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ABSTRACT

Motivation: Despite the central role of diseases in biomedical

research, there have been much fewer attempts to automatically

determine which diseases are mentioned in a text—the task of disease

name normalization (DNorm)—compared with other normalization

tasks in biomedical text mining research.

Methods: In this article we introduce the first machine learning

approach for DNorm, using the NCBI disease corpus and the

MEDIC vocabulary, which combines MeSH� and OMIM. Our

method is a high-performing and mathematically principled framework

for learning similarities between mentions and concept names directly

from training data. The technique is based on pairwise learning to

rank, which has not previously been applied to the normalization

task but has proven successful in large optimization problems for

information retrieval.

Results: We compare our method with several techniques based on

lexical normalization and matching, MetaMap and Lucene. Our algo-

rithm achieves 0.782 micro-averaged F-measure and 0.809 macro-

averaged F-measure, an increase over the highest performing baseline

method of 0.121 and 0.098, respectively.

Availability: The source code for DNorm is available at http://www.

ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/DNorm, along with a web-

based demonstration and links to the NCBI disease corpus. Results

on PubMed abstracts are available in PubTator: http://www.ncbi.nlm.

nih.gov/CBBresearch/Lu/Demo/PubTator

Contact: zhiyong.lu@nih.gov
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1 INTRODUCTION

Diseases are central to many lines of biomedical research, and

enabling access to disease information is the goal of many infor-

mation extraction and text mining efforts (Islamaj Doğan and

Lu, 2012b; Kang et al., 2012; Névéol et al., 2012; Wiegers et al.,
2012). The task of disease normalization consists of finding dis-

ease mentions and assigning a unique identifier to each. This task

is important in many lines of inquiry involving disease, including

etiology (e.g. gene–disease relationships) and clinical aspects

(e.g. diagnosis, prevention and treatment).
Disease may be defined broadly as ‘any impairment of normal

biological function’ (Hunter, 2009). Given the wide range of con-
cepts that may thus be categorized as diseases—their respective

etiologies, clinical presentations and their various histories of

diagnosis and treatment—disease names naturally exhibit con-

siderable variation. This variation presents not only in synonym-
ous terms for the same disease, but also in the diverse logic used

to create the disease names themselves.
Disease names are often created by combining roots and

affixes from Greek or Latin (e.g. ‘hemochromatosis’). A particu-
larly flexible way to create disease names is to combine a disease

category with a short descriptive modifier, which may take many

forms, including anatomical locations (‘breast cancer’), symp-
toms (‘cat-eye syndrome’), treatment (‘Dopa-responsive dys-

tonia’), causative agent (‘staph infection’), biomolecular
etiology (‘G6PD deficiency’), heredity (‘X-linked agammaglobu-

linemia’) or eponyms (‘Schwartz-Jampel syndrome’). Modifiers

are also frequently used to provide description not part of the
name (e.g. ‘severe malaria’).

When diseases are mentioned in text, they are frequently also
abbreviated, exhibit morphological or orthographical variations,

use different word orderings or use synonyms. These variations
may involve more than single word substitutions. For example,

because affixes are often composed, a single word

(‘oculocerebrorenal’) may correspond to multiple words (‘eye,
brain and kidney’) in another form.

The disease normalization task is further complicated by the
overlap between disease concepts, forcing systems that locate and

normalize diseases in natural language text to balance handling
name variations with differentiating between concepts to achieve

good performance. Previous works addressing disease name

normalization (DNorm) typically use a hybrid of lexical and
linguistic approaches (Islamaj Doğan and Lu, 2012b; Jimeno

et al., 2008; Kang et al., 2012). While string normalization tech-
niques (e.g. case folding, stemming) do allow some generaliza-

tion, the name variations in the lexicon always impose some

limitation. Machine learning may enable higher performance
by modeling the language that authors use to describe diseases

in text; however, there have been relatively few attempts to use

machine learning in normalization, and none for disease names.
In this work we use the NCBI disease corpus (Islamaj Doğan

and Lu, 2012a), which has recently been updated to include

concept annotations (Islamaj Dogan et al., unpublished data),

to consider the task of disease normalization. We describe the
task as follows: given an abstract, return the set of disease con-

cepts mentioned. Our current purpose is to support entity-

specific semantic search of the biomedical literature (Lu, 2011)
and computer-assisted biocuration, especially document triage

(Kim et al., 2012).*To whom correspondence should be addressed.
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In this article we introduce DNorm, the first machine learning

method to normalize disease names in biomedical text. Our tech-

nique learns the similarity between mentions and concept names

directly from the training data, thereby focusing on the candidate

generation phase of normalization. Our technique can learn

arbitrary mappings between mentions and names, including

synonymy, polysemy and relationships that are not 1-to-1.

Moreover, our method specifically handles abbreviations and

word order variations. Our method is based on pairwise learning

to rank (pLTR), which has been successfully applied to large

optimization problems in information retrieval (Bai et al.,

2010), but to the best of our knowledge has not previously

been used for concept normalization.

1.1 Related work

Biomedical named entity recognition (NER) research has

received increased attention recently, partly owing to

BioCreative (Hirschman et al., 2005b) and BioNLP (Kim

et al., 2009) challenges on recognition of genes, proteins and

biological events in the scientific literature, as well as TREC

(Voorhees and Tong, 2011) and i2b2 (Uzuner et al., 2011) chal-

lenges on identification of drugs, diseases and medical tests in

electronic patient records.
The problem of concept normalization has seen substantial

work for genes and proteins, as a result of a series of tasks

that were part of the BioCreative competitions (Hirschman

et al., 2005a; Lu et al., 2011; Morgan et al., 2008). A variety of

methods including pattern matching, dictionary lookup, machine

learning and heuristic rules were described for the systems parti-

cipating in these challenges. Articles have also discussed the

problem of abbreviation definition and expansion, rule-based

procedures to resolve conjunctions of gene names, lexical rules

to address term variation in gene names, enhanced dictionaries,

approximate string matching and filtering approaches to reduce

false positives.
A large portion of concept normalization work relies, at least

partially, on dictionary lookup techniques and various string

matching algorithms to account for term variation. Although

machine learning components have been implemented, the

majority of the investment in this line of work has been the

establishment of various filtering techniques to select the right

candidates for normalization. For example, Buyko et al. (2007)

used conditional random fields to solve the problem of gene

mention coordination, Tsuruoka et al. (2007) used a logistic

regression method for learning a string similarity measure from

a dictionary and Wermter et al. (2009) incorporate a semantic

similarity scoring module in their GeNo gene-name normaliza-

tion system. Listwise learning to rank techniques, which learn the

best list of objects to return rather than the best single object,

have been used for gene name normalization in Huang et al.

(2011a) and in MeSH� term selection for indexing in Huang

et al. (2011b). While the listwise approach is useful when the

notion of relevance for the task is multifaceted or involves vary-

ing degrees of relevance, in this work we use pLTR because our

interest is in the single best name for each mention. Recently,

Islamaj Doğan and Lu (2012b) successfully built a rule-based

inference method with application to disease name normalization

to MeSH and OMIM terminology.

Disease name recognition and disease concept identification

has received less attention when compared with other biomedical

concept recognition tasks, possibly owing to the fact that there is

no gold standard that can be used to evaluate existing techniques

and/or build new ones focusing on the identification of diseases

in text. Several terminology resources are available that provide

disease terms, such as MeSH, National Cancer Institute the-

saurus, SNOMED-CT (Stearns et al., 2001), UMLS, Disease

Ontology (Schriml et al., 2012) and MEDIC (Davis et al.,

2012). The UMLS Metathesaurus covers much more than any

of the other resources because its main purpose is the compre-

hensive coverage of medical terminology terms. The UMLS was

used in the corpus developed by Jimeno et al. (2008), which

evaluated several normalization methods at the sentence level;

the highest performing method was a dictionary lookup

method, which achieved 0.684 in F-measure. The corpus of

Jimeno et al. was then extended by Leaman et al. (2009), and

subsequently used by Kang et al. (2012) to achieve an F-measure

of 0.736 on concept identifier matching.
Recently, a new disease lexicon, namely MEDIC (Davis et al.,

2012), was created by the Comparative Toxicology Database for

indexing diseases in biomedical literature during biocuration.

MEDIC merges OMIM into the disease branch of MeSH,

making it a natural choice for indexing purposes, and is therefore

used as the lexicon for the NCBI disease corpus (Islamaj Doğan

and Lu, 2012a), which consists of nearly 800 PubMed abstracts

manually annotated with respect to diseases. Such a corpus

provides a large-scale resource for enabling the development of

more precise tools that address disease name recognition and

normalization.

2 METHODS

We use the NCBI disease corpus, which consists of 793 PubMed

abstracts, split into three subsets as described in Table 1. Each abstract

was annotated by two human annotators for disease mentions, as well as

their corresponding concept identifiers in MEDIC (inter-annotator agree-

ment: 87.5%). Each abstract contains an average of 5.08 disease mentions

and 3.28 disease concepts. In this research, we use the December 6, 2012

version of MEDIC, which contains 11 583 MeSH identifiers and 3990

OMIM identifiers, grouped into 13 339 disease concepts. This version

contains 75 761 names, including synonyms. The average number of

names per concept is 5.72 and the average number of concepts per

name is 1.01.

2.1 Processing pipeline

We process PubMed abstracts using a pipeline architecture summarized

in Figure 1. Abstracts are processed first by breaking into sentences using

the built-in Java class for sentence segmentation. We improved the

accuracy of the segmentation by disallowing sentence breaks within

parenthesis.

Disease mentions are then located using the BANNER named entity

recognizer (Leaman and Gonzalez, 2008). BANNER is a trainable

system, using conditional random fields (Lafferty et al., 2001) and a

rich feature set approach. As in previous work for disease name recog-

nition, our feature set that included a dictionary of disease names derived

from the UMLS Metathesaurus (Leaman et al., 2009). For this project,

we used a BANNER model trained on the training subset of the NCBI

disease corpus.
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Mentions output by BANNER are then subjected to additional string

processing. Abbreviation definitions are located in the abstract (Sohn

et al., 2008), and short-form abbreviations found in mentions are replaced

with their long form. If the mention already includes the long form,

however, the abbreviation is instead dropped. Mentions are then toke-

nized at whitespace and punctuation. Punctuation and stop words listed

in the default set of English stop words in the information retrieval library

Lucene (http://lucene.apache.org) are removed, while digits are retained.

Tokens are then converted to lower case ASCII and stemmed using the

Porter stemmer implementation provided by Lucene.

The next step is to generate candidate concepts for each mention. Our

method finds the best match between the mention and the disease names

in MEDIC by defining a vector space, converting both mentions and

concept names to vectors within that space, then searching for the

name that maximizes a scoring function learned from the training data.

We describe our technique in detail in Section 2.2 and Section 2.3.

The final step before returning results is disambiguation: we identify

whether the name is listed as the primary name or a synonym for the

disease concept, and filter matches to a synonym if a parent uses the same

name as a primary name. After filtering, we return the disease concept

associated with the highest scoring name, breaking ties arbitrarily.

2.2 Pairwise learning to rank

We formalize the normalization problem as follows: LetM represent a

set of mentions from the corpus, C represent a set of concepts from a

controlled vocabulary such as MEDIC and N represent the set of con-

cept names from the controlled vocabulary (the lexicon). We assume that

each mentionm 2 M in the dataset is annotated with exactly one concept

c 2 C. We also assume that the controlled vocabulary describes a many-

to-many mapping between concepts c 2 C and names n 2 N .

To represent these relationships, we define the function

annotation :M! C such that given a mention m 2M, it returns the

annotated concept c 2 C in the dataset. We also define

names : C ! P Nð Þ, where P is the power set function, so that given a

concept c 2 C, it returns the subset of N specified in the controlled

vocabulary as the set of names associated with c.

Under these definitions, the candidate generation task can be modeled

as the task of ranking pairs of mentions and concept names. We create a

function that returns a numeric score for any tuple hm, ni, m 2M,

n 2 N , that is score :M�N ! R. We can then generate candidate

concepts for a given mention by iterating through all names, finding

the name with the highest score and returning the associated disease

concept.

The primary effort therefore becomes the creation of an appropriate

scoring function. We use the training data to learn a function that will

return a higher score for matching pairs than for mismatched pairs. That

is, given mention m 2M, concept c ¼ annotationðmÞ, name

nþ 2 namesðcÞ and name n� 2 N � namesðcÞ, we would like a scoring

function that generally obeys the constraint score m, nþð Þ4score m, n�ð Þ

(Bai et al., 2010).

We define a set of tokens T containing the tokens from all mentions

m 2 M and all names n 2 N . We define a vector space of dimensionality

Tj j and represent both mentions and names as Term Frequency-Inverse

Document Frequency (TF-IDF) vectors within that space (Manning

et al., 2008). We calculate the TF for each element in the vector as the

number of times the corresponding token appears in the mention or

name. The IDF for each element in mention and name vectors is calcu-

lated from the number of names in the lexicon that contain the corres-

ponding token, as follows:

IDF t,Nð Þ ¼ log
N
�� ��

n 2 N : t 2 n
� ��� ��þ 1

All vectors are normalized to unit length. To simplify the notation, we

use m to represent both the token list form and the TF-IDF vectors of

mentions, and n to represent the same for names.

In this work we choose the scoring function to be a linear function of

all possible pairs of tokens between mentionm and name n. We introduce

a matrix,W, to contain the weights of the linear function, and express the

scoring function in matrix form as:

score m, nð Þ ¼ mTWn ¼
XTj j

i, j¼1

miWijnj

In this model, entry wij in the weight matrix W represents the correl-

ation between token ti appearing in a mention and token tj appearing in a

concept name from the lexicon. This model has several useful properties.

It is capable of representing both positive and negative correlations

between tokens, and models both synonymy and polysemy. The model

Fig. 1. The DNorm disease normalization pipeline, with examples, as

described in Section 2.1

Table 1. Size of the NCBI disease corpus

Setup Abstracts Mentions Concepts

Training subset 593 5145 670

Development subset 100 787 176

Test subset 100 960 203
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also does not assume that the token distributions are the same between

the mentions and the names.

Our method finds the best potential matches for mention m 2M by

iterating through all n 2 N and then passing the names with the highest

values for score m, nð Þ to the disambiguation component. We also set a

threshold so that names given a score less than or equal to 0 are not

returned.

2.3 Model training

We train the weight matrixW by adjustingW so that mTWnþ4mTWn�,

representing the idea that correct name nþ should be ranked higher for

the mention m than incorrect name n�. Following (Bai et al., 2010), we

use the margin ranking loss (Herbrich et al., 2000), making our model a

margin ranking perceptron (Collins and Duffy, 2002). Given m 2M,

c ¼ annotationðmÞ, nþ 2 namesðcÞ and n� 2 N � namesðcÞ, we choose

W as follows:

W ¼ argmin
W

X
m

X
nþ

X
n�

max 0, 1�mTWnþ þmTWn�
� �

We perform this optimization via stochastic gradient descent (SGD)

(Burges et al., 2005). In SGD, a training instance is selected and classified

according to the current parameters of the model. If the instance is

classified incorrectly, then the parameters are updated by taking a step

in the direction of the gradient. In our formulation of pLTR, each

instance is a tuple m, nþ, n�, where m is a mention vector, nþ is a

name vector that is a correct match for m and n� is a name vector that

is an incorrect match for m. If mTWnþ �mTWn�51, W is updated as

W Wþ � m nþð Þ
T
�m n�ð ÞT

� �
, where � is the learning parameter con-

trolling the size of the change to W. Because SGD is a stochastic method,

the order of the training instances is randomized after each iteration; the

final W and performance therefore vary slightly.

We evaluated a wide range of values for the learning parameter � using

the development subset of the NCBI disease corpus. We found that while

the performance responds to changes in the order of magnitude of �, it is

relatively insensitive to smaller changes (see Section 4 for details). SGD

also requires an initial value for the parameters being updated, in this case

the matrix W. We choose W ¼ I, the identity matrix, as the initial value

for W, so that the function is initially equivalent to standard cosine

similarity.

The number of features in this model is the number of token pairs,

Tj j
2. This large capacity makes overfitting a concern. We avoid over-

fitting through early stopping using the development subset of the NCBI

disease corpus as a holdout set. This implies a preference for solutions

where W is close to its initial value. We measure performance on the

holdout set as the average of the rank of the correct concept for each

mention, or 1000, whichever is smaller. We calculate the average rank

after each iteration through the training data, and stop training when it

increases over the previous iteration.

There are several small differences between our theoretical model and

its application. The most significant difference is that our training data

are expressed in terms of concepts rather than names. For any given

mention m there are typically several names which could be used as nþ,

as each concept is usually associated with multiple names. Instead of

iterating through all possible combinations of m, nþ, n�, which would

be prohibitive, we instead iterate through all combinations of m, cþ, c�,

where cþ is fixed as cþ ¼ annotation mð Þ and c� 2 C � cþ. Because we

intend the name for cþ that best matches the mention to be ranked

higher than the best-matching name for any other concept c�, we deter-

mine nþ and n� as follows:

nþ ¼ argmax
n2names cþð Þ

score m, nð Þ

n� ¼ argmax
n2names c�ð Þ

score m, nð Þ

Names associated with multiple concepts do not receive any special

handling, however. The second difference is that �1.9% of the mentions

in the NCBI disease corpus are annotated with a disjunction of multiple

concepts. Disjunction annotations, such as ‘D001943jD010051’ for

‘breast or ovarian cancer’, indicate that a single text span contains mul-

tiple mentions. We handle these mentions during training by using the

original mention as m but iterating through the concepts, allowing each

to take a turn as cþ. The mention ‘breast or ovarian cancer’ would there-

fore be used twice, first using cþ ¼ ‘D001943’ and then cþ ¼ ‘D010051’.

2.4 Baseline techniques

We compared DNorm against several strong baseline methods. An exact

string-matching method checks for matches of the disease names in text

with controlled terminology terms and is therefore expected to have dif-

ficulty with term variability, especially if such variations were not foreseen

during the creation of the lexicon. In addition, precision may be affected

by ambiguous or nested terms. Norm, from the SPECIALIST lexical

tools (http://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/lvg/2013/docs/

userDoc/tools/norm.html) is a publically available resource of the

National Library of Medicine, and is designed to address these issues

by normalizing case, plurals, inflections and word order. We used

Norm to process all disease names and synonyms in MEDIC and also

the set of all strings and substrings of any given PMID document in the

NCBI disease corpus. When a text string found in a PubMed abstract in

the NCBI testing set was mapped by Norm to a disease name in the

MEDIC lexicon, that disease mention is grounded with the correspond-

ing MEDIC concept. For nested disease mentions we kept the longest

string that produced a mapping to aMEDIC entry term or synonym. The

results of this string matching method are reported as NLM Lexical

Normalization in the ‘Results’ section.

Our second baseline method applied MetaMap (Aronson, 2001).

MetaMap is another public resource of the National Library of

Medicine, and the state-of-the-art natural language processing tool for

identifying UMLSMetathesaurus concepts in biomedical text. MetaMap

first splits the input text into sentences, and then splits the set of sentences

into phrases. For each phrase, MetaMap identifies possible mappings to

UMLS based on lexical lookup and on variants by associating a score

with each one of them. MetaMap identifies several possible mappings in

each phrase and several candidates for each one. In this work, we used

MetaMap to identify all UMLS concept identifiers (CUI) in the PubMed

abstracts composing the NCBI disease corpus. Then, for each abstract,

we used UMLS to map the CUIs to their respective MeSH descriptors

and OMIM identifiers. We retained the CUIs we were able to map to

either MeSH or OMIM IDs in MEDIC and dropped all others. These

results are reported as MetaMap.

We also compare with the benchmark results on the NCBI disease

corpus, obtained using the Inference method (Islamaj Doğan and Lu,

2012b). This method was developed on a manually annotated set of

PubMed abstract sentences that reflected the consensus annotation agree-

ment of the EBI disease corpus and the AZDC disease corpus (the only

available data at the time). The Inference method showed F-measure

results of 79%, and it was able to link disease mentions to their corres-

ponding medical vocabulary entry with high precision. Its basis was a

Lucene search that first mapped a disease mention against the MEDIC

vocabulary. Next, the Inference method makes use of a combination of

rules that were used to re-rank the results to report the top ranked one.

The core of the Inference method was built as a combination of string

matching rules that mapped the text annotated strings to the controlled

vocabulary terms. A strong advantage of the Inference method was its

incorporation of abbreviation definition detection and the successful use

of the fact that the long form of the disease is usually defined elsewhere in

the same document. Once the abbreviation was resolved, the knowledge

of the mapping of the long form of the disease was used to infer the

mapping of the abbreviated mention. To evaluate the Inference method’s
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performance, BANNER was first applied to each PubMed abstract to

identify disease name strings, the Inference method was then applied to

normalize each mention to a MEDIC concept.

Our next baseline method uses the same processing pipeline as our

DNorm method but replaced our candidate generation method with

Lucene, an important component in several previous systems for normal-

izing biomedical entities (Huang et al., 2011a; Wermter et al., 2009). We

loaded MEDIC into a Lucene repository, creating one Lucene document

for each concept–name pair. Mentions and names are both processed

with the same tokenization and string normalization used in DNorm.

A Boolean query is created from the resulting tokens, and the concept

for the highest-scoring name is the one returned. We refer to this method

as BANNERþLucene.

Our final baseline method, which we refer to as BANNERþ cosine

similarity, also uses the same processing pipeline as DNorm. However,

this method also uses the same TF-IDF vectors as DNorm for the men-

tions and names, so that the only difference is the scoring function. The

cosine similarity scoring function is as follows:

cosine similarity m, nð Þ ¼ mTn ¼
XTj j

i¼1

mini

Because this method is equivalent to DNorm with W ¼ I, the identity

matrix, and I is the value of W before training, this method isolates the

improvement provided by training the W matrix with pLTR.

3 RESULTS

During development, all techniques were evaluated using the

development subset of the NCBI disease corpus. Varying the

learning rate demonstrated �¼ 10�4 to provide the highest

performance on the development set, and this is the setting

used for all experiments reported in this section. Final evalu-

ation was performed using the test subset of the NCBI disease

corpus.
Our evaluation considers only the set of disease concepts

found within each abstract, ignoring the exact location(s)

where each concept was found. Thus, the number of true posi-

tives in an abstract is the size of the intersection between the set

of concepts annotated in the gold standard and the set of con-

cepts returned by the system. The number of false negatives and

false positives are defined analogously. Our result measures are

precision, recall and F-measure, which were calculated as

follows:

p ¼
tp

tpþ fp
r ¼

tp

tpþ fn
f ¼

2pr

pþ r

Micro-averaged results were calculated by summing the

number of true positives, false positives and false negatives

over the entire evaluation set. Macro-averaged results were deter-

mined from the number of true positives, false positives and false

negatives for each abstract, and the mean result was calculated

across all abstracts.
Table 2 reports the evaluation results for DNorm and all

baseline methods, using micro-averaged performance. Table 3

reports the results for the same experiments using macro-

averaged performance. Figure 2 reports the recall for the

BANNERþLucene, BANNERþ cosine similarity and

DNorm (BANNERþ pLTR) experiments if we return more

than the highest scoring result from the candidate generation.

We created our own implementation of pLTR using the

COLT matrix library (http://acs.lbl.gov/software/colt). The

implementation enables high performance by taking advantage

of the sparsity of the mention and name vectors, training on the

NCBI disease corpus training subset in 51h using a single

2.80GHz Intel Xeon processor, limited to 10 GB memory. Our

implementation scores one mention against the nearly 80000

names in the lexicon in �25ms using the same equipment. We

have applied DNorm to all PubMed abstracts and made the

results publicly available in PubTator (Wei et al., 2012, 2013).

4 DISCUSSION

Though the NLM Lexical Normalization method has higher

recall than any method besides DNorm, the precision remains

Fig. 2. Comparison between BANNERþLucene, BANNERþ cosine

similarity and DNorm (BANNERþpLTR) of the micro-averaged

recall when considering a concept to be found if it appears in the top n

ranked results

Table 3. Macro-averaged performance comparing the pLTR method

against several baseline approaches, with the highest value in bold

Setup Precision Recall F-measure

NLM Lexical Normalization 0.213 0.718 0.316

MetaMap 0.510 0.702 0.559

Inference method 0.597 0.731 0.637

BANNERþLucene 0.662 0.714 0.673

BANNERþ cosine similarity 0.692 0.732 0.711

DNorm (BANNERþ pLTR) 0.828 0.819 0.809

Table 2. Micro-averaged performance comparing the pLTR method

against several baseline approaches, with the highest value in bold

Setup Precision Recall F-measure

NLM Lexical Normalization 0.218 0.685 0.331

MetaMap 0.502 0.665 0.572

Inference method 0.533 0.662 0.591

BANNERþLucene 0.612 0.647 0.629

BANNERþ cosine similarity 0.649 0.674 0.661

DNorm (BANNERþ pLTR) 0.803 0.763 0.782
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low because of false positives from phrases such as ‘tumor

suppressor’. False positives in the MetaMap results had similar

causes; false negatives were frequently due to term variations not

present in UMLS or problems with hypernyms, such as mapping

‘autosomal recessive disease’ to Disease (MESH:D004194)

instead of the more specific Inborn Genetic Disease

(MESH:D030342).

The remaining methods use separate stages for NER and

normalization; because all use BANNER for NER, the errors

caused by the NER component are the same. The remaining

methods also use abbreviation resolution, significantly reducing

the number of false positives caused by ambiguous abbrevi-

ations. The Inference method handles term variations by using

string similarity and Lucene search, though it tends to select

highly specific concepts, such as mapping ‘inherited disorders’

to Blood Coagulation Disorders, Inherited (MESH:D025861).

Analyzing the errors made by BANNERþLucene but not by

BANNERþ cosine similarity shows that most are due to the

Lucene scoring function insufficiently penalizing lexicon names

containing tokens not present in the mention. The majority of

the errors made by BANNERþ cosine similarity but not by

DNorm are due to term variation.
Because BANNERþLucene, BANNERþ cosine similarity

and DNorm (BANNERþ pLTR) use the same processing pipe-

line, the performance difference between these methods is solely

due to the normalization methodology. In addition, because the

scoring function for cosine similarity is equivalent to the one

used by DNorm before training, the performance difference

between these methods is solely due to the weights learned

during training.

To further isolate the effect of pLTR training on performance,

we performed a normalization experiment comparing Lucene,

cosine similarity and pLTR using the gold-standard mentions

from the NCBI disease corpus test subset as input instead of

the mentions found by BANNER. We again used the pLTR

model trained using �¼ 10�4. In this comparison, we count a

result as correct if the concept associated with the lexicon name

scored highest by DNorm matched the annotated concept for the

mention. Out of the 960 mentions, Lucene found 674 (70.2%),

cosine similarity found 687 (71.6%) and pLTR found 789

(82.2%). This experiment confirms the effectiveness of the

novel learning procedure used by DNorm.
We performed an experiment to demonstrate the effect that

varying the learning rate (�) has on training time and perform-

ance. We varied � exponentially between 10�2 and 10�8, and

report the results in Table 4. The best performance was achieved

with �¼ 10�4, which required a training time of 48.8 min and

resulted in a micro-averaged F-measure of 0.782. While the final

performance is similar over a wide range of values for �, the
training time varied widely, ranging from 511 min to 477h,

with smaller values requiring longer training times.

4.1 Error analysis of DNorm results

We analyzed the errors made by DNorm, using the model with

�¼ 10�4, on the test subset. We considered an error to be either a

false positive or false negative; errors were grouped first by the

component most responsible for the error and second by the type

of error. A chart summarizing the error analysis is presented in

Figure 3.
The majority of the errors (54.8%) were traced to the NER

component, underscoring the importance of this task in biomed-

ical information extraction. Twenty-three percent of the total

errors were due to NER false negatives, predominantly specific

diseases (e.g. ‘neisserial infection’) and disease classes (e.g. ‘com-

plement deficiency’), whereas 12.2% of the total errors were due

to NER false positives, including ‘molecular defects’, ‘deficiency

879delG’ and ‘cardiac troponin T’, a type of RNA. The remain-

der of the NER errors, 19.6% of the total errors, resulted from

tagging partially correct spans. Examples of the span missing

tokens include ‘congenital absence’ instead of ‘congenital

absence of the iris’ and ‘breast cancer’ instead of ‘male and

female breast cancer’. Errors due to the span capturing extra

tokens were less common, as it is easier for the normalization

component to recover from extra tokens than missing ones.

Examples include ‘paternal uniparental disomy’ instead of

‘uniparental disomy’ and ‘sporadic T-cell leukaemia’ instead of

‘T-cell leukaemia’.
The next largest source of error was the candidate generation

using our ranking technique, which contributed 41.2% of the

total errors. Of the total errors, 12.2% were due to token pairs

not being recognized as having closely related meanings. Many

of these were adjective forms, such as ‘cardiac’ meaning ‘heart’ or

‘colorectal’ meaning both ‘colon’ and ‘rectum’. We also found

some spelling differences (‘tumour’ versus ‘tumor’) and stemming

errors (‘adrenocorticotropic’ stems to ‘adrenocorticotrop-’ but

‘adrenocorticotrophin’ stems to ‘adrenocorticotrophin’).
Unrecognized hypernyms also contributed to the ranking

errors, accounting for 6.1% of the total. This is expected because

the annotation guidelines for the NCBI disease corpus instructed

the human annotators to annotate any mention that does not

exactly match a concept in MEDIC with the closest concept that

includes it. While some of the unrecognized hypernyms were se-

mantically close, such as ‘hypomania’ being a type of ‘mood

disorder’, others were relatively distant, including ‘disorder of

glycoprotein metabolism’ being a kind of ‘inborn metabolism

error’ and ‘gastrulation defect’ being annotated simply as

‘disease’.
Difficulties in ranking coordinations were the cause of 6.8% of

the total errors. These errors are predominantly false negatives

because the ranking component only returns the single best

Table 4. Effect of varying the learning rate (�) on the number of training

iterations performed, total training time and the resulting micro-averaged

F-measure. The highest performance is shown in bold

� Iterations Time (min) F-measure

10�2 4 10.7 0.743

10�3 4 13.3 0.765

10�4 4 48.8 0.782

10�5 2 124.0 0.762

10�6 8 986.6 0.775

10�7 17 4656.5 0.770
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disease concept for each mention. For example, in the mention

‘leukemia and/or lymphoma’ the ranking correctly found ‘leuke-

mia’ but missed ‘lymphoma’. In addition, complex coordinations

such as ‘breast, brain, prostate and kidney cancer’ occasionally

also caused false positives, in this case to ‘prostate cancer/brain

cancer susceptibility’ (OMIM:603688).

The greatest number of ranking errors, 16.2% of the total

errors, were not attributable to a single qualitative error, but

were instead due to an incorrect relative weighting. For example,

the mention ‘ptosis’ refers to a drooping of the eyelid, but the

method ranked ‘X-linked ptosis’ (OMIM:300245) higher than

the correct annotation of ‘eyelid ptosis’ (MESH:D001763).

This ranking occurred because ‘X-linked’ is much more

common in the lexicon than ‘eyelid’, causing ‘X-linked’ to be

given a lower TF-IDF weight, and its absence therefore con-

sidered less significant. Another example includes ‘adenomatous

polyps’ being matched to ‘adenomatous polyposis coli’

(MESH:D011125) instead of to the disease with the same name

(‘adenomatous polyps’, MESH:D018256) because the ranking

model learned during training that the token ‘polyps’ is strongly

associated with each token in the name ‘adenomatous polyposis

coli’.

Only 3.4% of the errors were due to the disambiguation com-

ponent. An example includes ‘neurohypophyseal diabetes

insipidus’, which is a valid name for two concepts that share a

parent but are not themselves in a parent–child relationship.

Abbreviation processing was the major component that contrib-

uted the fewest total errors, 0.7%. An example includes ‘IDMS’,

which the abstract defined as ‘isolated DMS’, and where ‘DMS’

had been defined previously as ‘Denys-Drash syndrome’.

4.2 Analysis of learned weights matrix

Analyzing the entries in the matrix produced some additional

insight into the normalization task and why this technique

works. As discussed in the ‘Methods’ section, entry wij in the

weight matrix W represents the correlation between token ti
appearing in a mention and token tj appearing in a concept

name from the lexicon. These correlations may be positive or

negative. In addition, the matrix is initialized as the identity

matrix I, so that non-diagonal entries with a value other than

0 are due to training updates.

The non-diagonal entries with the highest values represent the

strongest correlations. As expected, the relationship we found

most frequently were synonyms, such as ‘inherited’! ‘heredi-

tary’ or near-synonyms such as ‘disorder’! ‘disease’. We also

found many entries reflecting other semantic relationships,

including hypernymy (‘recessive’! ‘hereditary’) and others

(‘BRCA1’! ‘ovarian’). We found many examples of terms

with morphological variations not handled by stemming, such

as ‘gonococcal’! ‘gonorrhea’ and ‘osteomata’! ‘osteoma’. We

also noted spelling variations, such as ‘haemoglobin-

uria’! ‘hemoglobinuria’. Finally, we found many examples of

words that appear together frequently (collocations), such as

‘dystrophy’! ‘muscular’ and ‘disease’! ‘hereditary’.
We also analyzed the entries in the weight matrix with the

lowest values, all negative, representing the strongest negative

associations. The most common relationship found always

included a head word strongly associated with disease.

The head word was typically either paired with another head

word (e.g. ‘deficiency’! ‘infection’) or an adjective (‘abnor-

mal’! ‘infection’), though others were also observed

(‘limb’! ‘disease’). These relationships suggest the existence of

several broad categories of disease, and indicate an attempt to

exclude some of these as possibilities. The next most common

relationship we found was between words that frequently appear

together, or collocations, such as ‘autosomal’! ‘dominant’. This

type of negative correlation reduces the weight of the complete

phrase while allowing the weight between each individual token

and itself (e.g. ‘autosomal’! ‘autosomal’) to remain high. We

found some evidence of second-order relationships such as

‘fragile’! ‘linked’, both of which commonly appear with the

token ‘X’, as in ‘fragile X’ and ‘X linked’. Thus the pair

‘fragile’! ‘linked’ reduces the score of a mention containing

the phrase ‘fragile X’ with a concept name containing the

phrase ‘X linked’. Finally, we also found some antonym relation-

ships, such as ‘dominant’! ‘recessive’.

4.3 Limitations and future work

As the first work to use the pLTR model for normalization, there

are remaining questions. While DNorm consists of separate steps

for mention and concept finding, this article aggregates the

mention-level results into the abstract level for evaluation.

Thus additional assessment would be needed when applying

DNorm to other text mining tasks such as relationship extraction

between gene variants, drugs, disease and adverse reactions

(Hakenberg et al., 2012).
While our evaluation only applied DNorm to one dataset, we

recently also applied DNorm to the ShARe/CLEF eHealth Task

1b, a disease normalization task in clinical notes involving dis-

eases and disorders from the clinical vocabulary SNOMED-CT

(Stearns et al., 2001). DNorm placed first among 17 international

teams (Leaman et al., 2013; Suominen et al., 2013). This is

encouraging evidence of our method being more generally

applicable, though additional evaluation should be performed

to verify the effectiveness of our method in other applications,

such as full text articles.

Fig. 3. Summary of error analysis. Errors in the NER and ranking

components contributed495% of the total errors
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Because the scores returned by our model are ordinal values,
the model naturally only returns one concept per mention. This
poses a difficulty for mentions annotated with more than one

concept. We found that the difficulty was not great for mentions
annotated with disjunctions, as these often appear independently
in other mentions in the abstract. However, an additional 0.5%

of the mentions in the NCBI disease corpus are annotated with a
conjunction of multiple concepts, indicating that a single men-
tion implies multiple concepts simultaneously. For example, the

mention ‘inherited neuromuscular disease’, was annotated as
‘D009468þD030342’ (‘Neuromuscular disease’ and ‘Genetic
Diseases, Inborn’). In the present work, conjunction annotations

were ignored during training and always counted as false nega-
tives in our evaluation—we made no attempt to give partial

credit. While there are relatively few of these mentions in the
NCBI disease corpus, additional techniques will be required in
tasks where conjunction annotations are critical.

On a more fundamental level, there is no universally agreed
definition of disease in general (Scully, 2004). Likewise, specific
diseases may be classified differently by different clinicians owing

to variations in the presentation of diseases within a syndrome
family, differing degrees of granularity or even variations in word
meaning (Biesecker, 2005). Even so, disease classifications are

constantly being refined, and separating diseases into subtypes
can improve the clinical utility of the disease description. There is
some evidence of this stratification in the NCBI disease corpus:

PMID 9056547 describes a clinically relevant variant of
Pelizaeus-Merzbacher disease, for example. While our method
does learn the language variations used to refer to diseases,

this represents only an early step toward the more difficult prob-
lems of handling variations in disease classification or recogniz-

ing new subtypes.
Our immediate future work includes applying our method to

additional entity types. It would be interesting to compare our

technique with existing methods for normalizing gene names.
Because the disambiguation step is important for gene names
(Lu et al., 2011), we expect it would require a more comprehen-

sive approach than we used here. Because disambiguation is
largely orthogonal to the main effort in this article, however,
we believe the learning to rank technique may prove useful to

gene names as well.

5 CONCLUSION

We have shown that pLTR successfully learns a mapping from
disease name mentions to disease concept names, resulting in a

significant improvement in normalization performance. We have
also shown that the training time requirements are modest and
that inference time is fast enough for use online. Our approach

models many kinds of term variations, learning the patterns
directly from training data.
Our error analysis showed that NER is a continued concern,

and the analysis of the learned weight matrix showed that mor-
phological analysis is important for this problem. Our technique
primarily addresses the candidate generation step in normaliza-

tion, and could be paired with more sophisticated techniques for
disambiguation.
We believe that pLTR may prove to be sufficiently useful and

flexible to be applicable to normalization problems in general.

While general applicability should be verified in future work, the

present article represents an attempt to move toward a unified

framework for normalizing biomedical entity mentions with

machine learning.
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