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ABSTRACT

Motivation: RNA-Seq provides a powerful approach to carry out ab ini-

tio investigation of fusion transcripts representing critical translocation

and post-transcriptional events that recode hereditary information.

Most of the existing computational fusion detection tools are chal-

lenged by the issues of accuracy and how to handle multiple mappings.

Results: We present a novel tool SOAPfusion for fusion discovery with

paired-end RNA-Seq reads. SOAPfusion is accurate and efficient for

fusion discovery with high sensitivity (�93%), low false-positive rate

(�1.36%), even the coverage is as low as 10�, highlighting its ability

to detect fusions efficiently at low sequencing cost. From real data of

Universal Human Reference RNA (UHRR) samples, SOAPfusion

detected 7 novel fusion genes, more than other existing tools and all

genes have been validated through reverse transcription-polymerase

chain reaction followed by Sanger sequencing. SOAPfusion thus

proves to be an effective method with precise applicability in search

of fusion transcripts, which is advantageous to accelerate pathological

and therapeutic cancer studies.
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1 INTRODUCTION

Fusion transcript, the new transcript transcribed casually from

two parental genes, may emerge through chromosomal
rearrangements (Kumar-Sinha et al., 2008) or intergenic splicing

(Akiva et al., 2006; Horiuchi et al., 2006; Li et al., 2008b). Given

their important roles in cancer development and progression
(Kantarjian et al., 2002; Kumar-Sinha et al., 2008; Maher

et al., 2009a, b; Mitelman et al., 2007; Teixeira et al., 2006),
some known fusions have been successfully used as biomarkers

for development of inhibitors triggering cancer remission,

e.g. BCR–ABL1 fusion in treating chronic myelogenous leuke-
mia (CML) (Kantarjian et al., 2002). Consequently, it is of

enormous biological and therapeutic significance to locate such

fusion events.
Early studies mainly resorted to expressed sequence tag (Akiva

et al., 2006; Li et al., 2009), array CGH (Shadeo and Lam, 2006)

or end sequence profiling (Hampton et al., 2009; Volik et al.,

2006) to seek for fusions. However, such methods were largely

constrained by their limited sequencing throughput and uneco-

nomic cost (Mortazavi et al., 2008). With the emergence of

next-generation sequencing technologies, RNA-Seq has been

introduced as an excellent technique in fusion discovery

(Mortazavi et al., 2008; Wang et al., 2010), and, in particular,

paired-end (PE) sequencing was proved to exhibit distinguished

strengths in both productivity and sensitivity (Maher et al.,

2009a, b).
The general idea of fusion detection from RNA-Seq data is to

align all reads to a reference genome or transcriptome and then

explore alignments carrying potential fusion features to call

fusions. Early computational detection approaches first narrow

down regions containing possible fusions with PE reads intactly

mapped to the reference, and then search for the fusion junctions

with remaining reads that mapped to those regions intactly.

Nevertheless, with successful application of segmental alignment

strategy in some splicing junction detection tools, e.g. MapSplice

(Wang et al., 2010) and SOAPsplice (Huang et al., 2011), a

bunch of computational approaches have been proposed, includ-

ing FusionSeq (Sboner et al., 2010), ShortFuse (Kinsella et al.,

2011), FusionHunter (Li et al., 2011), FusionMap (Ge et al.,

2011), deFuse (McPherson et al., 2011) and TopHat-Fusion

(Kim and Salzberg, 2011), to consider all segmental alignment

of reads in addition to intact alignment.

These current methods vary in performance and ability in

fusion detection. Roughly speaking, the performance of these

methods rely on their ability to precisely detect the reads encom-

passing fusion junctions (fusion reads), as those reads served as

the major evidences for fusion events and could only be segmen-

tally mapped to references. To obtain specific fusion junctions,

current tools align potential fusion reads to combinations of can-

didate exons (e.g. FusionSeq, ShortFuse, FusionHunter,

FusionMap and deFuse) or split those reads into fixed segments

for reference alignment (e.g. FusionMap and TopHat-Fusion).

This induces higher computational requirement on alignment

and/or not easy to solve segmental mapping problems such as
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multiple mappings. What is more, most of these tools did not

perform well under low coverage. As a remark, the existence of

multiple mappings (many of them are believed to be incorrect)

increases the false discovery rate (FDR; e.g. in ShortFuse,

deFuse and TopHat-Fusion). On the other hand, simply remov-

ing them decreases the sensitivity as in FusionHunter.
In this article, we present a novel tool called SOAPfusion to

identify fusion transcripts with RNA-Seq reads. SOAPfusion

integrates a specially designed SOAPfusion-aligner to perform

both intact alignment and two-segmental alignment. With a

masking strategy on the reference genome and retention of reli-

able multiple mappings to report fusions, SOAPfusion provides a

proper way to make better use of multiple mapping results. Our

experiments show that SOAPfusion is an effective tool for de-

tecting fusions at various sequencing coverage even as low as

10�, thus enabling us to identify fusion events at low cost in

cancer studies, and in the long run, eventually advance clinical

treatment to cancers. In real data, SOAPfusion was able to detect

more novel fusion genes than existing tools, in Universal Human

Reference RNA (UHRR) samples, all have been validated

through reverse transcription-polymerase chain reaction (RT-

PCR) followed by Sanger sequencing.

2 METHODS

2.1 System design for SOAPfusion

As the majority of all validated fusions have the fusion sites at exon

boundaries (Berger et al., 2010; Edgren et al., 2011; Levin et al., 2009;

Sboner et al., 2010), also demonstrated by canonical fusion mechanisms

(Akiva et al., 2006; Horiuchi et al., 2006; Kumar-Sinha et al., 2008;

Li et al., 2008b), the main workflow of SOAPfusion tries to identify

fusion transcripts with fusion sites at exon boundaries using RNA-Seq

PE reads. In the first step, SOAPfusion masks non-exonic regions of the

reference genome with a series of ‘N’ sequences. Then SOAPfusion uses

SOAPfusion-aligner to map all reads to the masked reference genome. In

the first alignment stage, all reads are mapped with intact alignment

module. Those unmapped ones are continued to the second alignment

stage, the two-segmental alignment module. Roughly speaking, there are

two types of fusion supporting reads that are required to recover in all

fusion detection approaches, the fusion reads (i.e. one of paired reads

encompassing fusion site, whereas the other one from either side of fusion

site) and the fusion spanning reads (i.e. one read on each side of the

fusion site) (Fig. 1A). Thereby, SOAPfusion hunts fusion reads and

fusion spanning reads from SOAPfusion-aligner output. Next,

SOAPfusion makes use of fusion reads to locate fusion candidates and

then calls reliable fusions with supports from fusion spanning reads.

Candidates that come from two genes of the same gene family and

with none of the fusion supporting reads having unique mappings were

filtered out. After that, SOAPfusion reports sets of most reliable fusion

candidates. The main workflow is depicted in Figure 1B.

For fusion transcripts with fusion sites from intergenic regions or

introns, we use TopHat-Fusion (Kim and Salzberg, 2011) to detect

them after the main workflow. In this supplementary step, we use

un-masked reference genome and all un-mapped reads (neither intactly

nor two-segmentally mapped) returned by SOAPfusion-aligner as input

to TopHat-Fusion. In the reported set of fusion candidates by TopHat-

Fusion, we only retain those with at least one fusion site in intergenic

regions or introns. Fusion candidates from main workflow and supple-

mentary step are included in the final set of reported fusions.

2.2 Masking algorithm

Based on gene annotation file obtained from UCSC database (http://

genome.ucsc.edu), our program keeps all exon regions of human refer-

ence genome hg 18 (Build 37) and replaces all nucleotide bases within

non-exon regions with ‘N’s by hard-masking (Baxevanis et al., 2001).

In case of overlapping exons among variant transcripts of the same

gene, the longest exon as the non-masked region is kept. Then index of

masked reference genome is built with bi-directional Burrow Wheeler

Transformation algorithm (Lam et al., 2008).

2.3 SOAPfusion-aligner algorithm

In intact alignment, all reads and their reversed complements are aligned

to the index, with at most three mismatches (with option -m) or two

indels (with option -g) allowed in each alignment by default.

Considering that single nucleotide polymorphism occurs more frequently

than indels (Li et al., 2008c), a higher penalty score is given to indels (¼1)

than mismatch (¼0.5) in mapping. Mappings with smallest penalty scores

are returned. For those less reliable bases at the 30-end of read owing to

the limitations of sequencing technology (Hillier et al., 2008), we cut off

30 tails of unmapped reads after the above steps by 7bp (default), and

then map the remaining part and their reversed complements to the index

allowing errors in the same way as described above. Afterward, for the

reads that still fail to be mapped, they will be further mapped with the

two-segmental alignment procedure.

Fig. 1. (A) Two types of fusion supporting reads. (B) Workflow of

SOAPfusion. SOAPfusion first masks non-exon regions on genome ref-

erence, then maps PE reads to the masked reference genome with intact

alignment and, if necessary, two-segmental alignment, calls fusions with

fusion reads and adds fusion spanning reads to enhance confidence.

Insert size of fusion supporting reads should follow the normal distribu-

tion according to the three-sigma rule (Smirnov and Dunin-Barkovskii,

1969). In the last step, SOAPfusion sifts most reliable fusions after using

similarity filters
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In two-segmental alignment, we first get two longest aligned segments

in both forward and backward directions, with three requirements: each

segment be longer than 8bp; alignment allows no more than one mis-

match and no indels; and alignments must have canonical splice sites

(GT/AG). If the two longest mapped sequences overlap, we try the divid-

ing site within the overlapped regions from 30- to 50-end until a hit is

found; if there is no overlap, the two longest mapped segments would be

counted as the best segmentation. In this step, priorities for types of

mismatches allowed in two segments are (0, 0)4 (0, 1)4(1, 0)4(1, 1)

[‘4’ means better].

2.4 Fusion discovery algorithm

To prepare the most informative mapping results for fusion discovery,

we pre-process the outputs from SOAP-fusion module as follows:

(i) According to the observation that non-fusion-supporting reads

occupy a great portion of the mapping results while they actually are

not useful in the fusion discovery stage, we remove non-fusion-supporting

mappings from the original set of mapping results, thus reducing greatly

the time and memory cost. (ii) Multiple mapping results with high con-

fidence (defined later in the text) are chosen to call candidates by default.

If one read in intact alignment or two segments in two-segmental align-

ment have fewer than six (this value is set empirically, intuitively, if an

alignment has only a few mapping positions, the alignment result should

be reliable) multiple mappings in total, all its mappings are used in the

discovery stage; furthermore, if one segment has multiple mappings, only

the mappings with the least number of errors (including mismatch and

indels) are kept.

Fusion candidates are first called with fusion reads from two-segmen-

tal mappings. It is required that the mapping distance between two ends

of fusion read should follow the normal distribution of insert size in

sequencing according to the three-sigma rule (Smirnov and Dunin-

Barkovskii, 1969). Exact fusion site is calculated according to the map-

ping position, the mapping orientation and the mapping strand. Then we

add evidence to fusion candidates with fusion spanning reads, from both

intact alignment and two-segmental alignment results. Mapping distance

of these fusion spanning reads should also follow the same rule as fusion

reads. Finally, fusion candidates with at least one fusion read and at least

one fusion spanning reads supported are considered as reliable ones and

are reported in two lists: the first list contains those obtained from unique

mappings, whereas the second list contains those obtained from using

multiple mappings.

One particular concern at this stage is the calculation of insert size.

In case of alternative splicing events, we use a maximum principle, i.e. the

insert size is calculated based on the union of all transcripts from the same

gene (Supplementary Fig. S2).

2.5 Similarity filters

We remove fusion candidates with homologous gene pairs based on the

annotation file from TreeFam database (http://www.treefam.org) and

those fusions only supported with multiple mappings.

3 RESULTS

3.1 The data

The melanoma and CML datasets were downloaded from NCBI

Gene Expression Omnibus under accession number GSE17593.

The breast cancer dataset was downloaded from NCBI Sequence

Read Archive under accession number SRA: SRP003186. The

UHRR dataset can be retrieved from NCBI SRA database with

accession number SRA054573.

3.2 Library construction, sequencing and validation

One microgram of total RNA was isolated from UHRR sample

(Agilent, Catalog number 740000), which comprises 10 human

cell lines of mammary gland, liver, cervix, testis, brain, melan-
oma, liposarcoma, histocyte, T lymphoblast and B lymphocyte,

according to the manufacturer’s instructions, and was subse-

quently treated with RNase-free DNase I for 15min at 37�C to

remove residual DNA. Libraries were prepared according to the
Illumina’s protocol. Poly (A) RNA was isolated using the

oligo(dT) beads (Dynabeads� mRNA Purification Kit;

Invitrogen, Catalog number 610.06). On chemical fragmentation,

double-stranded cDNA was synthesized from these RNA sam-
ples using random hexamer–primer and reverse transcriptase

(Superscript II; Invitrogen; Catalog number 18 064-014).

Following the synthesis of second strand, end repair, adenylate

of 30-ends and adaptor ligation, cDNA was further size-selected
on agarose gels (�200bp). After enrichment of cDNA template

by PCR, concentrations and sizes of libraries were measured

using DNA 1000 kit (Agilent) on an Agilent 2100 Bioanalyzer,

and concentrations were also confirmed by qPCR. Then the PE
cDNA libraries were sequenced on HiSeqTM 2000 Sequencing

System (Illumina) at 90bp.
We validated fusion candidates by region-specific PCR amp-

lification of cDNA, which was synthesized from 5�g of total

RNA using the reagents from Invitrogen and TAKARA.

Following PCR and gel electrophoresis, all PCR-amplified
bands were gel-excised and subjected to Sanger sequencing. All

the specific primers and candidate sequences around fusion site

are listed in Supplementary Table S9.

3.3 Stepwise evaluation of SOAPfusion

To evaluate the effectiveness of our approach in a full scale,

we designed simulation experiments to test the workflow in a

stepwise manner.
We simulated 300 fusion transcripts based on 31399 human

RefSeq (Pruitt et al., 2007) transcripts. First, by randomly pick-

ing up two transcripts and two exon boundaries of them, we
joined the two transcripts to form fusion transcripts at the

picked exon boundaries. Also, by randomly picking up one

non-exonic site and one exon boundary, we joined them to simu-

late fusion transcripts with fusion sites from intergenic regions or
introns. In total, 300 fusions were simulated. Then we ran MAQ

(Li et al., 2008a) on the new transcriptome (including all RefSeq

transcripts and the newly simulated fusion transcripts) to simu-

late PE reads. In total, we generated seven sets of simulated reads
under sequencing depth 1�, 5�, 10�, 20�, 30�, 40� and 50�,

file sizes of which are 242Mb, 1.19Gb, 2.40Gb, 4.80Gb,

7.20Gb, 9.60Gb and 12Gb, respectively.
We first assessed the masking strategy by running SOAPfusion

with masked reference genome and original reference genome

(non-masked), respectively, on 50� simulated dataset
(64 150124 reads in total). Results showed that higher sensitivity

and lower FDR were achieved with masking (97.66% and

1.67%) compared with non-masking (89.67% and 3.72%). We
checked the read alignments and revealed that the masking strat-

egy (94.51%) mapped more reads than non-masking strategy

(89.17%), while all reads mapped with non-masking were cov-

ered in masking. To investigate the power of masking, we looked
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at the reads that were only mapped with masking. It was found

that 85.31% of them could not be mapped to the non-masked

genome because they either span more than two exons (33.33%)

or contain more sequencing errors (51.98%) than allowed (one

mismatch) in segmental mapping. Additionally, we compared

cases of multiple mappings between masking and non-masking

and found that the number of multiple mapped reads dropped

from 4298 624 in non-masking to 1 210 695 in masking.
Among 410 fusion supporting reads of 28 fusions detected

only with masking, 391 (95.4%) reads have unique mappings

with masking. We also compared time cost and memory con-

sumption between two strategies. For 64 million reads, masking

strategy took 14h and 0.72Gb memory, whereas non-masking

took 21h and 5.0Gb memory. All in all, the advantages of using

the masking strategy for improving sensitivity, reducing FDR,

saving time and memory are obvious.
Then we measured the performance of SOAPfusion-aligner

focusing on two-segmental alignment, given that fusion reads

are the keys to fusion discovery and all mapped with segmental

alignment. On average, SOAPfusion-aligner mapped 78.10% of

fusion reads to the correct fusion junctions under all coverage,

while for Bowtie used by deFuse (McPherson et al., 2011), the

rate is 55.36% (Supplementary Table S1). Accordingly,

SOAPfusion-aligner performs two-segmental alignment more

accurately and effectively.

We next evaluated the effect of using multiple mappings in

SOAPfusion. Although we used the masking strategy to reduce

multiple mapping results to the best extent, there were still some

reads mapped to multiple locations because of repetitive regions

among some exons. We compared sensitivity and FDR when

counting fusions only reported from unique mappings (U) and

fusions reported from both unique and multiple mappings

(UþM) (Supplementary Table S2). In simulated datasets,

when the coverage increases, it is clear that the increases in the

number of true fusions (based on UþM) are a lot more than the

increases in false fusions reported. By aggregating fusions called

from both unique mappings and multiple mappings,

SOAPfusion achieved high sensitivity while maintaining reason-

ably low FDR.
Also, we tested the role of similarity filters in improving

SOAPfusion’s performance (Supplementary Table S3). For

simulated dataset under 50�, 82 of 380 fusions reported were

removed, including 55 candidates with parental genes coming

from the same gene family and 27 candidates only called from

multiple mappings, helping to deduce the FDR from 22.37% to

1.67%.

To summarize, the major reasons that SOAPfusion can out-

perform other existing tools are as follows: (i) With masking, we

are able to increase the mapping ratio and reduce the number of

multiple mappings of fusion supporting reads; (ii) our RNA-seq

aligner is able to align the fusion spanning reads in an accurate

and efficient way; and (iii) by properly handling multiple map-

pings, we achieve a better balance between retaining more fusion

supporting reads and having too many false alignments.

3.4 Integral evaluation of SOAPfusion

3.4.1 On simulated data Having identified critical roles of dis-

tinct strategies used in SOAPfusion, we next performed

assessments on the whole workflow. As summarized in Figure

2 and Supplementary Table S4, SOAPfusion achieved overall

high sensitivity on all datasets except 1�. For datasets under
high coverage (20, 30, 40 and 50�), sensitivity of SOAPfusion

even approached to 100% (�97%). One reason for missing some

fusions (6 in 20�, 2 in 30�, 2 in 40� and 2 in 50�) is that their
fusion reads contained more than three mismatches in segmental

mappings, whereas SOAPfusion only allows at most one mis-

match for each segment by default. Another reason is that
some fusions (3 in 20�, 3 in 30�, 2 in 40�, and 2 in 50�)

have fusion reads with more than six multiple mapping positions

and thus were skipped in our algorithm. For datasets under ex-
tremely low coverage, SOAPfusion had relatively lower sensitiv-

ity, obviously in the case of 1� coverage (only 10.33%). From

observation, we found that under such low coverage, fewer fu-
sions are covered by fusion supporting reads (Supplementary

Fig. S1), and some of them were furthermore missed after map-

ping if they contained more errors than allowed. Nevertheless,
SOAPfusion recovered 73.67% and 93.33% of total simulated

fusions under the coverage of 5 and 10�, respectively. Such per-

centages are acceptable considering the low sequencing cost.
Thus, SOAPfusion is efficient in detecting fusions under both

high and low coverage. With regard to FDR, SOAPfusion’s

FDR was51.36% under all given coverage, demonstrating the
accuracy of SOAPfusion.

Moreover, according to Figure 2 and Supplementary
Table S4, when sequencing depth increases to 410�, the per-

formance of SOAPfusion is relatively stable in both sensitivity

(�93.33%) and FDR (�1.36%). We further examined the over-
lapping set and the unique set of fusions detected among five

datasets (10, 20, 30, 40 and 50�), and found that higher depth

mainly contributed more fusion supporting reads to fusions in

overlapping set, which make them more reliable (Supplementary
Table S5), and 30� coverage is already sufficient for discovering

299 of total 300 fusions.

Fig. 2. Performance comparison between SOAPfusion and other tools

with simulated datasets. Labels stand for sensitivity (A) and FDR (B) of

each tool with simulated dataset under specific coverage (5� to 50�)

confirming the confidence of its predictions
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3.4.2 On published data For further evaluation, we also ran
SOAPfusion to rediscover validated fusions from original

datasets in previous studies. For melanoma and CML datasets

(Berger et al., 2010), SOAPfusion reported 16 fusions
(Supplementary Tables S6 and S7), for which the average

number of fusion reads and fusion spanning reads were 4.69

and 22.56, respectively; 13 of these fusions have exactly the

same sequences as published (Table 1), while one known fusion
SCAMP2-WDR72 failed to be rediscovered. Two PE reads with

short segments (8bp and 11bp) in two-segmental mapping con-

tained evidence for SCAMP2-WDR72, whereas these segments

were mapped to 4100 positions, and thus discarded by
SOAPfusion. For breast cancer datasets (Edgren et al., 2011),

SOAPfusion reported 31 fusions (Supplementary Tables S7

and S8), for which the average number of fusion reads and

fusion spanning reads were 11.86 and 6.55, respectively;

SOAPfusion was able to rediscover 25 of 27 validated fusions
(Table 2), while missed three fusions owing to the following rea-

sons: (i) there was no fusion spanning read for candidate fusion

LAMP1-MCF2 and thus it was removed and (ii) there was no

fusion supporting read for NFS1-PREX1 fusion and this fusion
was not found by all other tools either (Table 2). Note that

ENSG00000236127 is a new gene annotated in hg19 gene anno-

tation, while we used hg18 in this test; after applying hg19 gene

annotation, CSE1L-ENSG00000236127 was correctly recovered.
In brief, SOAPfusion is able to detect known fusions.

3.4.3 Novel fusion discovery Although we detected some novel
fusion candidates in published datasets, we did not know

whether they are correct or not due to the unavailability of

biological samples for validation. To determine whether

SOAPfusion’s ability in detecting novel fusion genes, we

sequenced a UHRR sample (Novoradovskaya et al., 2001) and
ran SOAPfusion with the reads. In total, SOAPfusion reported

seven fusion candidates (Table 3), all of which were validated

using RT-PCR followed by Sanger sequencing (Supplementary

Table S9). An example is shown in Figure 3, NPEPPS-TBC1D3
fusion was formed through (17; 17) (q21.32; q12) translocation

and its fusion site located at exon 12 (50-end) of gene NPEPPS

and exons 2 (30-end) of gene TBC1D3. There are a total of 9

fusion reads and 11 fusion spanning reads supporting this fusion.

3.4.4 Comparison of SOAPfusion with other fusion discovery

tools To compare SOAPfusion with existing fusion discovery
tools, we ran them on both simulated and real datasets.
FusionSeq (v 1.42.1), deFuse (v 0.4.1), FusionHunter (v 1.2),

ShortFuse (v 0.2), FusionMap (v 0.6.1) and TopHat-Fusion

(v 0.1.0) were used to conduct the comparison. To be consistent,

we used reference genome hg18 for all tools. Additionally, to
benchmark the performance of different tools, in the first place

we set the same threshold for the required number of fusion

supporting reads in preliminary experiments. But it was found

that this caused some tools to perform far worse than expected

according to the statements in their publications. Therefore, we
chose to use default parameters or specified parameters sug-

gested in those publications. All tools are tested under CentOS

v5.5 on a computer of x86_64 architecture with 30Gb memory.
Generally, for simulated datasets (Fig. 2), SOAPfusion has the

highest sensitivity and the lowest FDR under all coverage;

ShortFuse has the second highest sensitivity but high FDR

(�16.13%) under coverage410�; deFuse has the second highest
sensitivity under coverage 510� and the second lowest FDR

(�5.08%) under all coverage; TopHat-Fusion has the third high-

est sensitivity under coverage410� and low FDR (�7.33) under

all coverage; FusionHunter and FusionMap have low sensitiv-

ities (�35.67% and �38.33%, respectively) and high FDRs
(�34.48% and �62.50%, respectively) under all coverage;

FusionSeq always performed worse than other tools under all

coverage. More details of each tool’s performance in simulated

datasets are given in Supplementary Table S4.
In real datasets (Tables 1 and 2), SOAPfusion correctly redis-

covered the highest number of known fusions (13 of 14 in

Table 1. Summary of known fusions detected by each tool in melanoma and CML datasets

Sample 50 Gene Chr. 30 Gene Chr. SOAPfusion Short Fuse Fusion Hunter DeFuse Tophat-Fusion Fusion Map Fusion Seq

501 Mel CCT3 1 C1orf61 1 ˇ ˇ Y ˇ ˇ Y –

501 Mel GNA12 7 SHANK2 11 ˇ ˇ Y – – – –

501 Mel SLC12A7 5 C11orf67 11 ˇ ˇ Y Y ˇ – –

501 Mel PARP1 1 MIXL1 1 ˇ – ˇ – ˇ – –

M000216 KCTD2 17 ARHGEF12 11 ˇ ˇ ˇ ˇ – ˇ –

M000921 TMEM8B 9 TLN1 9 ˇ – Y Y – – –

M000921 RECK 9 ALX3 1 ˇ ˇ Y ˇ ˇ – –

M010403 SCAMP2 15 WDR72 15 – – Y – – – –

M980409 GCN1L1 12 PLA2G1B 12 ˇ – Y – – – –

M990802 ANKHD1 5 C5orf32 5 ˇ ˇ ˇ ˇ ˇ – ˇ
M990802 RB1 13 ITM2B 13 ˇ ˇ ˇ Y ˇ – –

K562 BCR 22 ABL1 9 ˇ ˇ Y ˇ – ˇ ˇ
K562 NUP214 9 XKR3 22 ˇ ˇ Y ˇ – – –

K562 BAT3 6 SLC44A4 6 ˇ – Y ˇ – – –

‘ˇ’ indicates that fusion site, gene pair and their orientations are all correct.

‘Y’ indicates that gene pair is correct, but the gene orientations are reversed.

‘–’ indicates that the tool can’t detect that fusion.
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melanoma and CML samples and 24 of 27 in breast cancer sam-

ples). FusionHunter can detect all 14 known fusions in melan-
oma and CML samples, but 10 of them have reversed gene pair

orientations; also, it only found 9 fusions in breast cancer sam-

ples, with reversed orientations in most of these fusions.

ShortFuse, deFuse, TopHat-Fusion and FusionMap all redis-

covered fewer known fusions than SOAPfusion with the redis-
covery ratios of at most 10 of 14 in melanoma and CML samples

and at most 16 of 27 in breast cancer samples. Also, deFuse and

FusionMap reported reversed gene pair orientations for some

Table 2. Summary of known fusions detected by each tool in breast cancer datasets

Sample 50 gene Chromosome 30 gene Chromosome SOAP

fusion

Short

Fuse

Fusion

Hunter

deFuse TopHat-

Fusion

Fusion

Map

Fusion

Seq

BT-474 ACACA 17 STAC2 17 ˇ ˇ – ˇ ˇ ˇ –

BT-474 RPS6KB1 17 SNF8 17 ˇ ˇ – Y ˇ – –

BT-474 VAPB 20 IKZF3 17 ˇ ˇ – Y ˇ – –

BT-474 ZMYND8 20 CEP250 20 ˇ ˇ – Y ˇ – –

BT-474 RAB22A 20 MYO9B 19 ˇ ˇ – Y – – –

BT-474 SKA2 17 MYO19 17 ˇ ˇ – – ˇ – ˇ
BT-474 DIDO1 20 KIAA0406 20 ˇ – – – – – ˇ
BT-474 STARD3 17 DOK5 20 ˇ – – – – – –

BT-474 LAMP1 13 MCF2L 13 – – – Y – – –

BT-474 GLB1 3 CMTM7 3 ˇ – Y – – – –

BT-474 CPNE1 20 PI3 20 ˇ – – – – – –

SK-BR-3 TATDN1 8 GSDMB 17 ˇ ˇ Y Y ˇ Y –

SK-BR-3 CSE1L 20 ENSG00000236127 20 ˇa – – – – – –

SK-BR-3 RARA 17 PKIA 8 ˇ – ˇ ˇ ˇ ˇ –

SK-BR-3 ANKHD1 5 PCDH1 5 ˇ ˇ ˇ ˇ – ˇ ˇ
SK-BR-3 CCDC85C 14 SETD3 14 ˇ ˇ – – – – –

SK-BR-3 SUMF1 3 LRRFIP2 3 ˇ ˇ Y Y – – –

SK-BR-3 WDR67 8 ZNF704 8 ˇ – – – – – –

SK-BR-3 CYTH1 17 EIF3H 8 ˇ ˇ Y Y – – –

SK-BR-3 DHX35 20 ITCH 20 ˇ – – – – – –

SK-BR-3 NFS1 20 PREX1 20 – – – – – – –

KPL-4 BSG 19 NFIX 19 ˇ ˇ – Y ˇ – –

KPL-4 PPP1R12A 12 SEPT10 2 ˇ ˇ – – – – –

KPL-4 NOTCH1 9 NUP214 9 ˇ ˇ Y Y – – –

MCF-7 BCAS4 20 BCAS3 17 ˇ ˇ ˇ – ˇ – ˇ
MCF-7 ARFGEF2 20 SULF2 20 ˇ – Y – ˇ Y –

MCF-7 RP56KB1 17 TMEM49 17 ˇ ˇ – – ˇ – –

‘ˇ’ indicates that fusion site, gene pair and their orientations are all correct.

‘Y’ indicates that gene pair is correct, but the gene orientations are reversed.

‘–’ indicates that the tool cannot detect that fusion.
aThis fusion was recovered with hg19 gene annotation.

Table 3. Gene fusions reported with SOAPfusion in UHRR (catalog number 740 000)

50Gene 30Gene 50 chr 30 chr Fusion

Read

Support

Read

Validation Literature Short

Fuse

Fusion

Hunter

deFuse Tophat-

Fusion

Fusion

Map

Fusion

Seq

BAT3 SLC44A4 6 6 4 2 ˇ R1 – – – – – –

GAS6 RASA3 13 13 5 3 ˇ R2 – – ˇ – ˇ –

RPS6KB1 TMEM49 17 17 5 2 ˇ R2 – – ˇ – Y –

BCAS4 BCAS3 20 17 6 14 ˇ R2 ˇ ˇ Y ˇ Y –

BCR ABL1 22 9 4 2 ˇ R2 ˇ – ˇ ˇ – –

ARFGEF2 SULF2 20 20 6 5 ˇ R2 – ˇ Y – Y –

NPEPPS TBC1D3 17 17 9 11 ˇ R3 – – – – – ˇ

‘ˇ’ indicates that fusion site, gene pair and their orientations are all correct.

‘Y’ indicates that gene pair is correct, but the gene orientations are reversed.

‘–’ indicates that the tool can’t detect that fusion.

‘R1’ refers to (Berger et al., 2010). ‘R2’ refers to (Maher et al., 2009b). ‘R3’ refers to (Sboner et al., 2010).

2976

J.Wu et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/29/23/2971/246788 by guest on 19 April 2024

out 
out 
out 


fusions. FusionSeq performed the worst, as it only detected 2 of
14 in melanoma and CML samples and 4 of 27 in breast cancer

samples. Moreover, for UHRR datasets, SOAPfusion detected

seven true fusions, ShortFuse, FusionHunter and TopHat-

Fusion detected only two known fusions; deFuse and
FusionMap still predicted fusions with reversed gene pair orien-

tations; FusionSeq detected only one. Details on fusion detection

results are listed in Supplementary Table S7.
To conclude, in both real datasets and simulated datasets, the

results show that SOAPfusion can provide reliable predictions in
fusion discovery under different sequencing coverage.

4 CONCLUSIONS

With adoption of tailor-made aligner for PE RNA-Seq reads,

SOAPfusion enables accurate and efficient discovery of fusion
transcripts at single-base resolution. SOAPfusion has the highest

sensitivity and lowest FDR among existing tools, and it can per-

form very well even when the coverage is as low as 10�. From

real datasets, we also demonstrate its high rediscovery rate and
ability in discovering novel fusions. SOAPfusion successfully

handles multiple mappings through employment of masking ref-

erence genome before alignment and prudent selection of cred-
ible multiple alignments in fusion discovery. It was demonstrated

that in doing so, on one hand, masking increases the reliability of

predictions by retaining much fewer multiple mappings, and
retrieves those hard-to-find fusions with fusion reads craggily

mapped (42 segments); on the other hand, with adoption of

portion multiple mappings selected in a strict and meticulous

way, SOAPfusion has prominent improvement in sensitivity at

the expense of just a slight increase in FDR.
SOAPfusion detected and validated a NPEPPS–TBC1D3

fusion, from real dataset UHRR (Fig. 3). We found that both

parental genes of NPEPPS–TBC1D3 fusion took part in other

fusion events, such as OSBPL9–NPEPPS (Kim et al., 2010),

TBC1D3–USP32 (Bailey et al., 2006; Paulding et al., 2003) and

NPEPPS–USP32 (Hampton et al., 2009). In fact, NPEPPS gene

is an inhibitor of tau-induced neurodegeneration (Karsten et al.,

2006). Loss of function mutation on NPEPPS gene will exacer-

bate neurodegeneration (Sengupta et al., 2006). TBC1D3 gene

itself is derived from a segmental duplication (Paulding et al.,

2003), with up to eight paralogs resulting in six variant TBC1D3

proteins (Hodzic et al., 2006). In vitro studies and analyses of

human tumor tissues demonstrated that TBC1D3 expressed

widely in tissues (Paulding et al., 2003) and is an oncogene

with similar cancerogenic mechanisms of TRE2, encoded by

the chimeric fusion of TBC1D3 and USP32 (Hodzic et al.,

2006). Accordingly, we infer that NPEPPS–TBC1D3 fusion is

a disruptor in brain, which may be of immense importance,

and calls for further therapeutic studies.

Of course, SOAPfusion is not a panacea for gene fusion

detection. In real situation, besides those described in this

study, the mechanism of fusion can be more complicated and

may require both biological and computational investigation.

Although SOAPfusion now provides an efficient way to ab

initio dissect gene fusions, facilitating the knowledge of genomic

alternation and targets for clinical treatment, fusion discovery is

Fig. 3. Illustration of NPEPPS-TBC1D3 fusion. (A) genomic locations of two parental genes with 23 exons in NPEPPS and 14 exons in TBC1D3;

(B) demonstrations of fusion site and the fusion supporting reads including 9 fusion reads and 11 fusion spanning reads. (C) RT-PCR and Sanger

sequencing validate this fusion
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not a completely solved problem and there is still much space for

further improvement and meaningful questions to explore.
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