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ABSTRACT

Motivation: Knowledge of drug–drug interactions (DDIs) is crucial for

health-care professionals to avoid adverse effects when co-adminis-

tering drugs to patients. As most newly discovered DDIs are made

available through scientific publications, automatic DDI extraction is

highly relevant.

Results: We propose a novel feature-based approach to extract DDIs

from text. Our approach consists of three steps. First, we apply text

preprocessing to convert input sentences from a given dataset into

structured representations. Second, we map each candidate DDI pair

from that dataset into a suitable syntactic structure. Based on that, a

novel set of features is used to generate feature vectors for these

candidate DDI pairs. Third, the obtained feature vectors are used to

train a support vector machine (SVM) classifier. When evaluated on

two DDI extraction challenge test datasets from 2011 and 2013, our

system achieves F-scores of 71.1% and 83.5%, respectively, outper-

forming any state-of-the-art DDI extraction system.

Availability and implementation: The source code is available for

academic use at http://www.biosemantics.org/uploads/DDI.zip
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1 INTRODUCTION

Drug–drug interaction (DDI) is a situation when one drug in-

creases or decreases the effect of another drug (Tari et al., 2010).

Information about DDIs is crucial for drug administration to
avoid adverse drug reactions or therapeutic failure (van Roon

et al., 2009). For example, a recent study reports that DDIs are a
significant cause of hospital admissions (Dechanont et al., 2014).

While specialized databases are available for finding known
DDIs, such as DrugBank (http://www.drugbank.ca) or

Micromedex (http://micromedex.com), their coverage is limited

and there are discrepancies in DDI listing between existing data-
bases (Wong et al., 2008). As a consequence, most of newly dis-

covered DDIs need to be extracted from scientific publications
(Herrero-Zazo et al., 2013). Text-mining techniques such as

automatic relation extraction have been applied successfully in
large-scale experiments to extract various types of relations [e.g.

protein–protein interactions (PPIs), gene-disease] efficiently

(Hahn et al., 2012; Rebholz-Schuhmann et al., 2012).

Therefore, automatic DDI extraction methods can be particu-

larly relevant to effectively extract DDIs and corresponding evi-

dence from the scientific literature.

To develop and evaluate automatic DDI extraction methods,

a DDI corpus has been created by Herrero-Zazo et al. (2013).

This corpus was manually annotated with 18 502 pharmaco-

logical substances, mainly consisting of generic and brand

names, and 5028 DDIs. With the availability of this corpus

and the introduction of two DDI extraction challenges in 2011

and 2013 (Segura-Bedmar et al., 2011a, 2013), several

approaches have been proposed to extract DDIs from biomed-

ical text. In both challenges, systems built on machine learning

(ML) approaches were dominant and achieved the best results

(Segura-Bedmar et al., 2011a, 2013). In these systems, the DDI

extraction tasks are modeled as classification problems where

each candidate DDI pair is classified as an interacting pair or

not. To build the classification models, data from annotated

DDI corpora are often transformed into more structural repre-

sentations using various natural language processing (NLP)

tools. Among these ML-based systems, support vector machine

(SVM) methods are the most popular (Segura-Bedmar et al.,

2013). In general, ML-based DDI extraction systems can be

categorized into two groups, namely feature- and kernel-based

methods.

In feature-based systems, each data instance is represented as a

feature vector in an n-dimensional space. The main focus in these

systems is to define features that potentially best represent the

data characteristics. For DDI extraction tasks, various feature

types have been used ranging from lexical to syntactic and se-

mantic information. For example, Segura-Bedmar et al. (2011b)

developed a system using bag-of-words and local context fea-

tures. To improve the performance of feature-based systems,

some authors combine multiple types of features with the hope

that these features can complement each other. He et al. (2013)

introduced a system that uses lexical, semantic and domain

knowledge features. Chowdhury and Lavelli (2013a) proposed

a system that combines heterogeneous features. Their system

comprises lexical, syntactic, semantic and negation features

derived from sentences and their corresponding parse trees.

In kernel-based systems, the structural representations of data

instances, e.g. syntactic parse trees or dependency graphs, are

exploited. Various kernels have been proposed to quantify the

similarities between two instances by computing the similarities

of their representations. These kernels differ from each other*To whom correspondence should be addressed.
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based on how syntactic representations are used and how simi-

larity functions are calculated (Tikk et al., 2013). For the DDI

extraction challenges, the use of kernels varies between the par-
ticipating systems. Among them, the most commonly used ker-

nels are all-paths graph kernel (Airola et al., 2008), shallow

linguistic kernel (Giuliano et al., 2006) and path-enclose tree

kernel (Moschitti, 2004). As the proposed kernels exploit differ-

ent types of structural representations and similarity functions,

they all have pros and cons. To compensate for the weakness of

each individual kernel, kernel combination is often used. For

example, Chowdhury and Lavelli (2013b) proposed a hybrid

kernel, which combines three different kernels. Their system

achieved the best results in the DDI extraction 2013 challenge

(Task 2). Furthermore, the combination can take place at the

output level (ensemble approach) where the output of multiple

systems is combined using a voting scheme. Thomas et al. (2011)

developed a system that combines the output of two kernel-based

systems and a case-based reasoning system using a majority

voting scheme. This system yielded the best result in the DDI

extraction 2011 challenge.
Although systems using feature-based kernels alone did not

yield the best performance in the DDI extraction challenges,

feature-based kernels still play an important role in relation ex-

traction tasks. In fact, the winning teams of the DDI extraction

2011 and 2013 challenges both incorporate feature-based kernels

proposed by Giuliano et al. (2006) as part of their systems.

Furthermore, Miwa et al. (2009) have shown that their feature-

based PPI extraction system achieved state-of-the-art results on

five PPI corpora. A recent study by Tikk et al. (2013) on the

performance of various types of kernels for PPI extraction tasks

also suggests that to improve the performance of the current PPI

extraction systems, novel feature sets should be explored over

novel kernel functions. This suggestion may also apply to the

DDI extraction tasks, as most current approaches to extract

DDI pairs have also previously been used to extract PPI pairs.
In this article, we propose a novel feature-based approach to

extract DDIs from biomedical text. Our approach differs from

existing approaches in two ways. First, we partition candidate

DDI pairs into five groups based on their syntactic structures.

Second, we apply a set of novel features that is optimized for

each group based on the syntactic properties. Our results show

that the proposed system achieves the best results in terms of

F-scores and performance efficiency when compared with the

state-of-the-art DDI extraction systems.

2 METHODS

Our method consists of three steps. First, we apply text preprocessing to

convert input sentences into structured representations. Second, a feature

vector for each candidate DDI pair is extracted from the corresponding

structured representation using predefined feature sets. In the last step,

the obtained feature vectors are used to train an SVM classifier to gen-

erate a predictive model, which is used to classify candidate DDI pairs of

the test dataset.

2.2 Text preprocessing

The text preprocessing step consists of filtering out irrelevant sentences,

entity blinding, word tokenizing, part-of-speech (POS) tagging and par-

sing sentences with a shallow parser. We manually created a list of 292

trigger words by combining a list of trigger words previously used to

extract PPIs (Bui et al., 2011) and some trigger words specific to DDI

taken from the training dataset. Sentences that contain one drug or have

no trigger word are filtered out. Next, to improve generalization of the

input sentences, all drug names are blinded by assigning names as

DRUGi where i is the drug index. Each sentence is then tokenized and

POS tagged with the LingPipe NLP toolkit (http://alias-i.com/lingpipe).

Finally, the tokens and their tags are used as input for the OpenNLP

shallow parser (https://opennlp.apache.org/) to produce chunks.

2.3 Structured representation

We adapt the structured representation proposed by Bui and Sloot (2012)

to express candidate DDI pairs. This structured representation, which

consists of three syntactic layers (chunk, phrase and clause), is generated

based on the chunks outputted from the shallow parser. As there are

many cases where DDI pairs span into more than one single clause, we

represent these cases using multiple single clauses. We modify the struc-

tured representation as follows:

Phrase: consists of a list of chunks (i.e. the output of the shallow

parser). Figure 1b shows examples of phrases (dashed boxes), which con-

sist of noun chunks (NCs; plain boxes) connected by preposition chunks

(PCs; shadowed boxes).

Clause: consists of a verb chunk and two phrases that are located in the

left and in the right of the verb chunk. Complex sentences are represented

by multiple clauses. For example, Figure 1a shows a clause that has a

verb chunk connected with the left phrase (subject) and the right phrase

(object). Figure 1c shows a complex sentence that consists of three

clauses. Furthermore, to reduce the number of clauses generated for

each input sentence, only verb chunks that belong to the main clauses

are used to construct the structured representation.

With the proposed structured representation, we can express relation-

ship of almost all drug pairs. Figures 1a and b show examples of drug
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Fig. 1. Structured representation for DDI pairs. (a) Examples of positive

DDI pairs expressed by a clause. (b) Examples of a positive DDI pair

expressed by a phrase (subject) and of negative DDI pairs, indicated by

dashed lines, expressed by a clause. (c) An example of a complex sentence,

which consists of multiple clauses. DRUG1–DRUG2 and DRUG2–

DRUG3 pairs span over two clauses, whereas the DRUG1–DRUG3

pair spans over three clauses
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pairs that interact (positive DDI) and that do not interact (negative DDI)

expressed by the structured representations.

2.3 Features

In this section, we describe a set of novel features that are specifically

designed to exploit the strength of the structured representations. To

generate features for each candidate DDI pair, we find the smallest syn-

tactic container (e.g. a phrase, a clause or clauses) from the structured

representation containing that pair. For example, the smallest syntactic

container of the DRUG1–DRUG2 pair in Figure 1b is a phrase, whereas

the smallest syntactic container of the DRUG2–DRUG3 pair in

Figure 1c encloses two clauses. Given a candidate DDI pair and its syn-

tactic container, we check whether the syntactic container contains any

trigger words. If the syntactic container functions as a subject, we also

check its right verb chunk for trigger words, as there are cases in which

trigger words do not belong to the subjects but to their right verb chunks.

If no trigger word is detected, then the candidate DDI pair is skipped,

otherwise the following features are generated depending on its container

type (e.g., subject, clause):

Lexical features: are used to capture relations between each drug of the

candidate DDI pair and its surrounding tokens. These relations might

reveal the syntactic role of the drug within the phrase containing it, such

as whether the drug is a part of the coordination or is an abbreviation of

another drug. Lexical features of each drug are three tokens on the left

and three tokens on the right of that drug. Left and right tokens are

distinguished by adding _L and _R suffixes, respectively. In addition, if

a token is a drug (e.g. DRUG1 or DRUG2) then that token is replaced

by ‘arg’. For example, lexical features of the DRUG2 in Figure 1b are:

of_L, arg_L, with_L. As DRUG2 is the last token of that phrase, there is

no feature extracted from the right side.

Phrase features: are applicable for a candidate DDI pair of which the

syntactic container is a phrase. These features are designed to capture

relations of the candidate DDI pair and trigger words that belong to the

phrase containing that pair. For each trigger word, we determine its

relative position within the phrase by checking the following cases:

� Trigger [prep]* arg1 [prep]* arg2 (case 1)

� Arg1 [prep]* trigger [prep]* arg2 (case 2)

� Arg1 [prep]* arg2 [prep]* trigger (case 3)

Here prep are prepositions connecting chunks that contain the trigger

and the DDI pair. Arg1 and arg2 are drugs of the (ordered) candidate

DDI pair. The ‘*’ indicates that zero or more prepositions are required.

Based on the obtained case, corresponding features are generated to rep-

resent the position between the trigger and the candidate DDI pair (i.e.

left, middle or right) and to indicate which prepositions are used to con-

nect the trigger and the target pair as well as the chunks between the

drugs of the target pair. For example, features generated for the

DRUG1–DRUG2 pair in Figure 1b are use_of_arg1 and arg1_-

with_arg2_case1. Furthermore, if there is a negative modifier (e.g. no,

not) which belongs to the same chunk that contains a trigger, we insert

the modifier as the prefix for that trigger.

As it is non-trivial to automatically determine which trigger actually

has a relation with (i.e. governs) the candidate DDI pair, all detected

triggers are used to generate phrase features.

Verb features: are bag-of-words (unigrams and bigrams) generated

from the verb chunk of the clause to which the candidate DDI pair

belongs. The verb features indicate how the drug in the left phrase (sub-

ject) and the drug in the right phrase (object) are related.

Syntactic features: are designed to capture the surrounding syntactic

structure of each drug of the candidate DDI pair within the phrase to

which it belongs. To do this, we assign indices for all preceding noun and

preposition chunks which connect to the noun chunk containing that

drug. Furthermore, we also check whether there is any drug succeeding

that drug and which prepositions are used to connect them. For example,

the syntactic features generated for DRUG1 in Figure 1b are NC1, PC2,

has_more_args and with_arg. Together with verb features, syntactic fea-

tures particularly help to distinguish between DDI pairs that have a drug

governed by its preceding noun chunks and DDI pairs that have drugs

spanning into two phrases (i.e. subject and object) of a clause. For ex-

ample, consider the positive DRUG1–DRUG2 pair in Figure 1a and the

negative DRUG2–DRUG3 pair in Figure 1b. Although both pairs have

the same sequence of tokens, if the syntactic structure is used then

DRUG1 in Figure 1a and DRUG2 in Figure 1b have completely differ-

ent syntactic features.

Auxiliary features: consist of three features that capture information

related to the drugs of the target pair. In particular, the first feature keeps

track if drug names of the pair are real names versus pronouns (e.g. these

drugs, this drug). The second feature denotes whether the drugs have the

same name, and the third feature indicates whether the target drugs are in

the same chunk.

2.4 Partitioning DDI pairs

In a previous study, Bui et al. (2011) showed that partitioning candidate

PPI pairs based on syntactic properties and selecting partition-specific

feature improved the performance of their PPI extraction system.

Following this strategy, we categorize candidate DDI pairs into different

groups based on their syntactic containers. To reduce the number of

syntactic groups being generated, we only consider candidate DDI

pairs that span over at most two clauses. For example, the DRUG1–

DRUG3 pair in Figure 1c is ignored, as it spans over three clauses. This

partitioning process results in five syntactic groups, namely subject,

object, clause, clause_2 and NP. Here clause_2 denotes a syntactic struc-

ture that spans over two clauses, and NP denotes an input sentence that

contains only a phrase.

Owing to space limitations, we refer to the Supplementary source code

for more details on text preprocessing and feature generation.

2.5 Machine learning

Recent relation extraction competitions have shown that the use of SVMs

in relation extraction systems is dominant and systems that use SVMs

achieved the best performance (N�edellec et al., 2013; Segura-Bedmar

et al., 2011a, 2013). In this study, we use the LIBSVM classifier with a

default RBF kernel (http://www.csie.ntu.edu.tw/� cjlin/libsvm/) for clas-

sification of DDI pairs. All individual features extracted for each DDI

pair are normalized and combined into a single feature vector as pro-

posed byMiwa et al. (2009). To find the best parameter C and gamma for

each model, we use the CVParameterSelection function from the WEKA

toolbox (http://www.cs.waikato.ac.nz/ml/weka/).

3 RESULTS AND DISCUSSION

3.1 Datasets

We use the DDI extraction 2011 and 2013 datasets (hereafter
referred to as DDI-2011 and DDI-2013) provided by the DDI

extraction 2011 and 2013 challenges to evaluate our extraction

method. Each dataset consists of two parts, a training dataset

and a test dataset. There are differences between the two chal-
lenge datasets. The DDI-2011 datasets contain documents se-

lected from the DrugBank database, whereas the DDI-2013

datasets consist of documents selected from the DrugBank data-

base and Medline abstracts. Furthermore, in the DDI-2011 data-
set, each drug pair was annotated either as a true interaction

(positive instance) or no interaction (negative instance), whereas

the DDI-2013 datasets have more fine-grained annotations with
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different interaction types. Statistics of the datasets are shown in

Table 1.

3.2 Transformation of datasets

When applying the text preprocessing and partitioning steps for

each dataset, we obtain a transformed dataset where irrelevant

DDI pairs are filtered out and the original dataset is split into

five groups. Tables 2 and 3 show statistics of the transformed

datasets for training and test datasets, respectively. The data in

these tables indicate that the text preprocessing has effectively

filtered out significant numbers of negative instances (TNs) with

a small cost of missing positive instances (FNs). Overall, num-

bers of filtered instances vary from 2.5 to 4.1% for FNs and from

27.9 to 33.8% for TNs on the DrugBank datasets. However,

numbers of FNs on the Medline dataset are unexpectedly high,

ranging from 8.6 to 17.9.0%. Furthermore, a small number of

positive instances are ignored during the partition step owing to

their complex syntactic structures. These numbers are shown in

Tables 2 and 3 as ignored cases.
In addition, the data from Tables 2 and 3 show that the num-

bers of instances vary significantly between groups of each data-

set and across datasets. This indicates that the performance on

each group might also differ accordingly.

3.3 Evaluation settings

We use the standard evaluation measures (Precision, Recall and

F-score) proposed by the DDI extraction challenge to evaluate

the performance of our system (Segura-Bedmar et al., 2013). As

our method mainly focuses on the detection of interaction pairs,

we ignore the interaction types annotated in the DDI-2013 data-

set. (The detection of DDI pairs is an important step in the ex-

traction pipeline of most of the systems that participated in the

DDI extraction 2013 challenge, including the top two systems).

In addition, because we partition each dataset into five groups,

we need to train the classifier separately for each group. To find

the optimal feature sets for these groups, we tried various com-

binations of the proposed features. The best feature sets for each

group are shown in Table 4. These features were determined

based on the DB-2013 training set but used for all evaluations.
We evaluate the performance of our system on each test data-

set after training on the corresponding training dataset, except

for the ML-2013 test dataset. For this test dataset, the system is

trained on the combined DB-2013 and the ML-2013 training

datasets as suggested by Chowdhury and Lavelli (2013b) and
Thomas et al. (2013).

3.4 Performance of DDI extraction

Table 5 shows the results of our system evaluated on the DDI-

2011 and DDI-2013 test datasets. To understand its performance

on different document types (i.e. DrugBank and Medline ab-
stracts), we present the results of the DDI-2013 sub datasets

separately. Furthermore, to calculate recall, all positive instances

missed by the previous preprocessing steps are considered as
FNs. Besides reporting the overall performance of the whole

dataset, we also present the performances of individual groups.

Recall for each group is calculated using data from Table 3
(which do not take into account filtered and ignored instances),

whereas the recall for the overall performance for each test data-
set is calculated using data from Table 1.

The results in Table 5 show that our system performs well on
the DB-2013 and DDI-2011 test datasets with F-scores of 83.5

and 71.1%, respectively. However, its performance decreases on

the Medline test dataset with an F-score of 59.2%, which is 24.3
points lower than that of the DB-2013 test dataset. This perform-

ance decrease stems from the low recall, which can partly be

explained by the loss of positive instances during the preprocess-
ing steps. In addition, for each dataset, the performance on each

group also differs significantly. These performance differences

might be due to three factors. First, the ratio of the positive
and negative instances varies among all groups (see Tables 2

and 3). This causes the performance degradation for groups

that have smaller positive/negative ratios (Van Hulse et al.,
2007). Second, the selection of different feature sets for various

syntactic groups may also account for the differences in perform-
ance. Third, the annotation quality of the DB-2013 is better than

that of DB-2011, which was annotated automatically without

any manual revision (Herrero-Zazo et al., 2013).

Table 1. Statistics of the DDI-2011 and DDI-2013 training and test

datasets

Corpus Training Testing

Sen. Pos. Neg. Sen. Pos. Neg.

DDI-2011 4267 2402 21 425 1539 755 6271

DB-2013 5675 3788 22 217 973 884 4426

ML-2013 1031 232 1555 326 95 365

Notes. The DDI-2013 datasets are split into two subsets (DB-2013 and ML-2013)

based on document types. Sen., Pos. and Neg. denote numbers of input sentences,

positive instances and negative instances, respectively.

Table 2. Statistics of the transformed training datasets after applying text

preprocessing steps

Group DB-2013 ML-2013 DDI-2011

Pos. Neg. Pos. Neg. Pos. Neg.

Subject 876 4301 29 250 600 4488

Object 356 4797 13 271 203 3770

Clause 1852 2238 121 211 1240 3212

Clause_2 341 871 12 85 163 1324

NP 197 1039 27 102 74 713

Total 3622 13246 202 919 2280 13507

(known

cases)

(96%) (60%) (87%) (59%) (95%) (63%)

Ignored

cases

60 479 10 50 24 676

Filtered

out/

skipped

106 8492 20 586 98 7242

(2.80%) (38.20%) (8.60%) (37.70%) (4.10%) (33.80%)

Notes. Pos. and Neg. denote positive and negative instances, respectively.
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Table 6 shows the performance comparison between our

system (BioSem) and the top-performance systems participating

in the DDI-2013 extraction challenge (Task 2). The data show

that our system outperforms the top five systems on the DB-2013

test dataset with an F-score increase ranging from 0.8 to 13.2

points. While the recall of our system is lower than the best
system (81.2 versus 83.8%), its precision is significantly higher

(85.9 versus 81.6%). Furthermore, our system also yields better

results when compared with these systems on the ML-2013 test

dataset. The results in Table 7 show that the BioSem achieves an

F-score of 59.2%, which is higher than the other systems

6.2–17.1 points. It is worth noting that the systems that partici-

pated in the challenges had to be developed under strict time
constraints, which may have affected their performance.

Nevertheless, the authors of the top-performing systems have

participated in the DDI-2011 extraction challenge and thus

were familiar with the task and could fine-tune their systems

using the DDI-2011 test dataset.
To provide a fair performance comparison, we present the

evaluation results of the best known systems that run on the

DDI-2011 post-challenge test dataset in Table 8. We also provide

the results of the best system of the DDI-2011 extraction chal-

lenge for reference. The data show that post-challenge systems
achieve higher performance in terms of F-scores as compared

with the best system of the DDI-2011 extraction challenge.

These performance improvements might stem from the fact

that these systems have a better design and/or could be fine-

tuned on the available test dataset. Compared with these

post-challenge systems, our system yields better results with

F-score improvements ranging from 1.9 to 2.2 points. It is

worth noting that the system proposed by Chowdhury and

Lavelli (2013b) is the same system that achieved the best results

in DDI-2013 challenge.

3.5 Performance analysis

In this section, we address some issues related to the performance

of the proposed system as well as discuss its complexity with

respect to the state-of-the-art systems.

3.5.1 Performance variation on different datasets In the previ-
ous section, we have mentioned that the ratio of positive and

negative instances might directly contribute to the differences in

performance between syntactic groups (e.g. subject, object, etc.)

of each dataset. This phenomenon can also be observed in the

same groups across different datasets. For example, on the DB-

2013 dataset, the ratios of positive/negative instances of the

clause group are 0.83 and 1.20 for training and test datasets,

whereas on the DDI-2011 dataset these values are 0.39 and

0.38, respectively (see Tables 2 and 3). These differences might

explain why precision and recall of the clause group differs be-

tween these two datasets: 86.1 versus 65.8% for precision and

94.4 versus 84.8% for recall. Furthermore, this might also ex-

plain the high precision of the subject group on the ML-2013 test

Table 3. Statistics of the transformed test datasets after applying text

preprocessing steps

Group DB-2013 ML-2013 DDI-2011

Pos. Neg. Pos. Neg. Pos. Neg.

Subject 156 782 21 20 179 1000

Object 90 1174 16 77 78 1429

Clause 504 429 36 58 376 997

Clause_2 37 229 2 26 54 280

NP 61 367 3 23 34 567

Total 848 2981 78 204 721 4273

(known

cases)

(96%) (68%) (82%) (57%) (96%) (68%)

Ignored cases 14 178 0 4 4 131

Filtered

out/skipped

22 1222 17 148 30 1867

(2.50%) (27.90%) (17.90%) (41.60%) (4.00%) (29.80%)

Notes. Pos. and Neg. denote positive and negative instances, respectively.

Table 4. Optimized features for each syntactic group

Group Lexical Phrase Verb Syntactic Auxiliary

Subject X X X X X

Object X X X X

Clause X X X X

Clause-2 X X X X

NP X X X

Table 5. Evaluation results on the DDI-2011 and DDI-2013 test datasets

Group DB-2013 ML-2013 DDI-2011

P (%) R (%) P (%) R (%) P (%) R (%)

Subject 83.92 76.92 86.67 61.90 75.65 81.56

Object 84.72 67.78 54.55 37.50 81.43 73.08

Clause 86.08 94.44 71.79 77.78 65.77 84.84

Clause_2 91.67 59.46 100.00 50.00 76.19 29.62

NP 88.64 63.93 25.00 66.67 64.29 26.47

Overall performance

Precision (%) 85.88 67.57 69.85

Recall (%) 81.22 52.63 72.45

F-score (%) 83.48 59.17 71.13

Notes. The DDI-2013 test datasets are split into two subsets (DB-2013 and ML-

2013) based on document types. P and R denote precision and recall, respectively.

Table 6. Performance comparison with the top five systems participating

in the DDI-2013 extraction challenge on the DB-2013 test dataset

Team Precision (%) Recall (%) F-score (%)

FBK-irst 81.6 83.8 82.7

WBI 81.4 75.5 78.3

SCAI 79.6 68.1 73.4

UTurku 84.3 63.8 72.6

UC3M 65.6 75.8 70.3

BioSem 85.9 81.2 83.5
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dataset, as the positive/negative ratios between training and test

datasets are 0.11 and 1.05, respectively.
Another issue that might affect the system performance is the

size of the datasets. This is clearly visible for the ML-2013 data-

set, which is significantly smaller (14 times) than the DB-2013

dataset. Moreover, learning a model from a small training set is

one of the challenges of an ML-based approach. This problem is

even harder in our case since we further split the training set into

five sub datasets. For example, when we used the ML-2013

dataset alone for training, our system achieved an F-score of

35.4% on the ML-2013 test dataset (data not shown).

However, when trained on the combined DB-2013 and ML-

2013 training datasets and evaluated on the ML-2013 test set,

the F-score increases to 59.2%. This indicates that even though

there are differences in structure between the document types

(Cohen et al., 2010) of two datasets, increasing the size of the

ML-2013 training set by adding training instances from the DB-

2013 set, to some extent, helps improving the performance of our

system on this test dataset.

3.5.2 Contribution of the proposed feature sets When applying

an ML-based approach for relation extraction tasks, each can-

didate pair is classified independently as being a true interaction

pair or not. The benefit of this approach is that it can easily be

used with any (binary) classifier. However, when each candidate

DDI pair is considered independently, it is taken out of context.

In other words, the dependencies between the drugs of the can-

didate DDI pair and their neighboring drugs might be missed,

which might lead to a wrong classification. For example,

consider a positive DRUG1–DRUG2 pair and two negative

DRUG1–DRUG3 and DRUG2–DRUG3 pairs in the

sentence ‘Concurrent use of DRUG1 with DRUG2 may in-

crease the effect of DRUG3’ as shown in Figure 1b. For the

DRUG2–DRUG3 pair, if only lexical features are used then

one may miss the information that DRUG2 has already partici-

pated in a relation with DRUG1. For the DRUG1–DRUG3

pair, even if a dependency tree is used, one might still miss the

information that DRUG1 has a relation with DRUG2. To ad-

dress this problem, previous systems usually combine various

types of features so that they can complement each other. In

our system, we explicitly tackle this problem by introducing

three novel feature sets, namely verb, phrase and syntactic

features.
Table 9 shows the contributions of the phrase, syntactic and

verb features on the performance of our system when evaluated

on the DB-2013 test dataset. The data show that when the verb

features are removed, the performance in terms of F-score de-

grades 3.56% compared with that of the whole feature set. While

removing the phrase or syntactic feature alone decreases the per-

formance slightly, removing both phrase and syntactic features

results in the performance decreases 1.53%. This means that one

of these features may only be suitable for certain groups. This
phenomenon is clearly visible when we apply the optimized fea-

ture sets from Table 4 to the test dataset, resulting in an increase

of 0.95% on the F-score compared with that of the whole feature

sets.

In addition, by mapping each candidate DDI pair into a syn-

tactic container before generating features, we can enhance the

lexical features by not generating unnecessary tokens surround-
ing each drug of the candidate DDI pair. For example, the

number of lexical features generated for DRUG2 in Figure 1b

is three features instead of six features for systems that use a flat

structure.

3.5.3 Computational performance and complexity To increase
the performance of DDI extraction systems, most of top-per-

forming systems use either ensemble approaches (Thomas

et al., 2011, 2013) or kernel combination approaches

(Chowdhury and Lavelli, 2013b; He et al., 2013). While they

manage to increase the performances, the computational re-

sources and the complexity of their systems also increase.

Furthermore, some systems also incorporate domain knowledge

(He et al., 2013; Thomas et al., 2013) to enhance the perform-

ance, but this hinders the adaptation of these systems to new

relation extraction tasks.
In contrast, our proposed feature-based system uses a small set

of features to generate feature vectors from a simple syntactic

Table 7. Performance comparison with the top five systems participating

in the DDI-2013 extraction challenge on the ML-2013 test dataset

Team Precision (%) Recall (%) F-score (%)

FBK-irst 55.8 50.5 53.0

WBI 62.5 42.1 50.3

UWM-TRIADS 38.7 63.0 47.9

SCAI 43.1 52.6 47.4

UC3M 31.3 64.2 42.1

BioSem 67.6 52.6 59.2

Table 8. Performance comparison of systems on the post-challenge DDI-

2011 test dataset

Team Precision (%) Recall (%) F-score (%)

WBI (1st 2011) 60.5 71.9 65.7

Chowdhury and Lavelli (2013b) 63.5 75.2 68.9

He et al. (2013) 66.2 72.6 69.2

BioSem 69.9 72.5 71.1

Table 9. Contribution of phrase, syntactic and verb features to the per-

formance of our system

Features P (%) R (%) F (%)

Lex+Aux+Phrase+Syntactic+Verb (1) 85.64 79.63 82.53

(1) - Verb 81.9 76.24 78.97

(1) - Phrase 84.63 79.75 82.12

(1) - Syntactic 83.06 81 82.01

(1) - Phrase - Syntactic 81.7 80.32 81

Optimized feature sets 85.88 81.22 83.48

Notes. The results are evaluated on the DB-2013 test dataset. Verb features are not

applicable to NP group, and phrase features are not applicable to clause and clause-

2 groups. Lex, Aux, P, R and F denote lexical, auxiliary, precision, recall and

F-score, respectively.
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representation. It uses a shallow parser for analyzing input sen-

tences and requires only a single kernel to build predictive

models. Therefore, it is simpler and requires less computational

time compared with the other ML-based systems. For example,

our system requires 51 s to process the DB-2013 dataset (22 s for

the text preprocessing step and 29 s for training and classifying

instances). This experiment was performed on a laptop with an

Intel Core i7-2640M, 2.8GHz processor.

3.5.4 Error analysis To identify the main sources of error of
our system, we analyze all errors [118 false positives (FPs), 130

FNs] produced by our system when evaluated on the DB-2013

test dataset. Overall, these errors (both FPs and FNs) can be

categorized into four groups. The first group of errors (22 FPs,

39 FNs) is caused by parser errors or incorrect construction of

structured representations. These errors lead to the wrong cat-

egorization of candidate DDI pairs. The second error group (34

FPs) is caused by a non-deterministic context, where the syntac-

tic containers of the candidate DDI pairs alone are not enough to

determine the outcome. The third error group (42 FPs, 91 FNs)

is caused by unusual syntactic structures of the input sentences,

anaphora problems and the long distance between two drugs

(measured by the number of chunks) of the candidate DDI

pairs. The fourth error group (20 FPs) consists of cases where

candidate DDI pairs syntactically seem to be true DDI pairs.
While most of the errors are non-trivial, the errors caused by

input sentences with special syntactic structures can be tackled if

rules are defined to convert these input sentences into a form that

can be handled by the structured representation. For the other

errors, substantial changes in the system are needed to further

improve the current performance.

4 CONCLUSIONS

In this study, we have proposed a novel feature-based approach

to extract DDIs from text. The key factors of our approach are

the combination of the novel feature sets and the partition of the

datasets. By partitioning the original dataset into subsets based

on their syntactic properties, we obtain more consistent sub data-

sets and can optimize feature selection for each sub dataset.

Furthermore, by combining the strength of various types of fea-

tures, our system is robust and generalizes well on different data-

sets. The evaluation results show that our system achieves better

performance than the state-of-the-art systems on various test

datasets.
Our approach is simple and more efficient in terms of compu-

tational time than other ML-based systems, as it uses a small set

of features and a default SVM kernel. Furthermore, the pro-

posed feature sets are generic, except for the auxiliary feature

set. While the system is initially proposed to extract DDIs, it

can easily be adapted to other binary relation extraction tasks,

such as PPIs and gene–disease relations.
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