Breakpointer and other methods using PE (Supplementary Table
S2), indicating that Breakpointer achieves equivalent accuracy to
PE-based methods by just using SE. The comparison between the
known SVs overlapped by Breakpointer and Pindel (Ye et al., 2009,
an anchored split read mapping method) reveals that Breakpointer
locates the breakpoints of (i) insertions longer than the read length
and (ii) many indels in repetitive regions which are missed by
Pindel (Supplementary Table S3, Fig. S3). Breakpointer analyzes
the initial small-gapped alignment of the entire read, showing
complementarity to Pindel which splits the initial unmapped reads.
Besides the breakpoints of indels, Breakpointer also uncovers the
breakpoints of some large SVs, e.g. mobile insertions and non-
homologous recombinations, by using 36 bp SE (Supplementary
Note), although the power to detect repeat-mediated SVs is limited
due to mapping difficulties in highly repetitive regions and sequence
homology around breakpoints.

4 CONCLUSIONS
By evaluating mapping features at the boundaries of SVs, our
method locates the breakpoints of a wide range of SVs. Breakpointer
does not investigate the SV content; it is designed as a supportive
breakpoint discovery tool that ideally should be used in combination
with other methods for genotyping SVs. Breakpointer requires a high
coverage (>20×) to reach an optimal performance. The predictions
can be used not only to provide additional support for alternative
methods, but also to find breakpoints of SVs that otherwise might
be missed by other tools. Thus, by requiring only single-end reads,
it complements the current set of SV detection methods.
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