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ABSTRACT

Motivation: Alzheimer’s disease (AD) is a severe neurodegenerative

disease of the central nervous system that may be caused by perturb-

ation of regulatory pathways rather than the dysfunction of a single

gene. However, the pathology of AD has yet to be fully elucidated.

Results: In this study, we systematically analyzed AD-related mRNA

and miRNA expression profiles as well as curated transcription factor

(TF) and miRNA regulation to identify active TF and miRNA regulatory

pathways in AD. By mapping differentially expressed genes and

miRNAs to the curated TF and miRNA regulatory network as active

seed nodes, we obtained a potential active subnetwork in AD. Next,

by using the breadth-first-search technique, potential active regulatory

pathways, which are the regulatory cascade of TFs, miRNAs and their

target genes, were identified. Finally, based on the known AD-related

genes and miRNAs, the hypergeometric test was used to identify

active pathways in AD. As a result, nine pathways were found to be

significantly activated in AD. A comprehensive literature review

revealed that eight out of nine genes and miRNAs in these active

pathways were associated with AD. In addition, we inferred that the

pathway hsa-miR-146a!STAT1!MYC, which is the source of all

nine significantly active pathways, may play an important role in AD

progression, which should be further validated by biological experi-

ments. Thus, this study provides an effective approach to finding

active TF and miRNA regulatory pathways in AD and can be easily

applied to other complex diseases.
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1 INTRODUCTION

In the developed countries, Alzheimer’s disease (AD) is the sixth

leading cause of all deaths. Deaths attributable to AD have been

increasing dramatically, whereas other major causes of death

have been decreasing (Thies and Bleiler, 2011). In addition,

AD is one of the most costly diseases for society (Holt et al.,

2009; Thies and Bleiler, 2011). However, the molecular

mechanism of AD is not fully clear. It is thought that many

factors and their interactions contribute to the pathogenesis of

AD (Ikonen et al., 2003; Lahiri et al., 2004; Xia et al., 1997).

Thus, advanced research regarding the mechanism of AD is of

great importance.

With the emergence of molecular networks, such as protein–

protein interaction networks (PPINs) and transcription regula-

tory networks, many studies initially focus on topological

properties when analyzing network organization, architecture

or evolution. However, most existing studies are based on

PPINs and transcription regulatory networks and do not inte-

grate important post-transcriptional regulation.
miRNA is a type of short non-coding RNA that participates

in post-transcriptional gene regulation. By binding to target

mRNAs with partially complementary sequences, it causes trans-

lational repression or target degradation (Bartel, 2004, 2009).

Studies have increasingly shown that miRNA is closely asso-

ciated with the onset and development of complex human dis-

eases (Li et al., 2012), such as cancer (Meltzer, 2005), diabetes

(Kantharidis et al., 2011) and neurodegenerative disease (Junn

and Mouradian, 2012). With increasing research on AD, many

studies have shown that miRNAs are important players in the

development of AD. For example, Wang et al. found that miR-

107 expression levels decreased significantly, even in patients who

were in the earliest stages of pathology. Wang et al. (2008) fur-

ther indicated that miR-107 may cause AD through the regula-

tion of BACE1. A recent study by Shioya et al. (2010) found that

the underexpression of miR-29a affected neurodegenerative pro-

cesses by enhancing neuronal NAV3 expression in AD brains.

In addition, Hebert et al. (2008) characterized a miRNA cluster

miR-29a/b-1 that was significantly and specifically downregu-

lated in AD patients, and found that the loss of miRNA

increases BACE1 and A� expression levels in AD. These findings

suggest that aberrant miRNA expression is strongly related to

AD. In addition, miRNA and transcription factor (TF) do not

function in isolation. Chen et al. (2011) found that the coordi-

nated regulation of TF and miRNA may be involved in various

biological processes, and the disruption of this coordination may

lead to cancer. Thus, integrated analysis of transcriptional and

post-transcriptional regulation could provide a comprehensive

regulatory map for the etiological study of complex diseases.

In recent years, gene expression profiles have been taken into

account during network analysis to identify the underlying mech-

anisms of complex diseases. Ruan et al. developed a general
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coexpression network-based approach to discovering network
modular structures that was effectively applied to the study of

the pathological mechanisms underlying lymphoma (Cho et al.,

2011; Ruan et al., 2010). Vaske et al. (2010) presented a method
for predicting the activities of curated pathways from the

Pathway Interaction Database in glioblastoma multiform and

breast cancer by considering gene coordinate expression and
the correlation between copy number and gene expression in

the same pathway. In addition, much effort has been devoted
to identifying the active subnetworks or modules in diseases from

large molecular networks. For example, Ideker et al. (2002) pro-

posed a method for screening a molecular interaction network
that contained protein–protein and protein–DNA interactions to

find active subnetworks. A scoring system was implemented to

capture the degree of change in gene expression. A search algo-
rithm based on simulated annealing was used to identify the

subnetwork with the highest score. Gene expression differences

between normal and disease samples were interpreted as the de-
gree of gene activation. Backes et al. (2012) exploited the same

‘active’ concept to find the deregulated subnetwork in the regu-

latory network of KEGG using an integer linear programming
approach. Gaire et al. (2013) extracted the active subnetwork in

the network that consists of protein interaction network and

gene regulatory network by applying a mixed integer program-
ming model. However, finding the subnetwork or module that

is significantly related to a disease state is still challenging.

Compared with coexpression networks, curated pathways and
complex subnetworks, the regulatory pathway, which presents

a cascade of regulators and target genes, is easily elucidated

and validated by biologists. From disease-related pathways, we
may find key factors that are located upstream of the pathway

and that participate in multiple pathways. The activation of key

factors may be the cause of disease onset. Thus, identifying active
regulatory pathways is crucial for dissecting the pathology of

complex diseases. Keller et al. (2009) presented an algorithm

for detecting differentially regulated paths (pathways) from a
given biological network based on gene set enrichment analysis.

However, they did not consider genes whose expression level

were not detected by microarray technology and restricted the
length of paths (pathways).

In this study, we identified active transcriptional and post-
transcriptional regulatory pathways in AD based on AD-related

mRNA and miRNA expression profiles as well as miRNA and

TF regulation. To obtain stable AD signatures [differentially
expressed (DE) genes], we used a meta-analysis to analyze mul-

tiple AD-related gene expression profiles. In addition, a breadth-

first-search (BFS) approach was applied to find potential active
TF-miRNA regulatory pathways that may contain non-DE

genes. Finally, the significance of all of the potential pathways

was evaluated by a hypergeometric test based on known AD-
related genes and miRNAs. The identified pathway had a simple

network structure and an easy interpretation that could feasibly

be validated by biological experiments. Our study thus provides a
novel insight into the causes and mechanisms of AD.

2 MATERIALS AND METHODS

We proposed a novel approach to identify active TF-miRNA regulatory

pathways in AD. Firstly, we detected consistent differentially expressed

genes (CDEGs) by applying a meta-analysis to multiple gene microarray

datasets. The differentially expressed miRNAs (DEmiRs) were derived

from one miRNA expression profile. Secondly, by mapping the CDEGs

and DEmiRs to the curated TF-miRNA regulatory network as active

seed nodes and connecting the active seed nodes with their immediate

neighbors, we obtained the potential active TF-miRNA regulatory sub-

network in AD. Thirdly, by using a BFS algorithm, we identified all of

the directed acyclic paths between 0-indegree nodes, where the indegree is

0, and 0-outdegree nodes, where the outdegree is 0, which were defined as

potential active TF-miRNA regulatory pathways in AD. Finally, known

AD-associated genes and miRNAs were mapped to potential active path-

ways. Through the hypergeometric test, we identified the active

TF-miRNA regulatory pathways that were significantly related to AD.

An overview of the approach is shown in Figure 1.

2.1 AD-related mRNA expression profiles

AD is a complex disease, and different brain regions exhibit diverse gene

expression patterns (Liang et al., 2007). However, several studies have

suggested that some important common features may be shared among

different AD brain regions. Liu et al. (2010) detected crosstalk and dys-

function in AD-related pathways in multiple brain regions of AD patients

and identified common dysfunctions. Using a microarray dataset on six

AD brain regions (GSE5281), Liang et al. (2012) identified a significantly

perturbed subnetwork in each brain region and found that these

perturbed subnetworks significantly overlapped with each other. In

this study, to obtain stable and consistent AD gene signatures, we down-

loaded 4 AD-related mRNA expression profiles (GSE16759, GSE12685,

GSE1297 and GSE5281) from the Gene Expression Omnibus (GEO)

database (Edgar et al., 2002). All of the data were normalized and log

2 transformed (details in Supplementary file S1). For each expression

profile, probe sets were mapped to Entrez Gene IDs. If multiple probe

sets corresponded to the same gene, then the expression values of these

probe sets were averaged. Genes that appeared in all of the expression

profiles were considered in the analysis. The microarray datasets com-

prise nine case-control studies (Supplementary File S1 and S2) according

to different experiments and brain regions, which were further analyzed

by the meta-analysis.

2.2 DEmiRs in AD

Because high-throughput techniques have thus far rarely been used to

investigate miRNA expression in AD, we only obtained one miRNA

Fig. 1. Flow chart of the proposed approach. The orange nodes represent

miRNAs, the blue nodes represent TFs and the green nodes represent

target genes. The nodes with red border indicate the DE genes/miRNAs,

the nodes with purple border indicate the known AD-associated genes/

miRNAs and the nodes with yellow border indicate the known and DE

genes/miRNAs
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microarray dataset from GEO (GSE16759), in which Nunez-Iglesias et al.

(2010) detected both miRNA and mRNA expression in AD patients and

controls. They identified 48 DEmiRs at the false discovery rate (FDR)

level of 0.05 by the empirical Bayes procedure.

2.3 Curated TF and miRNA regulatory network

The TF and miRNA regulatory network was constructed by integrating

five curated data resources: TRANSFAC (Wingender et al., 2000),

TransmiR (Wang et al., 2010), miRTarBase (Hsu et al., 2011),

miRecords (Xiao et al., 2009) and TarBase (Sethupathy et al., 2006).

The curated human TF-gene regulations were derived from the

TRANSFAC database (version 11.4). The curated human TF-miRNA

regulations were obtained from the TransmiR database (version 1.2). The

curated human miRNA-gene regulations were obtained from the union

of miRecords (version 3), TarBase (version 5.0) (excluding the FALSE

support type of the miRNA-gene interactions) and miRTarBase data-

bases (release 2.5). All curated regulations were supplied in the

Supplementary File S3. Within the curated regulatory network, all of

the redundant edges were collapsed into a single edge, and all of the

self-directed edges were pruned from the network.

2.4 Known AD-associated genes and miRNAs

The known AD-associated genes were derived from the GeneCards data-

base (Safran et al., 2002). The disease genes presented in GeneCards were

extracted frommultiple databases that included known disease-associated

genes. The known AD-associated miRNAs were derived from HMDD

(Lu et al., 2008) and the miR2Disease database (Jiang et al., 2009). Both

of these databases manually collected the associations between miRNAs

and diseases from published studies.

2.5 Meta-analysis

Different gene expression profiles may produce different DE genes.

To obtain stable gene signatures, we used a meta-analysis (Ramasamy

et al., 2008) to identify CDEGs through a combination of nine case-

control studies. The detail description of meta-analysis was provided in

Supplementary File S1. In this study, we used the SMVar (Jaffrezic et al.,

2007) method to detect DE genes in each case-control study. The meta-

analysis was implemented by using the R package metaMA (Marot et al.,

2009).

2.6 Identification of a potential active TF-miRNA

regulatory subnetwork in AD

Previous studies have shown that disease genes do not always show dif-

ferential expression in microarray experiments, which indicates that some

disease-related key genes could lurk among non-DE genes (Nitsch et al.,

2009; Zhao et al., 2011). As a result, we hypothesized that the CDEGs,

DEmiRs and their immediate neighbors in the curated TF-miRNA regu-

latory network potentially contributed to the pathology of AD. We

mapped the CDEGs and DEmiRs into the regulatory network as

active seed nodes and connected them with their neighbors to produce

the potential active TF-miRNA regulatory subnetwork.

2.7 Identification of potential active TF-miRNA

regulatory pathways in AD

A subnetwork often has a complex structure, even if it is distilled from

the original background network. These complex connections impede

the interpretation and validation of the subnetwork of interest. In this

study, we focused on regulatory pathways, which were the paths

connected to multiple TFs, miRNAs and target genes in the curated

TF-miRNA regulatory network. Identifying the active regulatory path-

ways in AD not only uncovered transcriptional and post-transcriptional

regulatory cascades but also shed light on the molecular mechanisms

of AD.

From the potential active TF-miRNA regulatory subnetwork, we iden-

tified all directed acyclic paths from 0-indegree nodes to 0-outdegree

nodes. The gene/miRNA with a 0-indegree cannot be regulated by

other regulators, which indicates that it is located upstream of the regu-

latory pathway. Similarly, the gene/miRNA with a 0-outdegree does not

regulate other genes/miRNAs, which means that it is located downstream

of the regulatory pathway. The upstream genes/miRNAs are important

because their activation could cause a cascade effect that results in the

alteration of downstream gene/miRNA expression and leads to AD.

Thus, by searching all of the pathways/paths between 0-indegree genes/

miRNAs and 0-outdegree genes/miRNAs, we could find key upstream

genes/miRNAs in the regulatory pathways. To accomplish this task, the

potential active subnetwork was treated as a directed graph. Firstly, we

used BFS algorithm to traverse all vertexes in the graph. Secondly, based

on the results of graph traversal, backtracking method was used to

extract all paths from 0-indegree nodes to 0-outdegree nodes. The

pseudo-code for finding the pathways is described in Supplementary

File S1.

For the example graph in Figure 2, we can identify all of the directed

acyclic paths between the 0-indegree node and the 0-outdegree node.

They are 1!2!4!7, 1!2!4!8, 1!2!5!8 and 1!3!6!9.

In this study, the directed acyclic paths with more than 2 nodes were

considered to be potential active regulatory pathways, in which there was

at least one DE node and no more than one non-DE node or node

without expression values between the two DE nodes.

2.8 Evaluation of potential active TF-miRNA regulatory

pathways in AD

Here, we defined a coverage rate (CR) of known AD-associated genes

and miRNAs in the potential active pathway to measure the strength of

the relationships between the potential active pathway and AD.

CR was calculated as

CR ¼
ND

NT

where ND represents the number of known AD-associated genes and

miRNAs in the pathway, and NT represents the total number of genes

and miRNAs in the pathway.

Next, we used the hypergeometric test to evaluate the statistical sig-

nificance of the CR value. A low P-value indicates that the observed CR

value is unlikely to occur by chance and the pathway exhibits a greater

than expected trend toward participating in AD.

Fig. 2. An example of how to find the pathways
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3 RESULTS

3.1 DE genes and miRNAs

By using a meta-analysis to combine nine case-control micro-
array studies (Supplementary Table S1), we identified 1872

CDEGs at the FDR level of 0.01.
Nunez-Iglesias et al. obtained 48 DEmiRs by applying the

empirical Bayes method to miRNA expression profiles in AD

patients and normal controls (Nunez-Iglesias et al., 2010). In the
present study, 29 DEmiRs that were recorded in the miRBase

database were used.

3.2 Potential active TF-miRNA regulatory subnetwork

in AD

By integrating five databases (TRANSFAC, TransmiR,
miRTarBase, miRecords and TarBase) that address transcrip-

tional and post-transcriptional regulations, we constructed the
curated TF-miRNA regulatory network, which included 411

TFs, 387 miRNAs, 2300 target genes and 6036 regulations
(Fig. 3A). We mapped the 1872 CDEGs and 29 DEmiRs to
the curated TF-miRNA regulatory network and set them to be

active seeds. Next, we constructed the potential active TF-
miRNA regulatory subnetwork by connecting all of the active

seeds with their immediate neighbors (Fig. 3B). The subnetwork
comprised 127 TFs, 195 miRNAs, 649 target genes, and 1206
edges, in which 343 genes and 16 miRNAs were DE.

3.3 The active TF-miRNA regulatory pathways in AD

We used the BFS approach (see ‘Materials and Methods’ sec-
tion) to find all of the directed acyclic paths from 0-indegree

nodes to 0-outdegree nodes in the potential active TF-miRNA
regulatory subnetwork. As a result, 14 644 paths with more than

two nodes were obtained, and these paths were regarded as the
potential active TF-miRNA regulatory pathways in AD, which
comprised 641 genes and miRNAs. The length of all of the

potential active pathways ranged from 3 to 16, and the average
was 6.99.
In addition, we derived 27 known AD-associated genes from

the GeneCards database (Safran et al., 2002) and 45 known AD-
associated miRNAs from the HMDD database (Lu et al., 2008)

and miR2Disease database (Jiang et al., 2009) to evaluate the
significance of the identified potential active pathways. There
were 29 AD-associated genes and miRNAs mapped in the

potential active pathways. The CR of the known AD-associated
genes and miRNAs of the potential active pathway was used to
measure the strength of the association between the potential

active pathway and AD. Next, we identified the significantly
active pathways using a hypergeometric test (see ‘Materials and
Methods’ section). The potential active pathways with P50.0005

were considered to be the active TF-miRNA regulatory path-
ways in AD. As a result, we identified nine active pathways.
Moreover, we further adjusted P-values for multiple testing

using FDR and found that the FDR of the nine pathways are
less than 0.2 (Table 1). The union of the nine active pathways is
visualized in Figure 4, and identical nodes of the active pathways

were merged.
We validated the active pathways from three aspects. Firstly,

we tested the extent to which the elements in all of the active
pathways appeared in the set of known AD-associated genes and

miRNAs using the hypergeometric test. There were 29 known
AD-associated genes and miRNAs in the potential active regu-
latory pathways, which comprised 641 genes and miRNAs. And

there were 18 genes and miRNAs in all of the active pathways,
which included nine known AD-associated genes and miRNAs.
As a result, the elements in all of the active pathways significantly

enriched the set of known AD-associated genes and miRNAs
(P¼ 7.88� 10�9). However, this result may not be surprising
because the known AD-associated genes and miRNAs have

been used to investigate the significance of potential active path-
ways. Thus, we further evaluated the active pathways through
the curated AD pathway (hsa05010) from KEGG (release 65.0).

We applied miRPath v2.0 (Vlachos et al., 2012) to find miRNAs
that significantly regulate the hsa05010 pathway (P50.01).
Altogether, all potential active regulatory pathways and all

active regulatory pathways include 17 and 4 genes and
miRNAs that are associated with hsa05010 pathway, respect-
ively. As a result, the hypergeometric test P-value is

8.29� 10�4, which indicates that the genes and miRNAs in our
identified active pathways significantly associated with the
known AD pathway. Finally, through a literature review, we

found that eight out of the nine remaining genes and miRNAs
are closely related to AD (Table 2). Here, we could not find any
direct evidence to support an important role of protein kinase C

alpha (PRKCA) in AD. However, Barton et al. (2004) showed
that the PRKCA gene was associated with multiple sclerosis,
which is a common inflammatory disease of the central nervous

system and presents some similarities to AD. Our results indicate
that PRKCA might exert an effect through hsa-miR-146a regu-
lation in AD. Additionally, we also found some regulatory inter-

actions in active pathways were relevant to AD. For example,
two regulations of SP1!APOE and SP1!MPO appear in the
active pathways. The polymorphisms in the promoter regions of

the two target genes influence the SP1 regulations in AD.
Maloney et al. (2010) demonstrated that two SNPs (A-491T
and G-219T) in APOE promoter region have significant associ-

ation with instance of AD. They also proposed that SP1 is the
candidates for regulatory control of the two polymorphic sites.
Leininger-Muller et al. introduced that the G allele of G-463A

MPO polymorphism is associated with a higher level of MPO

Fig. 3. The curated TF-miRNA regulatory network and potential active

subnetwork in AD. The orange nodes represent miRNAs, the blue nodes

represent TFs and the green nodes represent target genes. (A) The curated

TF-miRNA regulatory network; (B) The potential active TF-miRNA

regulatory subnetwork in AD. The red border indicates the DE genes

and miRNAs
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and could be overrepresented in AD subjects (Leininger-Muller

et al., 2003). Previous study also demonstrated that the G-463A

is in the promoter region of MPO, and the A allele rather than G

leads to a decreased MPO expression by destroying a SP1 bind-

ing site (Piedrafita et al., 1996). A� is a peptide of 36–43 amino

acids that is processed from the amyloid precursor protein (APP)

and is expressed in many tissues and concentrated in neuronal

synapses (Krishnappa, 2011). It is commonly known that the

accumulation of A� peptides could lead to the formation of

amyloid plaques in the brain parenchyma, which is considered

to be a key step in the pathogenesis of AD (Ramberg et al.,

2011). Therefore, understanding the processing of APP is crucial

for development of AD therapeutics. However, little is known

about the mechanisms that contribute to A� accumulation in

sporadic AD. Here, we identified two active TF-miRNA regula-

tory pathways in AD that included APP (Table 1 and Fig. 4).

Proteolytic processing of APP at the � site is essential for gen-

erating A�. BACE1, which is the major �-secretase involved

in cleaving APP, has been identified as a type 1 membrane-

associated aspartyl protease. Christensen et al. (2004) found

that the TF SP1 plays an important role in processing APP

to generate A� in Alzheimer’s disease through regulation of

BACE1. miRNAs can regulate gene expression at the post-

transcriptional level. Hebert et al. (2008) investigated miRNA

expression changes in AD patients and found that a loss of

hsa-miR-29b could increase the BACE1 expression level, which

indicated a potential causal relationship between the expression

of hsa-miR-29b and the accumulation of A�. As mentioned

above, all of these factors affect APP processing by targeting

BACE1. Hebert et al. also found that hsa-miR-15a were

significantly altered in AD brain and predicted that has-miR-

15a regulates APP (Hebert et al., 2008). This regulation of hsa-

miR-15a!APP appeared in the active pathways. In this study,

our results suggest an alternative possibility for the regulation of

A� levels through cascade regulatory pathways.

Our results confirmed that the disease-related genes and

miRNAs did not always present aberrant expression and that

non-DE genes and miRNAs may be key players in the disease.

In addition, our method can also be used to find key regulators

for which there is no expression information.
Considerable evidence supports the conclusion that neuroin-

flammation is associated with AD pathology (Tuppo and Arias,

2005). Lukiw et al. (2008) suggested that NFKB-sensitive miR-

146a-mediated modulation of the expression of the CFH gene,

which is an important repressor of the inflammatory response of

the brain, may have an impact on AD. Kitamura et al. (1997)

indicated that increased expression of NFKB and STAT1 in cell

nuclei may be involved in inflammatory activation in AD brains.
Ferrer and Blanco (2000) detected the expression of MYC

protein by using western blot and single and double-labeling

immunohistochemistry in AD, and found that increased expres-

sion of MYC in reactive astrocytes most likely plays a role in

reactive astrocytosis in human neurodegenerative disorders.
Table 1 and Figure 4 show that hsa-miR-146a! STAT1

!MYC is located upstream of the regulatory cascade and is

Table 1. Active TF-miRNA regulatory pathways in AD

Active TF-miRNA

regulatory pathway

Number

of known

AD genes

and

miRNAs

Pathway

length

CR

value

P-value FDR

hsa-miR-146a! STAT1

! MYC! hsa-miR-15a

! NFKB1! hsa-miR-

29b! SP1! MPO

4 8 0.50 0.00021 0.11021

hsa-miR-146a! STAT1

! MYC! hsa-miR-15a

! NFKB1! hsa-miR-

29b! SP1! APOE

4 8 0.50 0.00021 0.11021

hsa-miR-146a! STAT1

! MYC! hsa-miR-15a

! NFKB1! hsa-miR-

29b! SP1! NOS3

4 8 0.50 0.00021 0.11021

hsa-miR-146a! STAT1

! MYC! hsa-miR-29b

! SP1! PRKCA

! hsa-miR-15a! APP

4 8 0.50 0.00021 0.11021

hsa-miR-146a! STAT1

! MYC! hsa-miR-29b

! SP1! E2F1

! hsa-miR-15a! APP

4 8 0.50 0.00021 0.11021

hsa-miR-146a! STAT1

! MYC! hsa-miR-15a

! NFKB1! hsa-miR-

29b! SP1! PSEN1

4 8 0.5 0.00021 0.11021

hsa-miR-146a! STAT1

! MYC! hsa-miR-15a

! NFKB1! hsa-miR-

29b! SP1! hsa-miR-

34c! NOTCH3

4 9 0.44 0.000366 0.11021

hsa-miR-146a! STAT1

! MYC! hsa-miR-15a

! NFKB1! hsa-miR-

29b! SP1! hsa-miR-

34c! NOTCH2

4 9 0.44 0.000366 0.11021

hsa-miR-146a! STAT1

! MYC! hsa-miR-15a

! NFKB1! hsa-miR-

29b! SP1! hsa-miR-

34c! NOTCH1

4 9 0.44 0.000366 0.11021

Fig. 4. Union of nine active TF-miRNA regulatory pathways in AD
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the source of nine active pathways. The activation of this source

could cause the emergence of a cascade effect and result in dis-

ordered expression of downstream genes and miRNA. Thus,

hsa-miR-146a may be a potential drug target for disease therapy,

and the pathway hsa-miR-146a!STAT1!MYC may have a

crucial role in AD that should be further validated by biological

experiments.

4 DISCUSSION

The dysregulation of miRNAs, a type of key post-transcriptional

regulators, has been found in many diseases, such as cancers and

AD. In this study, we proposed a novel approach to identify

active TF-miRNA regulatory pathways by integrating AD-

related mRNA and miRNA expression profiles and transcrip-

tional and post-transcriptional regulation. The pathways we

identified could help to provide biological insights in AD and

could feasibly be validated by biological experiments. We defined

the DE genes and miRNAs as active seed nodes in the curated

TF-miRNA regulatory network. To incorporate regulators with-

out aberrant expression or expression values, we constructed a

potential active subnetwork by connecting the active seed nodes

with their immediate neighbors. Next, the BFS method was used

to find the potential active regulatory pathways. Finally, based

on the known AD-related genes and miRNAs, we used the

hypergeometric test to evaluate the significance of the associ-

ations between potential active pathways and AD. As a result,

we identified nine active TF-miRNA regulatory pathways that

were significantly related to AD. All of the regulators and target

genes in these active pathways had direct literature support,

except for PRKCA. We also found two active pathways that

may contribute to the accumulation of A� peptides and the

formation of amyloid plaques in the brain parenchyma, which
are key steps in the pathogenesis of AD. In addition, the pathway
hsa-miR-146a!STAT1!MYC appeared in all nine active path-

ways and was the source of the cascade regulation. Thus, we
inferred that the pathway hsa-miR-146a!STAT1!MYC may
have a crucial role in AD progression, which should be further

validated by biological experiments.
Our study provides an effective approach to identifying active

TF-miRNA regulatory pathways and a novel insight into the

pathogenesis and development of AD. However, the regulation
between miRNA and mRNA is complex, as suggested by the
miRNA sponge model, which is a new type of miRNA-mediated

post-transcriptional regulation (Sumazin et al., 2011). Many stu-
dies have suggested that miRNA sponges play important roles in
the occurrence and development of diseases, such as autoimmune

inflammation (Zhu et al., 2012), innate and adaptive immune
responses (Ma et al., 2011) and spinal motor neuron develop-
ment (Otaegi et al., 2011). Integrating miRNA-mediated

RNA–RNA interactions is helpful for constructing more com-
prehensive regulatory networks. Our approach is flexible to ana-
lyze the integrated networks. With the increase in available

miRNA expression profiles for AD and the accumulation of
validated miRNA regulations, our results will become more pre-
cise. In addition, the approach was general and could be applied

to other complex diseases.
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