
Vol. 30 no. 19 2014, pages 2717–2722
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu395

Genome analysis Advance Access publication June 19, 2014

Omega: an Overlap-graph de novo Assembler

for Metagenomics
Bahlul Haider1, Tae-Hyuk Ahn1, Brian Bushnell2, Juanjuan Chai1, Alex Copeland2 and
Chongle Pan1,*
1Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 and 2U.S.
Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598 USA

Associate Editor: John Hancock

ABSTRACT

Motivation: Metagenomic sequencing allows reconstruction of micro-

bial genomes directly from environmental samples. Omega (overlap-

graph metagenome assembler) was developed for assembling and

scaffolding Illumina sequencing data of microbial communities.

Results: Omega found overlaps between reads using a prefix/suffix

hash table. The overlap graph of reads was simplified by removing

transitive edges and trimming short branches. Unitigs were generated

based on minimum cost flow analysis of the overlap graph and then

merged to contigs and scaffolds using mate-pair information. In

comparison with three de Bruijn graph assemblers (SOAPdenovo,

IDBA-UD and MetaVelvet), Omega provided comparable overall per-

formance on a HiSeq 100-bp dataset and superior performance on a

MiSeq 300-bp dataset. In comparison with Celera on the MiSeq data-

set, Omega provided more continuous assemblies overall using a

fraction of the computing time of existing overlap-layout-consensus

assemblers. This indicates Omega can more efficiently assemble

longer Illumina reads, and at deeper coverage, for metagenomic

datasets.

Availability and implementation: Implemented in C++ with source

code and binaries freely available at http://omega.omicsbio.org.

Contact: panc@ornl.gov

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on January 26, 2014; revised on June 12, 2014; accepted on

June 13, 2014

1 INTRODUCTION

Metagenome assemblers attempt to reconstruct genomes of

microorganisms in a community from its metagenomic sequen-

cing data. In recent years, many isolate genome assemblers have

been developed for Illumina sequencing data using de Bruijn

graphs [e.g. ABySS (Simpson et al., 2009), IDBA (Peng et al.,

2010), ALLPATH (Butler et al., 2008), Velvet (Zerbino and

Birney, 2008) and SOAPdenovo (Li et al., 2010)] and overlap

graphs [e.g. SGA (Simpson and Durbin, 2012) and PEGASUS

(Haider, 2012)]. However, they cannot be directly applied to

metagenome assembly for the following reasons. First, isolate

genome assemblers typically assume a uniform coverage depth

across a genome. This assumption is used for identifying repeat

regions in a genome and estimating the size of a genome. In

metagenome assembly, however, genomes may have vastly dif-

ferent coverage depths depending on their relative abundances in

a community. Second, isolate genome assembly only needs to

resolve repeat regions within a single genome, while metagenome

assembly also has to handle repeat regions between multiple gen-

omes. Third, sequencing errors significantly convolute the assem-

bly by introducing false overlaps between reads and disrupting

true overlaps. Error correction can be performed for isolate

genome assembly using consensus sequences. However, it is dif-

ficult to separate sequencing errors from single nucleotide poly-

morphisms (SNPs) in metagenome assembly. To address these

challenges, some of the de Bruijn graph assemblers have been

upgraded for Illumina metagenomic sequencing data, including

MetaVelvet (Namiki et al., 2012) and IDBA-UD (Peng et al.,

2012).
In this study, the Omega (overlap-graph metagenome assem-

bler) algorithm was developed specifically for metagenome as-

sembly. Omega followed the general overlap graph (string graph)

approach described in BOA (Myers, 2005) and PEGASUS

(Haider, 2012). Here, the overlap graph approach was adapted

to metagenome assembly by addressing its differences from iso-

late genome assembly described above. The assembly perform-

ance of Omega was compared with SOAPdenovo, IDBA-UD

and MetaVelvet on Illumina HiSeq 100-bp data and MiSeq

300-bp data. SOAPdenovo was selected because it was used for

metagenome assembly in the human microbiome project (Pop,

2011) and many Joint Genome Institute studies. IDBA-UD

and MetaVelvet were designed specifically for metagenome

assembly. A widely used overlap-layout-consensus assembler,

Celera (Myers et al., 2000), was also compared using the

MiSeq 300-bp data.

2 SYSTEM AND METHODS

The performance of assemblers on Illumina HiSeq 100-bp data

was benchmarked using a real-world sequencing dataset of gen-

omic DNA mixture of 64 diverse bacterial and archaeal micro-

organisms (Shakya et al., 2013). The dataset is available at

National Center for Biotechnology Information (NCBI)

Sequence Read Archive (SRA) (accession number:

SRX200676). The 64 microorganisms are listed in

Supplementary Table S1. Fastq sequences were extracted from

the SRA format raw dataset using NCBI SRA Toolkit (version*To whom correspondence should be addressed.

Published by Oxford University Press 2014. This work is written by US Government employees and is in the public domain in the US. 2717

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/19/2717/2422265 by guest on 19 April 2024

http://omega.omicsbio.org
mailto:panc@ornl.gov
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu395/-/DC1
,
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu395/-/DC1

2.3.4). This dataset contains 108.7 million paired-end and
0.4 million single-end 100-bp reads. Sickle (https://github.com/
najoshi/sickle) was used to trim reads using a 20-Phred quality

threshold, to filter out reads shorter than 60 bp and to discard
reads containing many Ns. BBNorm (https://sourceforge.net/
projects/bbmap/) was then used for error correction with default

settings.
The HiSeq 100-bp dataset was assembled using SOAPdenovo,

IDBA-UD, MetaVelvet and Omega. The k-mer length or min-

imum overlap length was optimized for each assembler based on
the N50 size: SOAPdenovo (best k-mer length=51 of 31, 41, 51
and 61), IDBA-UD (k-mer length range=30–60 with a step size

of 10), MetaVelvet (best k-mer length=51 of 31, 41, 51 and 61)
and Omega (best minimum overlap length=50 of 30, 40, 50, 60
and 70). SOAPdenovo was run in a metagenome configuration

as described (Pop, 2011). IDBA-UD, MetaVelvet and Omega
were run with default parameters.
The performance of assemblers on Illumina MiSeq 300-bp

data was tested using a simulated dataset of a nine-genome syn-
thetic community. Ten million paired-end 300-bp reads with an
average insert size of 900bp were simulated based on an empir-

ical error model using MetaSim (Richter et al., 2008).
Supplementary Table S2 lists the nine genomes and their relative
abundances ranging from 3 to 20%. The simulated reads were

preprocessed using Sickle and error-corrected using BBNorm as
described above.
The maximum k-mer length of MetaVelvet was increased to

171 by changing a constant parameter in its source code. We
were unable to increase the maximum k-mer lengths of
SOAPdenovo and IDBA-UD, which were hard-coded at 127

and 124, respectively. The k-mer length or minimum overlap
length was optimized for each assembler: SOAPdenovo (best
k-mer length=121 of 41, 61, 81, 101, 121 and 127), IDBA-

UD (k-mer length range=40–120 with a step size of 20),
MetaVelvet (best k-mer length=151 of 121, 131, 141, 151 and
161) and Omega (best minimum overlap length=150 of 120,

130, 140, 150 and 160). The assemblers were run as described
above. Celera was also tested for the MiSeq 300-bp dataset using
a default setting and a metagenomics setting (http://sourceforge.

net/apps/mediawiki/wgs-assembler/index.php?title=RunCA_
Examples_-_454_%2B_Sanger_Metagenomic). The Celera as-
sembly using the default setting was substantially better than that

using the metagenomics setting and, therefore, was used for per-
formance comparison.
To measure assembly accuracy, contigs and scaffolds4200bp

produced by each assembler were aligned with reference genomes
using Burrow–Wheeler Aligner (BWA) (Li and Durbin, 2010).
The alignments were used to generate a list of correct contigs

containing55% of substitutions and indels. The scaffolding of
two adjacent contigs was considered to be correct if their align-
ments to the same reference genome were in correct orientation

and separated apart by less than the mean plus one standard
deviation (SD) of the mate inner distances of the paired-end
sequencing data. The performance of assemblers was compared

by N80, N50, N20, largest contig length and genome sequence
coverage for each reference genome. N80, N50 and N20 are the
minimum size thresholds for length-sorted contigs that covers 80,

50 and 20% of the total length of all contigs, respectively.
Genome sequence coverage is the percentage of a reference

genome sequence covered by the assembled contigs. N80, N50,
N20 and largest contig length measure the contiguity of the cor-

rect contigs at different levels. Genome sequence coverage meas-

ures the completeness of the correct contigs. Different types of
assembly errors were identified based on the BWA alignment be-

tween the contigs and the reference genomes, including the

number of base pairs of insertion, deletion and substitution
and the number of chimeric contigs. Chimeric contigs were iden-

tified by their fragmented alignments to multiple non-contiguous

regions of a reference genome or multiple reference genomes.

3 ALGORITHM

Omega was developed in C++ using object-oriented program-

ming. Omega can accept multiple input datasets with different in-

sert sizes and variable read lengths in fasta or fastq format.
The assembly and scaffolding were performed in eight steps

(Fig. 1):

(1) Hash table construction. All unique reads are loaded to the

memory and indexed in a hash table. Let K be the user-

defined minimum overlap length. The keys of the hash
table are DNA sequence substrings of length K – 1. Each

read is inserted to the hash table with four keys: prefix and

suffix of length K – 1 of both forward sequence and reverse
complement sequence of the read. A value in the hash

table is an array of pointers to the reads associated with

the corresponding key. The hash table is initialized to be
eight times of the total read number. Hash collision is

resolved using linear probing. The hash table allows a

nearly constant time search of all reads by their prefixes
or suffixes. A read that is a substring of another read is

called a contained read. To identify all contained reads of

read r, every proper substring s of length K in read r is
searched in the hash table. This produces a short list of

reads that contains s as a prefix or suffix, which is then

compared with read r to identify the contained reads of

Fig. 1. Overview of Omega. The prefix and suffix (red sections) of every

read are indexed in a hash table. As reads are aligned using the hash table,

transitive edges (green arrows) are removed. In the unitig graph, edges

(blue arrows) represent unambiguous series of overlapping reads, vertices

(red dots) represent branching points and flows (green numbers) estimate

the copy numbers of strings in the edges. The mate-pair linkages (orange

dotted lines) are used to build contigs and then scaffolds containing gaps

(blue dotted arrows). The repeat region between two different genomes

(the edge with 2 units of flow) may be resolved using mate-pair supports

(as shown here) or coverage depth information

2718

B.Haider et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/19/2717/2422265 by guest on 19 April 2024

https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
,
https://sourceforge.net/projects/bbmap/
https://sourceforge.net/projects/bbmap/
,
out
 ∼
,
out
,
,
out
9
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu395/-/DC1
%
,
out
 ∼
,
out
,
,
out
http://sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title=RunCA_Examples_-_454_%2B_Sanger_Metagenomic
http://sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title=RunCA_Examples_-_454_%2B_Sanger_Metagenomic
http://sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title=RunCA_Examples_-_454_%2B_Sanger_Metagenomic
http://sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title=RunCA_Examples_-_454_%2B_Sanger_Metagenomic
http://sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title=RunCA_Examples_-_454_%2B_Sanger_Metagenomic
longer than
-
less than
,
,
%
%
,
,
-
-
are

read r. The contained reads are used for coverage depth

calculation and mate-pair linkage analysis below.

(2) Overlap graph construction. Each read is represented by a

vertex in a bi-directed overlap graph. An edge is inserted

between two vertices if the two corresponding reads have

an exact-match overlap of at least K bp. The bi-directed

edges represent the four different orientations in which two
reads can overlap: suffix with prefix (�!––!�), suffix of

the reverse complement with prefix (� ––!�), suffix

with prefix of the reverse complement (�!–– �) and

suffix of the reverse complement with prefix of the reverse

complement (� –– �). To efficiently find all reads over-

lapping with a read r, every proper substring s of length

K – 1 in read r is searched in the hash table, and all

retrieved reads are compared with the read r. If a read

has the exact match with read r for their remaining over-

lap, an edge is inserted between the two reads’ correspond-

ing vertices. After inserting all edges of read r, all transitive

edges incident on read r are removed using a linear algo-

rithm as described (Haider, 2012; Myers, 2005). Briefly,

suppose that r is connected with two other reads, a

and b. If there is also an edge between a and b to form a

triangle with r and the sequence represented by the edge

(r, b) is the same as the sequence represented by the path

through (r, a) and (a, b), then (r, b) is identified as a tran-

sitive edge and is deleted. Removing all transitive edges

significantly simplifies the overlap graph without losing

any information.

(3) Composite edge contraction. While the bi-directed edges

can be traversed in both directions, the vertices can be

traversed only by entering a vertex in an in-arrow and

exiting in an out-arrow (–!�!–) or by entering a

vertex in an out-arrow and exiting in an in-arrow

(– � –). A valid path in the overlap graph represents

an assembled DNA sequence containing proper overlap-

ping reads with appropriate orientation and sufficient

overlap length. After removing transitive edges, simple

vertices have exactly one in-arrow and one out-arrow, rep-

resenting only one possible way to traverse such simple

vertices. A read in a simple vertex uniquely overlaps with

one other read in either direction. To simplify the overlap

graph, a simple vertex, r, along with its in-arrow edge (u, r)

and out-arrow edge (r,w), are replaced by a composite

edge (u,w) in the overlap graph. The composite edge

(u,w) contains the read r and all ordered reads in edge

(u, r) and (r,w). The edge (u, w) has the same arrow types

to u and w as the original edges, (u, r) and (r,w), respect-

ively. Simple vertices are merged into composite edges it-

eratively, until there is no simple vertex remaining in the

overlap graph.

(4) Sequence variation removal. Sequence variations originate

from uncorrected sequencing errors and natural se-

quence polymorphisms in microbial communities.

Many reads with sequence variations do not overlap

with any other reads and are represented as isolated

vertices in the overlap graph. Reads with the same se-

quence variation may overlap with one another, which

creates small branches and bubbles in the overlap graph.

Small branches are short dead-end paths that contain

510 reads. Bubbles are two edges that connect the

same two vertices with the same arrow types. The over-

lap graph is systematically traversed to trim off small
branches and remove the edges containing less reads in

bubbles. This may create new simple vertices that are

then removed by repeating the composite edge

contraction.

(5) Minimum cost flow analysis. Each edge in the overlap

graph is associated with a string copy number, represent-

ing how many times the edge’s sequence is present in the

metagenome. String copy numbers of edges are estimated

based on the topology of the overlap graph using min-

imum cost flow analysis as described (Haider, 2012;

Myers, 2005). Composite edges with sequences41000 bp

are set to have a minimum flow of 1, requiring such edges’

sequences to be present in the metagenome at least once.

The minimum flow for short edges (51000bp) is set to 0.

The CS2 algorithm (Goldberg, 1997) is used to opti-

mize the amount of flow passing through every edge

such that the total cost of the flow network in the overlap

graph is minimized. Edges with more than one unit of flow

correspond to repeat regions shared among multiple gen-

omes or multiple places in a single genome. Edges with

zero flow represent short sequences that are not needed

to connect long sequences together and are ignored. Tree

structures in the overlap graph are simplified using the

flows. A tree comprises two edges, (p, t) and (q, t), merging

to a third edge (t, r), and the flow on (t, r) is equal to the

total flow on (p, t) and (q, t). Such a tree is reduced to two

new edges (p, r) and (q, r) that both contain the reads in

vertex t and edge (t, r).

(6) Merging of adjacent edges with mate-pair support. The

insert size of each paired-end dataset is estimated separ-

ately to accommodate a mixture of datasets with differ-

ent insert sizes. The overlap graph at this stage has long

composite edges that contain both reads of many mate-

pairs. The insert sizes of such pairs are determined from

their relative locations on the long edges and are pooled

to estimate the mean � and SD � of all mate-pairs’

insert sizes in each dataset. Mate-pairs that span mul-

tiple edges are used to merge adjacent edges in the over-

lap graph. For each of such mate-pairs, all possible

paths of length within range (� – 3�, �+3�) are enum-

erated. If all paths of a mate-pair travel through two

adjacent edges, (m, r) and (r, n), the connection between

these two edges is considered to be supported by this

mate-pair. After processing all mate-pairs, if the connec-

tion between (m, r) and (r, n) is supported by more than

three mate-pairs, these two edges are merged to one edge

(m,n) containing a duplicated r.

(7) Scaffolding of long edges with mate-pair support.

Scaffolding uses mate-pairs that have no valid path be-

tween their paired reads in the overlap graph because of

a gap in genome coverage. Scaffolding is attempted for

every pair of non-adjacent edges41000bp. A mate-pair

is considered to support the scaffolding of two edges if its

two reads are uniquely mapped to the two edges at an

2719

Omega

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/19/2717/2422265 by guest on 19 April 2024

-
,
less than
-
longer than
less than
-
-
standard deviation
3
longer than

appropriate distance apart. After processing all mate-

pairs, the scaffolds of long edges with support of more

than three mate-pairs are accepted.

(8) Resolving ambiguity by coverage depth. Many unresolved

vertices in the overlap graph have two incoming edges and

two outgoing edges, which often originate from a short

repeat region between two different genomes. The two

genomes may have different coverage depths to separate

their edges. The coverage depth is calculated for every

position along an edge to estimate the mean � and SD �

of coverage depth along the edge. Only unique reads in an

edge are considered for coverage depth calculation. A pair

of adjacent edges on an unresolved vertex are merged if

j �1 – �2 j5�1+ �2.

Finally, Omega reports contigs and scaffolds based on the

edges of the overlap graph.

4 RESULTS AND DISCUSSION

After trimming and filtering, the HiSeq 100-bp dataset contained

101 million paired-end reads. To find the error rate, reads were

aligned to the concatenated 64 reference genomes using Bowtie2

(Langmead and Salzberg, 2012) allowing up to three mismatches

per read. We defined sequencing errors as mismatches supported

by less than three reads to exclude consistent substitutions attrib-

utable to SNPs. Before error correction, 93.8 million reads were

aligned to at least one reference genome, and an average of 0.12

sequencing error per read was found. After error correction with

BBNorm, 97.5 million reads were aligned with 0.02 sequencing

error per read.
The error-corrected HiSeq 100-bp dataset was assembled using

SOAPdenovo, IDBA-UD, MetaVelvet and Omega. The CPU

usage and peak memory usage were, respectively, 13 h and 29

GB for SOAPdenovo, 49 h and 112 GB for IDBA-UD, 8h and

21 GB for MetaVelvet and 15h and 105 GB for Omega.

Fig. 2. Scaffold assembly statistics for individual genomes from the HiSeq 100-bp dataset. The x-axis lists the 64 genomes in alphabetic order, and the

indices and organism names of the genomes are shown in the legend. The assemblies were provided by SOAPdenovo (blue squares), IDBA-UD (green

triangles), MetaVelvet (black diamonds) and Omega (solid red circles). Outliers below the minimum threshold of a performance statistics are not shown

2720

B.Haider et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/19/2717/2422265 by guest on 19 April 2024

3
standard deviation
3
3
ours
ours
ours
,
ours

SOAPdenovo, MetaVelvet and Omega were efficient in CPU

usage, but SOAPdenovo and MetaVelvet used much less

memory. Omega spent 1.5h building the hash table from

reads, 2.7 h identifying contained reads, 7.1 h constructing the

overlap graph and 3.5 h simplifying the overlap graph. The

peak memory usage of Omega was at the end of overlap graph

construction when Omega stored all reads (�50 GB), the hash

table (�5 GB) and the completed overlap graph (�50 GB) in

memory.
The assembly results were verified by aligning contigs and

scaffolds with the reference genomes. The four assemblers all

produced some misassembled contigs. The common causes for

misassemblies included homologous repeat regions among the 64

genomes, undersampled regions of the genomes and remaining

sequencing errors. For each reference genome, we generated

standard assembly statistics of correct scaffolds, including N80,

N50, N20, largest contig length and genome sequence coverage

(Fig. 2 and Supplementary Table S1). On average across all gen-

omes, more contiguous assemblies were provided by IDBA_UD,

Omega, MetaVelvet and SOAPdenovo in this order (Table 1).

However, the four assemblers performed similarly for many gen-

omes, and IDBA-UD and Omega provided clearly improved

assembly results for different subsets of genomes (Fig. 2). The

assembly of Fusobacterium nucleatum (genome 22 in Fig. 2) was

poor because of its low abundance in the mock community.
The four assemblers, as well as Celera, were then compared

using a simulated MiSeq 300-bp dataset. The aggregate raw and

verified assembly statistics of contigs and scaffolds are shown in

Table 2. The assembly results for individual genomes are listed in

Supplementary Table S2. Celera used much more CPU hours

than the other four assemblers (420 times more than Omega;

Table 3). The assembly from Omega was more contiguous

than the assemblies from the three de Bruijn graph assemblers

and Celera. The assemblers had different error profiles (Table 3).

For example, Omega generated more chimeric contigs and sub-

stitution errors than Celera, but less insertion and deletion errors.

MetaVelvet had less insertion, deletion and substitution errors

than Omega and Celera, but more chimeric contigs. Generally, it

was difficult to generate more contiguous assembly while mini-

mizing all types of errors.

Here, the performance of assemblers was benchmarked using a

real-world HiSeq 100-bp dataset and a simulated MiSeq 300-bp

dataset, both of which had reference genomes for result verifica-

tion. However, computationally simulated sequencing data

cannot reproduce many complications of Illumina sequencing.

Even real-world sequencing data of artificially mixed genomic

DNAs cannot replicate the true complexity of natural microbial

Table 2. Comparison of overall assembly statistics on the MiSeq 300-bp dataset*

Assembly Statistics Assembler Total

contigs

N50

contigs

N80

(103bp)

N50

(103bp)

N20

(103bp)

Largest

contig (103bp)

Sum

(106bp)

Coverage

(%)

Contigs Raw SOAPdenovo 7815 361 8 20 51 358 29 –

IDBA_UD 1683 72 38 102 217 965 29 –

MetaVelvet 1097 52 48 136 340 1389 29 –

Celera 435 48 53 151 483 1406 29 –

Omega 537 40 64 159 490 2572 29 –

Verified SOAPdenovo 7817 361 8 20 51 358 29 97.95

IDBA_UD 1775 79 36 95 199 547 29 97.73

MetaVelvet 1104 54 46 135 313 1389 29 98.06

Celera 448 48 52 151 483 1406 29 99.16

Omega 578 43 55 158 486 2091 29 99.05

Scaffolds Raw SOAPdenovo 5586 50 45 138 379 1404 30 –

IDBA_UD 1570 63 40 116 302 965 29 –

MetaVelvet 996 44 51 156 489 1389 29 –

Celera 429 48 53 151 483 1406 29 –

Omega 434 36 67 188 556 2572 29 –

Verified SOAPdenovo 6926 160 11 38 149 593 29 95.11

IDBA_UD 1733 75 37 100 213 547 29 97.84

MetaVelvet 1065 50 48 138 479 1389 29 98.03

Celera 450 48 52 151 483 1406 29 99.16

Omega 562 42 55 160 486 2091 29 99.02

*Best assembly statistics in each category is highlighted in bold.

Table 1. Average genome assembly statistics across all genomes in the

HiSeq 100-bp dataset

Assembler N80

(103bp)

N50

(103bp)

N20

(103bp)

Largest

Contig

(103bp)

Coverage

(%)

SOAPdenovo 11 33 73 144 92.81

MetaVelvet 17 46 92 147 82.10

Omega 25 61 111 174 94.50

IDBA_UD 35 70 136 203 95.65

2721

Omega

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/19/2717/2422265 by guest on 19 April 2024

ours
ours
ours
,
ours
,
-
,
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu395/-/DC1
.
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu395/-/DC1
,

communities with high strain-level variations and large abun-
dance differences. As there was no complex natural community

composed of microorganisms with known genome sequences, it
was still a challenge to accurately benchmark the real-world per-
formance of metagenome assemblers.
The overall performance of Omega was comparable with

SOAPdenovo, IDBA_UD and MetaVelvet on the HiSeq 100-
bp dataset and superior on the 300-bp MiSeq dataset, although
each assembler provided the best assembly for some individual

genomes in the two synthetic communities. Our benchmarking
indicated the unique advantages of the five assemblers: Omega
was generally more suitable for datasets with longer reads and

higher coverage depth using larger overlaps; SOAPdenovo and
MetaVelvet were efficient in memory and CPU usage, which is
critical for large datasets; IDBA-UD automatically iterated

through a k-mer range and provided better assembly for more
genomes in the HiSeq 100-bp dataset; and Celera performed well
for long reads but was computationally very expensive for
Illumina datasets. It is important for users to select an assembler

based on test assembly results from their actual metagenome
datasets. It may also be advantageous to use a dedicated meta-
genome scaffolding algorithm, such as Bambus 2 (Koren et al.,

2011), or to combine multiple assembly tools using the
metAMOS pipeline (Treangen et al., 2013).
In conclusion, our results indicated the effectiveness of the

overlap graph approach for metagenome assembly. We believe
the overlap graph approach will become more useful for future
Illumina technologies with longer reads and higher throughput.

Funding: This work was supported by Laboratory Directed
Research and Development (LDRD) funding from Oak Ridge
National Laboratory and the Emerging Technologies
Opportunity Program (ETOP) from DOE Joint Genome

Institute. The contribution of J.C. was sponsored by the Office
of Advanced Scientific Computing Research. Oak Ridge
National Laboratory and DOE Joint Genome Institute are sup-

ported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725 and DE-AC02-
05CH11231, respectively.

Conflict of interest: none declared.

REFERENCES

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shotgun

microreads. Genome Res., 18, 810–820.

Goldberg,A.V. (1997) An efficient implementation of a scaling minimum-cost flow

algorithm. J. Algorithms, 22, 1–29.

Haider,B. (2012) A New Algorithm for De Novo Genome Assembly. Department

Computer Science, The University of Western Ontario.

Koren,S. et al. (2011) Bambus 2: scaffolding metagenomes. Bioinformatics, 27,

2964–2971.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with Bowtie 2.

Nat. Methods, 9, 357–359.

Li,H. and Durbin,R. (2010) Fast and accurate long-read alignment with Burrows-

Wheeler transform. Bioinformatics, 26, 589–595.

Li,R. et al. (2010) De novo assembly of human genomes with massively parallel

short read sequencing. Genome Res, 20, 265–272.

Myers,E.W. et al. (2000) A whole-genome assembly of Drosophila. Science, 287,

2196–2204.

Myers,E.W. (2005) The fragment assembly string graph. Bioinformatics, 21

(Suppl. 2), ii79–ii85.

Namiki,T. et al. (2012) MetaVelvet: an extension of Velvet assembler to de

novo metagenome assembly from short sequence reads. Nucleic Acids Res., 40,

e155.

Peng,Y. et al. (2010) IDBA—A Practical Iterative de Bruijn Graph De Novo

Assembler. In: Berger,B. (ed.) Research in Computational Molecular Biology.

Berlin Heidelberg, Springer, pp. 426–440.

Peng,Y. et al. (2012) IDBA-UD: a de novo assembler for single-cell and meta-

genomic sequencing data with highly uneven depth. Bioinformatics, 28,

1420–1428.

Pop,M. (2011) HMP Whole Metagenome Assembly.

Richter,D.C. et al. (2008) MetaSim: a sequencing simulator for genomics and meta-

genomics. PloS One, 3, e3373.

Shakya,M. et al. (2013) Comparative metagenomic and rRNA microbial diversity

characterization using archaeal and bacterial synthetic communities. Environ.

Microbiol., 15, 1882–1899.

Simpson,J.T. and Durbin,R. (2012) Efficient de novo assembly of large genomes

using compressed data structures. Genome Res., 22, 549–556.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence data.

Genome Res., 19, 1117–1123.

Treangen,T.J. et al. (2013) MetAMOS: a modular and open source metagenomic

assembly and analysis pipeline. Genome Biol., 14, R2.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read assem-

bly using de Bruijn graphs. Genome Res., 18, 821–829.

Table 3. Comparison of error profiles and computational costs of the MiSeq 300-bp dataset assembly

Assembler Verified N50

(103bp)

Verified N50

/ Raw N50

Small

Insertion

5 5bp (bp)

Large

Insertion

� 5bp (bp)

Small

Deletion

5 5bp (bp)

Large

Deletion

� 5bp (bp)

Substitution

(bp)

Chimeric

Contigs

CPU

(hours)

Memory

(GB)

SOAPdenovo 20 100% 0 0 0 0 2485 2 3 19

IDBA_UD 95 93.1% 9 502 35 1443 732 101 8 24

MetaVelvet 135 99.3% 10 0 2 0 298 65 1 8

Celera 151 100% 11 220 5 122 1384 19 67 19

Omega 158 99.4% 13 35 23 28 1958 43 3 22

2722

B.Haider et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/19/2717/2422265 by guest on 19 April 2024

to
,

