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ABSTRACT

Motivation: Most tumor samples are a heterogeneous mixture of

cells, including admixture by normal (non-cancerous) cells and sub-

populations of cancerous cells with different complements of somatic

aberrations. This intra-tumor heterogeneity complicates the analysis of

somatic aberrations in DNA sequencing data from tumor samples.

Results: We describe an algorithm called THetA2 that infers the com-

position of a tumor sample—including not only tumor purity but also

the number and content of tumor subpopulations—directly from both

whole-genome (WGS) and whole-exome (WXS) high-throughput DNA

sequencing data. This algorithm builds on our earlier Tumor

Heterogeneity Analysis (THetA) algorithm in several important direc-

tions. These include improved ability to analyze highly rearranged gen-

omes using a variety of data types: both WGS sequencing (including

low �7� coverage) and WXS sequencing. We apply our improved

THetA2 algorithm to WGS (including low-pass) and WXS sequence

data from 18 samples from The Cancer Genome Atlas (TCGA). We

find that the improved algorithm is substantially faster and identifies

numerous tumor samples containing subclonal populations in the

TCGA data, including in one highly rearranged sample for which

other tumor purity estimation algorithms were unable to estimate

tumor purity.

Availability and implementation: An implementation of THetA2 is

available at http://compbio.cs.brown.edu/software

Contact: layla@cs.brown.edu or braphael@brown.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Several recent studies indicate that most tumor samples are a

heterogeneous mixture of cells, including admixture by normal

(non-cancerous) cells and subpopulations of cancerous cells with

different complements of somatic aberrations (Gerlinger et al.,

2012; Nik-Zainal et al., 2012). Characterizing this intra-tumor

heterogeneity is essential for several reasons. First, an estimate

of tumor purity, the fraction of cancerous cells in a tumor, is

necessary for accurate identification of somatic aberrations of

all types in the sample. Most cancer genome sequencing studies

use a re-sequencing approach to detect somatic aberrations.

Reads from a tumor sample (and usually a matched normal

sample) are aligned to the human reference genome.
Differences in the sequence of aligned reads, the number of

aligned reads or the configuration of aligned reads (e.g. split
reads or discordant pairs) are used to infer the presence of single

nucleotide or other small variants, copy number aberrations or

structural aberrations, respectively (Ding et al., 2010; Meyerson
et al., 2010). However, the presence of intra-tumor heterogeneity

can dilute the signals required to identify somatic aberrations.
Second, estimates of the composition of a tumor sample—

including not only the tumor purity, but also the number and
fractions of subpopulations of tumor cells—provide useful for

understanding tumor progression and determining possible treat-

ment strategies (Greaves and Maley, 2012; Mullighan et al.,
2008). In particular, clonal somatic aberrations that exist in all

tumor cells are likely early mutational events and their identifi-
cation sheds light on the early stages of cancer. Conversely, sub-

clonal somatic aberrations might reveal properties shared by a

subset of tumor cells, such as drug resistance or ability to me-
tastasize. Identification of such aberrations and subpopulations

of tumor cells might inform treatment strategies, and/or help
predict metastasis/relapse.

In the past few years, several methods to infer tumor purity
and/or tumor composition have been developed. These methods

generally fall into two categories: (i) methods that use somatic

single-nucleotide variants (SNVs) and (ii) methods that use som-
atic copy number aberrations. SNV-based methods such as

EXPANDS (Andor et al., 2014), PyClone (Roth et al., 2014)
and many others (Jiao et al., 2014; Larson and Fridley, 2013)

use clustering of variant allele frequencies to determine tumor

populations and frequencies. While these types of methods are
able to derive multiple tumor subpopulations, they often require

estimates of copy number for each region containing SNVs.
Deriving such estimates for highly rearranged aneuploid

tumors is as difficult as the estimation of intra-tumor heterogen-

eity itself. Moreover, these approaches require high-coverage
sequencing to overcome the high variance in read counts at in-

dividual SNVs. For example, both PyClone (Roth et al., 2014)
and PhyloSub (Jiao et al., 2014) explicitly require deeply

sequenced data. Thus, less expensive low-coverage sequence

data as generated in TCGA (Cancer Genome Atlas Network,
2012) is not amenable to these approaches.

Copy number-based methods such as ABSOLUTE (Carter
et al., 2012) and CNAnorm (Gusnanto et al., 2012) use observed

shifts in read depth due to copy number aberrations to predict
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tumor purity, but do not explicitly consider multiple tumor sub-
populations, and therefore may return purity estimates that only

reflect a single subpopulation of tumor cells in a sample. In

Oesper et al. (2013), we introduced the Tumor Heterogeneity
Analysis (THetA) algorithm to infer the composition of a

tumor sample—including both the percentage of normal admix-

ture and the fraction and content of one or more tumor subpo-

pulations that differ by copy number aberrations.
In this article, we present THetA2, which extends the THetA

algorithm in several important directions. First, we substantially
improve the computation for the case of multiple distinct tumor

subpopulations in a sample. Second, we extend THetA to infer

tumor composition for highly rearranged genomes using a two-

step procedure where initial estimates are made using high-
confidence regions of the genome, and then are extended to

the entire genome. Third, we devise a probabilistic model of

B-allele frequencies (BAFs), which can be used to solve the iden-

tifiability issue when read depth alone is consistent with multiple
possible tumor compositions. Finally, we extend THetA to ana-

lyze whole-exome (WXS) sequencing data. We apply our new

algorithm to both whole-genome (WGS) (including low-pass)

and WXS sequence data from 18 samples from The Cancer
Genome Atlas (TCGA). We find that the improved algorithm

is substantially faster and able to analyze highly rearranged gen-

omes—identifying numerous tumors with subclonal tumor popu-
lations in the TCGA data. Where available, we compare our

purity estimates to published values for ABSOLUTE (Carter

et al., 2012). While the purity estimates are largely in agreement

for higher purity samples, we find cases where ABSOLUTE fails
or underestimates purity, but THetA2 identifies multiple tumor

subpopulations. These improvements greatly expand the range of

sequencing data and tumors for which we can infer tumor

composition.

2 METHODS

2.1 Notation and problem formulation

We assume that the reference genome is partitioned into a sequence I=

ðI1; . . . ; ImÞ of non-overlapping intervals, according to changes in the

density, or depth, of reads aligning to each position in the reference (Xi

et al., 2011). Given I, we define a corresponding read depth vector r=ðr1
; . . . ; rmÞ 2 N

m where rj is the number of reads with a (unique) alignment

within Ij. A cancer genome is defined by an interval count vector c 2 N
m,

where cj is the integer number of copies of interval Ij in the cancer

genome.

A tumor sample T is a mixture of cells that contain different collec-

tions of somatic mutations, and in particular somatic copy number ab-

errations. Each subpopulation has a distinct interval count vector

representing the genome of the subpopulation. Following the model

introduced in Oesper et al. (2013), we represent T by: (i) an interval

count matrix C=½cj;k� 2 N
m�n where cj;k is the number of copies of inter-

val Ij in the kth distinct subpopulation; and (ii) a genome mixing vector �

2 "n�1=fð�1; . . . ; �nÞ
T
j
Xn

j=1
�j=1; and �j � 0 for all jg where �k is

the percentage of cells in T that belong to the kth distinct subpopulation.

Let the interval count matrix C=ðc1; . . . ; cnÞ, where cj is the jth col-

umn of C. We assume that C satisfies three constraints. (i) The first

column c1=2m so that the first component of the tumor sample is the

normal genome. (ii) The number n of subpopulations is less than the

number m of intervals. (iii) The copy numbers of the intervals are

bounded below by 0 and above by a maximum copy number k � 2.

Thus, C 2 f0; . . . ; kgm�n. We define Cm;n;k to be the set of all such C,

and define �m;n;k=fðC; �ÞjC 2 Cm;n;k; � 2 "n�1g to be the domain of

pairs ðC; �Þ satisfying all constraints.

We model the observed read depth vector r using a multinomial prob-

ability distribution with parameter p=ðp1; . . . ; pmÞ, where pj is the prob-

ability that a randomly chosen read will align to interval Ij. A pair ðC; �Þ

defines a value for the multinomial parameter p=cC�= C�
jC�j1

. Thus, the

negative log likelihood LðC; �jrÞ=� log ðMultðr; cC�ÞÞ is the negative

log of the multinomial probability of observing counts r in the intervals

given the probability of a read aligning to an interval is defined by cC�.
The goal is to find the interval count matrix C� and genome mixing

vector �� that minimize the negative log likelihood:

ðC�; ��Þ=argminðC;�Þ2�m;n;k
LðC; �; rÞ ð1Þ

2.2 Interval count matrix enumeration

In this section, we derive an improved procedure to solve the optimiza-

tion problem (1). In Oesper et al. (2013), we showed that the function

LðC; �; rÞ is a convex function of �. Thus, for a fixed interval count

matrix C, the optimal value of � can be computed efficiently. In the

important special case of a mixture of normal cells and a single tumor

population (n=2), we reduce the domain of the interval count matrix C

to a set whose size is polynomial in m and guaranteed to contain the

optimal C�. This set is easy to enumerate, and we obtain an efficient

algorithm. However, when a tumor sample contains multiple tumor sub-

populations (n42), the algorithm in Oesper et al. (2013) enumerates all

C 2 Cm;n;k and checks whether each such C satisfies a particular ordering

constraint that is a necessary, but not sufficient, condition for the optimal

C�.

In this section, we derive an algorithm that explicitly enumerates only

those matrices C that satisfy a more restrictive necessary ordering con-

straint for a mixture of any number of tumor genomes. All proofs are

contained in the Supplementary Material.

2.2.1 Compatible order We say that vectors v=ðv1; . . . ; vmÞ and w=

ðw1; . . . ;wmÞ 2 R
m have compatible order provided all 1 � i; j � m; vi �

vj if and only if wi � wj. In Oesper et al. (2013) we proved that if ðC�; ��Þ

is optimal [i.e. satisfies Equation (1)] then dC��� and r have compatible

order. We define Sm;n;k to be the set of matrices C 2 Cm;n;k that satisfy this

ordering constraint: i.e. Sm;n;k=fCjC 2 Cm;n;k and 9� 2 "n�1 such thatcC� is in compatible order with rg. Thus, to find the optimal solution

ðC�; ��Þ, it is sufficient to examine matrices C 2 Sm;n;k.

Without loss of generality, we assume that the read depth vector r=

ðr1; . . . ; rmÞ satisfies r1 � r2 � . . . � rm. Thus, the set Sm;n;k=

fC 2 Cm;n;kj C�ð Þ1 � C�ð Þ2 � . . . � C�ð Þm for some� 2 "n�1g.

For a matrix C 2 Cm;n;k, the set of � that result in a compatible order-

ing can be calculated using the function � Cð Þ as follows:

� Cð Þ= \
m�1

j=1
f�j� 2 "n�1 such that C�ð Þj � C�ð Þj+1g: ð2Þ

Thus, a matrix C 2 Sm;n;k if and only if � Cð Þ is not empty. Corollary 2.1

follows directly from Equation (2).

COROLLARY 2.1. Suppose C 2 Cm;n;k. If there exists an i 2 f1; . . . ;m� 1g

such that for all t 2 f2; . . . ; ng; ci;t � ci+1;t and there exists a t 2 f2; . . . ; ng

such that ci;t4ci+1;t, then � Cð Þ=1.

2.2.2 Using a graph to enumerate Sm;n;k We now present an algo-

rithm to enumerate Sm;n;k for n � 2. Consider a complete (including self

loops) directed graph Gn;k, with a vertex for each possible row in a matrix

in Cm;n;k. Paths on Gn;k of length m – 1 correspond to matrices in Cm;n;k
(See Fig. 1 and Supplementary Fig. S1).
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To enumerate the subset of paths on Gn;k that correspond to matrices

in Sm;n;k, we use a depth-first search. While building paths, we calculate

the set � for the matrix implied by the current path, and only proceed

down branches that do not result in the empty set (see Supplementary

Material for details). As a result, we are guaranteed to enumerate only the

matrices in Sm;n;k.

Corollary 2.1 allows us to reduce the graph Gn;k by showing that there

are certain edges that will never appear in paths that correspond to matri-

ces in Sm;n;k, and thus can be removed from the graph before matrix

enumeration. In the case where n=3, the calculation of � is reduced

to a problem in a single variable, �2

�3
.

2.3 A two-step procedure for genome-wide inference of

copy numbers

In Oesper et al. (2013), we inferred tumor composition using a relatively

coarse interval partition I of the reference genome, considering only large

copy number aberrations. As a result, the published approach could not

readily be applied to highly rearranged genomes that are segmented into

many intervals. Moreover, manual selection of a subset of intervals was

typically required when analyzing samples containing multiple tumor

populations. Even with the improved enumeration procedure described

in the previous section, when more than one tumor subpopulation is

considered, the number of matrices C that need to be enumerated is

exponential in the numberm of intervals. Moreover, the number of matri-

ces C is also exponential in the maximum copy number state k con-

sidered, making analysis of genomes with extensively amplified regions

more difficult.

In this section, we present a two-step procedure for interval selection

that overcomes the limitations stated above, and allows us to infer the

composition of highly rearranged genome that are highly fragmented

and/or contains amplified segments with more than k copies. Our two-

step procedure consists of the following steps: (i) Select a set of high-

confidence intervals and determine the most likely C and � for those

intervals. (ii) Use the estimates of C and � to determine copy numbers

for all other intervals in I not used in the first step, thus allowing for

analysis of both highly amplified regions and fragmented genomes.

2.3.1 Interval selection We automate the selection of a subset

of high-confidence intervals used to determine the optimal ðC�; ��Þ

for those intervals. Further details are included in the

Supplementary Material. Briefly, we partition I into two sets of intervals:

(i) IH—high-confidence intervals; (ii) IL—lower-confidence intervals. IH
is selected to contain up to a fixed integer d longest intervals from I such

that each interval selected is longer than a predetermined minimum length

and is not obviously amplified beyond the specified max copy number k.

IL contains all remaining intervals from I. Additionally, IH must repre-

sent 410% of the total length of all provided intervals, otherwise the

sample is determined not to be a good candidate for analysis using

THetA2. Once IH and IL have been selected, we use the improved

THetA2 algorithm described in the previous section to calculate C�H
and ��H for just the intervals in IH.

2.3.2 Determining additional copy numbers: single row Given

ðC�H; �
�
HÞ predicted for high-confidence intervals IH, we infer copy num-

bers for the remaining intervals IL. We start with the simplifying assump-

tion that jILj=1. We prove the following theorem.

THEOREM 2.1. Let C=½ci;j� be an interval count matrix. LðC; �jrÞ is a

convex function of ci;j.

We use Theorem 2.1 to find the optimal real-valued solution for

the ci;j’s corresponding to the single interval I 2 IL, given C�H and ��H.

We then check the surrounding integer values to find the integral

solution, which, by convexity, is guaranteed to find the optimal integer

solution.

2.3.3 Determining additional copy numbers: multiple rows In the

previous section, we showed how to find the optimal copy number for a

single additional interval in IL given optimal values C�H, and �
�
H for a

set of high-confidence intervals IH. To estimate copy numbers when

I 2 IL contains more than one interval, we estimate the optimal copy

numbers for each interval in I 2 IL when appended to CH individually

as described in the previous section, and then jointly append all inferred

copy numbers to C�H to obtain a new matrix CH[L. We then return

the solution ðCH[L; �
�
HÞ. We note that this approach provides no

guarantee for finding the optimal copy numbers across all I 2 IL given

C�H, and �
�
H. However, in practice, we find that the solutions returned by

our procedure are generally similar to this optimum (Supplementary

Table S1).

2.4 Model selection

As in Oesper et al. (2013), we use the Bayesian information criterion

(BIC) to select from different sized models (i.e. different numbers n of

tumor populations) and their corresponding maximum likelihood solu-

tions. We use the standard BIC of �2logðLÞ+alogðbÞ where L is the

likelihood of a solution, a=ðm+1Þðn� 1Þ is the number of free param-

eters in the model and b is the number of data points (the total number of

tumor and normal reads). In contrast, Oesper et al. (2013) used a mod-

ified BIC that more strongly penalized solutions with more tumor popu-

lations. Such a modification is not necessary here, as our improved

algorithm considers copy number data across the entire genome, rather

than only a small number of intervals, reducing the possibility of over-

fitting. Thus, we are able to more robustly identify samples with multiple

subpopulations of tumor cells.

2.5 Probabilistic model of BAFs

THetA2 may return multiple equally like pairs ðC; �Þ when using read

depth alone. We derive a probabilistic model of BAFs—the fraction of

reads containing the minor allele—that may be used to distinguish be-

tween multiple pairs ðC; �Þ. Let v=ðv1; v2; . . . ; vqÞ be the observed BAFs

for q heterozygous germ line SNPs in the normal sample and w=ðw1;w2

; . . . ;wqÞ be the corresponding BAFs from the tumor genome. We model

w as being drawn from Gaussian distributions whose parameters depend

Fig. 1. The graphG3;1 is used to enumerate the matrices Sm;3;1 as a subset

of the paths of length m – 1. The dashed edges can be removed by apply-

ing Corollary 2.1. The highlighted path corresponds to the matrix on the

right
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on v, C and �. We then select the ðC; �Þ, which maximizes the likelihood

of the observed BAFs in the tumor sample:

LðC; �jv;wÞ=Pðwj�; �2Þ=
Yq
i=1

Nðwijsgnð0:5� wiÞ�i; �
2
i Þ ð3Þ

Here �2i is the observed variance for all heterozygous SNPs in v that lie

within interval Ij, and �j is the expected BAF deviation away from 0.5

given C and �. See the Supplementary Material for further details.

2.6 Application to WXS data

Finally, we extend THetA2 for WXS data, where only the coding regions

of the genome have been targeted for sequencing. From WXS data we

need to infer the following two values: (i) a set of non-overlapping inter-

vals I=ðI1; . . . ; ImÞ in the reference genome; and (ii) a corresponding read

depth vector r=ðr1; . . . ; rmÞ.

To infer the interval partition I, we rely on recently developed algo-

rithms such as ExomeCNV (Sathirapongsasuti et al., 2011) and

EXCAVATOR (Magi et al., 2013) for segmentation and detection of

copy number aberrations from WXS data. The segmentation returned

by one of these algorithms may contain gaps rather than being a complete

partition of the reference genome, but still provides a set of non-over-

lapping intervals that may be used as input to THetA2. We note that

some methods use normalization procedures for GC content, mappability

and even exon length and this information is therefore implicitly incor-

porated into the input provided to THetA2.

We compute the read depth vector r=ðr1; . . . ; rmÞ for WXS data as

follows. Given a set I of non-overlapping intervals in the reference

genome, a set E of exons in the reference genome and a read length ‘,

we set rj=
xj
‘ where xj is the total number of sequenced nucleotides that

have a unique alignment to some exon e 2 E within interval Ij. Thus, rj is

approximate count of the number of reads aligning to some exon located

in interval Ij.

3 RESULTS

We ran THetA2 on simulated data, WGS (including low-pass
data 5–7� coverage) and WXS data from 18 breast carcinoma,

ovarian carcinoma, glioblastoma multiforme, kidney renal clear

cell and lung squamous cell carcinoma samples from TCGA

(Supplementary Table S2). Where available, we compare our

estimates of tumor purity to the estimates reported by the

ABSOLUTE algorithm (Carter et al., 2012) that estimates
purity from SNP array data.

The rest of this section is organized as follows. First, we dis-

cuss results on simulated data. Second, we demonstrate

THetA2’s performance on WXS data, including comparison of
results for samples for which both WGS and WXS data were

available. Next, we present in-depth analysis of several WGS

samples to demonstrate the efficacy of THetA2 on highly rear-

ranged genomes, using both low-pass and moderate coverage

sequence data. Finally, we apply our probabilistic model of

BAFs to one sample and disambiguate between two equally
likely solutions.

3.1 Simulated data

We tested THetA2 on simulated data to demonstrate the im-

provements in THetA2 over the original THetA as well as

ABSOLUTE. We created simulated mixtures using real sequen-

cing data from an AML tumor sample and matched normal

sample (TCGA-AB-2965) from The Cancer Genome Atlas

Research Network (2013). This sample was chosen because of

its high purity (�95% pure) and lack of copy number aberra-

tions as predicted by array data, providing high confidence that

our simulated mixture and implanted copy number aberrations
are not confounded by impurity and aberrations in the real data.

Simulated mixtures are created by implanting random amplifi-

cations and deletions (see Supplementary Material) to create dif-

ferent tumor populations, and then creating a mixture

representing different tumor compositions.

3.1.1 Mixtures with three subpopulations We find that THetA2

computes the optimal solution orders of magnitude faster than
the original THetA (Fig. 2a). Using 30� simulated data, THetA2

demonstrates consistent accuracy at estimating � (error50.05)

and copy numbers in the larger tumor population (error50.1).

In addition, the accuracy in estimating copy numbers improves
for the smaller tumor population as its proportion increases

(Fig. 2b). Furthermore, THetA2 has increased performance at

estimating copy numbers for both populations when considering

only longer intervals. For example, when the smaller subpopula-
tion comprises 0.3 of cells in the sample and we consider only

intervals longer than 5Mb, the error rate for both populations

drops50.06. We see similar trends using 7� simulated data, but

the lower coverage results in slightly worse copy numbers esti-

mates (Supplementary Fig. S2).
We also directly compare THetA2 with the original THetA on

this simulated data. The two-step method enables THetA2 to
infer copy numbers for 100% of the genome compared with

only 6–11% of the genome with the original THetA

(Supplementary Fig. S3). The expanded fraction of the genome

analyzed also translates into a substantial increase in the fraction
of genome with correct copy number estimates. In our simula-

tions, THetA2 correctly infers copy numbers for the larger and

smaller tumor subpopulation in 83–87% and 28–72% more of

the genome, respectively, than THetA (Supplementary Fig. S4).
Using the simulated mixture in Figure 3a, we demonstrate that

the improved enumeration procedure in combination with the

(a) (b)

Fig. 2. Runtime comparison and estimation error for THetA2 on simu-

lated data containing a mixture of normal cells and two tumor subpopu-

lations. (a) The ratio of runtimes for the old and new enumeration

procedures as a function of the number of intervals used in the first

step of the algorithm. (b) Estimation error for both � and C for each

tumor population (Tum1 and Tum2) as the proportion of Tum2 increases

and the proportion of Tum1 is fixed at 0.5. Error for � is the Euclidean

distance from the true value and error for each tumor population is the

fraction of the genome for which the copy number is incorrectly inferred

for the all copy number estimates, and when only considering intervals

that are longer than 1Mb and 5Mb
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two-step method can lead to improved estimates of both � and

C. On this mixture, THetA2 is able to reconstruct both tumor
populations with accuracy 40.87 (Fig. 3b) across the entire

genome. However, because THetA is only able to consider a

small fraction of the genome, when applied to this mixture, it

has increased error at estimating � and completely misestimates

the smaller tumor subpopulation with error of 0.95 across the

regions for which copy number estimates were made and error of
0.99 across the whole genome (Fig. 3c). We also applied

ABSOLUTE (Carter et al., 2012) to this mixture, run with de-

fault parameters, using the same partition of the genome output

by BIC-seq (Xi et al., 2011). ABSOLUTE returns a collection of

12 different solutions, each with a different purity and likelihood

(Fig. 3d). The most likely solutions returned by ABSOLUTE
underestimate purity by at least 0.28 and estimated a tetraploid

solution, whereas the true sample has mean ploidy 1.75 and 1.77

in the two tumor populations. Further details are located in the

Supplementary Material.

3.1.2 Mixtures with four subpopulations To demonstrate the

extensibility of the model to greater numbers of subpopulations,

we create a simulated 30� coverage mixture containing four dis-
tinct subpopulations. Because of the increased runtime when

considering larger numbers of subpopulations, we use an alter-

native segmentation procedure to reduce the total number of

intervals (see Supplementary Material for details). We find that

on this simulation, THetA2 was able to estimate � with 0.05

error, comparable with the accuracy achieved for smaller num-

bers of subpopulations, and was able to correctly infer copy

number for 99.6% of the intervals considered, with the tradeoff

of only considering 87.6% of the total genome (Supplementary

Fig. S5). Further, we demonstrate how the output of THetA2

changes when the number of subpopulations (n) is fixed below

the true number of subpopulations. In particular, we show that

in this case THetA2 still provides useful information about the

true mixture (Supplementary Fig. S6).

3.2 Extension to WXS data

To demonstrate THetA2’s effectiveness on WXS data, we ran

THetA2 on Illumina WXS data for the subset of 16 of the 18

tumor samples from TCGA for which WXS data were available

(Supplementary Table S2). For each sample, we used both

ExomeCNV (Sathirapongsasuti et al., 2011) and

EXCAVATOR (Magi et al., 2013) with default parameters to

determine an interval partition I (see Supplementary Fig. S7 for

the complete WXS workflow). If we assume that the tumor

sample is a mixture of normal cells and a single tumor popula-

tion, then the purity estimates obtained by THetA2 on the

ExomeCNV and EXCAVATOR interval segmentations were

similar for most samples (Supplementary Fig. S8). The two ex-

ceptions were two tumor samples where we find subclonal copy

number aberrations (for one example see Supplementary Fig.

S9). We found that the presence of subclonal aberrations can

result in estimates of purity that are artificially low. For example,

a segmentation may not accurately distinguish all the present

subclonal aberrations. Thus, in the results below, we use the

THetA2 solution with higher purity estimate from the

ExomeCNV and the EXCAVATOR segmentations. Further

details are in the Supplementary Material.

3.2.1 Comparison of THetA2 with ABSOLUTE On most sam-
ples, THetA2 purity estimates are within 0.08 of the estimates

reported by the ABSOLUTE algorithm (Carter et al., 2012)

(Fig. 4a). One example is the glioblastoma sample TCGA-06-

0214, for which we estimate purity of 0.67 compared with 0.66

reported by ABSOLUTE. However, although the purity esti-

mates are similar, THetA2 is additionally able to identify two

subpopulations of tumor cells, in 46.4 and 20.1% of cells in

sample (Fig. 4b) and determine which copy number aberrations

are part of each subpopulation.

There are two samples where THetA2 purity estimates are not

in agreement with those reported for the ABSOLUTE algorithm

(Carter et al., 2012) (Fig. 4a). The first is the ovarian carcinoma

sample TCGA-29-1768 where we infer multiple tumor subpopu-

lations and report a purity of 0.87 compared with 0.55 reported

by Carter et al. (2012). Notably, one of the tumor subpopula-

tions returned by THetA2 is in 54% cells. A possible explanation

is that ABSOLUTE reported the purity for the major tumor

subpopulation. The second is glioblastoma sample TCGA-06-

0188 which we infer to contain two tumor subpopulations con-

sisting of 43.1 and 20.3% cells. In comparison, ABSOLUTE

reports that the sample is highly non-clonal and is unable to

estimate purity. Our purity estimate of 0.7 is in the range of

0.6–0.8 reported by TCGA histopathology reports. We perform

A

B

C

D

Fig. 3. Comparison of THetA2, THetA and ABSOLUTE on a simulated

mixture of three subpopulations. (a) True simulated mixture including

read depth ratios (dots) within 50kb bins and the true copy numbers for a

mixture of normal cells and two tumor subpopulations. (b) Tumor com-

position inferred by THetA2 using default parameters. Genome coverage

is the fraction of the genome for which copy number estimates are made.

� error is the Euclidean distance from the true � and C error is the

fraction of the genome with the incorrect copy number estimate. (c)

Similar to (b) but shows composition inferred by the original THetA

and also shows C error across both predicted regions and the complete

genome. (d) (left) Histogram of all 12 purity estimates output by

ABSOLUTE. (right) The purity and ploidy reported in the most likely

and most likely using only Karyotype solutions output by ABSOLUTE
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further analysis of this sample and find supporting evidence for

our estimated tumor composition (Supplementary Fig. S10).

These results demonstrate that consideration of multiple tumor

populations may be important for determining tumor purity,

especially for samples with large subclonal populations.

3.2.2 Consistency across sequencing platforms To further valid-
ate the results of THetA2 on WXS data, we compared results for

the 7 of the 18 TCGA samples for which both WGS (including

low-pass with 5–7� coverage) and WXS sequence data were

available. For WGS samples, we partition the reference

genome using the BIC-seq algorithm (Xi et al., 2011) run with

default parameters (see Supplementary Fig. S7 for WGS work-

flow). We found that purity estimates for WXS data to be within

0.04 of purity estimates for WGS data for 4 of the 7 samples

(Table 1).

We also compare the copy number aberrations predicted for

the different subpopulations between the WXS and WGS data

using a similarity measure described in Table 1 caption. We find

that four of the genomes have � 0.89 similarity under our meas-

ure (Table 1) for the major subpopulation. Notably, we find that

THetA2 infers three subpopulations for sample TCGA-06-0214

on both WXS and WGS data—selecting the n=3 solution over

both n=2 and n=4 for WGS data (see Supplement) and has

similarity 0.92 between the data types for the minor subpopula-

tion. We also found similar copy number similarity results using

a less stringent measure that only considers copy number state

rather than exact copy number value (Supplementary Table S3).

These results demonstrate the consistency of THetA2—including

the inference of multiple tumor subpopulations—across different

types of sequencing data.

3.3 Analysis of highly rearranged and heterogeneous

genomes

One of the main advantages of THetA2 is the ability to analyze

highly rearranged genomes containing many copy number aber-

rations in one or more tumor subpopulations. We analyze in

further detail several highly rearranged genomes that THetA2

predicted to contain subclonal populations from WGS data.

3.3.1 Low-pass breast cancer samples TCGA-A2-A0EU and
TCGA-AO-A0JL We used THetA2 to analyze two breast

cancer genomes, TCGA-A2-A0EU and TCGA-AO-A0JL, that

were sequenced with low-pass (5-7X) WGS sequencing. These

are the most rearranged of the breast cancer genomes that we

analyzed—containing many intervals in BIC-seq segmentation

(493 and 675 intervals respectively) and more predicted copy

number aberrations. We attempted to run ABSOLUTE

(Carter et al., 2012) on these genomes using the BIC-seq segmen-

tation. However, despite trying a range of values for the param-

eters, we obtained purity50.3 for both samples. For comparison,

we cite the results reported by Yadav and De (2014) on these

samples, using ABSOLUTE and a different segmentation.

In both samples, THetA2 identifies multiple subclonal popu-

lations. We infer that breast cancer sample TCGA-A2-A0EU

contains normal admixture with two distinct tumor subpopula-

tions, one with 42.7% cells and another with 34.6% cells

(Supplementary Fig. S11a). We note that our estimate of

tumor purity (0.77) is below the reported histopathology purity

of 0.90 for this sample, but closer than the ABSOLUTE estimate

of 0.49. We infer that breast cancer sample TCGA-AO-A0JL

contains normal admixture with two distinct tumor subpopula-

tions, one with 57.0% cells and another with 30.5% cells

(Supplementary Fig. S11b). Despite being the most rearranged

of the breast cancer genomes analyzed, our estimated tumor

purity of 0.88 is near the reported histopathology value of

0.80. In comparison, ABSOLUTE inferred purity of 0.50 for

this sample. We are also able to identify a number of clonal

and subclonal chromosome arm level events for both genomes

(see Supplemental Material), as well as many other small events,

thus demonstrating that THetA2 can analyze highly rearranged

genomes with low-coverage WGS sequencing data.

3.3.2 Lung squamous cell sample TCGA-56-1622 We ran

THetA2 on a highly rearranged lung squamous sample

TCGA-56-1622, containing 2847 intervals in the segmentation.

(a) (b)

Fig. 4. THetA2 results on WXS data. (a) Comparison of purity estimates by THetA2 and ABSOLUTE (as reported in Carter et al., 2012). With

exception of two outlier samples (red triangles; TCGA-29-1768 and TCGA-06-0188), both approaches predict similar estimates on high purity samples:

r=0.9 from Pearson correlation coefficient. Circled sample is TCGA-06-0214, for which both methods agree on sample purity. (b) Tumor composition

inferred by THetA2 on glioblastoma multiforme sample TCGA-06-0214. Read depth ratios (dots) within 50kb bins and the copy numbers (for all

intervals42Mb) inferred by THetA2 for a mixture of normal cells and two tumor subpopulations. We detect rearrangements common to glioblastoma

multiforme (Sturm et al., 2014) such as amplification of chromosomes 7, and loss of chromosomes 6q, 9p, 10, 13q and 14q
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We note that this genome is so fragmented that ABSOLUTE

(Carter et al., 2012) does not attempt to estimate tumor purity

when run with default parameters. Moreover, this sample has so

many copy number changes that SNV-based algorithms (Andor

et al., 2014; Roth et al., 2014) would have extreme difficulty in

defining regions of normal copy number to analyze. THetA2

infers that sample contains normal admixture with two distinct

tumor subpopulations, one with 50.1% cells and another with

18.1% cells (Fig. 5a). Using the new two-step procedure,

THetA2 also identifies many smaller copy number aberrations

(Supplementary Fig. S12) and we find that the read depth pre-

dicted using our reconstruction closely matches the observed

read depth (Fig. 5b).
We examine this sample in further detail using B-allele fre-

quency (BAF) information not used by THetA2. We constructed

a virtual SNP array defining the BAF at a known germ line SNP

to be the fraction of reads containing the minor allele as

described in Oesper et al. (2013). In diploid regions of the

genome that have not undergone any copy number changes,

we expect that the BAFs for germ line heterozygous SNPs to

be near a value of 0.5, as approximately half of the reads should

contain the B-allele. In a pure tumor sample a deletion of a

segment on a single chromosome will lead to a loss of heterozy-

gosity (LOH) and BAFs at 0 or 1 in a symmetric double banded

pattern centered around 0.5. As the sample become less pure (i.e.

more admixture by normal cells), the double banded pattern will

shift closer to 0.5.

In many of the regions where THetA2 predicted a clonal de-

letion (i.e. in all subpopulations), such as chromosomes 3, 5q and

18 (Fig. 5b), we observe that the BAFs cluster near 0 and 1, as

expected for a deletion occurring in a majority of cells in the

sample. Similarly, we find that the shifts in BAF are consistent

with THetA2’s predictions of subclonal deletions in 50.0 and

18.1% of cells (Fig. 5b). On chromosome 1p, we observe a dis-

crepancy between THetA2’s predictions and BAF. THetA2 pre-

dicts that 1p is a clonal deletion; however, the BAFs are clustered

tightly around 0.5, indicating an equal number of both parental

copies of this region in the tumor sample. One explanation is that

1p is homozygously deleted in one of the tumor subpopulations,

rather than a heterozygous deletion in both subpopulations,

which would keep the balance of the parental copies of 1p in

the tumor sample.

3.4 Using BAFs

For glioblastoma sample TCGA-06-0145, THetA2 outputs two

possible ðC; �Þ pairs using only read depth – one largely haploid

and one largely diploid. We apply our probabilistic model of
BAFs and find that the diploid reconstruction, which includes

rearrangements characteristic to glioblastoma such as amplifica-

tion of chr7 and deletion of chr10 (Sturm et al., 2014), is deter-

mined to be the more likely tumor composition (Supplementary

Fig. S13).

4 DISCUSSION

We introduced an algorithm to infer tumor composition – of

highly rearranged genomes from WGS (high or low coverage)

or WXS DNA sequencing data. These are implemented as im-

provements to our THetA algorithm. The THetA2 algorithm is

able to analyze highly rearranged, aneuploid samples that are

beyond the scope of existing algorithms that infer tumor hetero-

geneity. A recently published comparison of algorithms for infer-

ring tumor purity (Yadav and De, 2014) showed that our

original THetA algorithm (Oesper et al., 2013) performed well,
but sometimes underestimated tumor purity when run to only

consider normal cells and one tumor subpopulation. We argue

that this purity underestimation is likely a result of not directly

considering all tumor subpopulations in the sample. In every

sample that we analyzed with the new algorithm, tumor purity

was higher when considering multiple tumor subpopulations.
Although the improved THetA2 presented here is useful on a

wide range of sequencing data from different tumors, some limi-

tations remain. First, THetA2 is unable to distinguish tumor

subpopulations that are not differentiated by copy number ab-

errations. As copy number aberrations are ubiquitous in most

solid tumors (Albertson et al., 2003), we expect that THetA2 will

be applicable to many genomes. However, for some diploid

tumors, SNV analysis is preferable. Incorporation of additional

Table 1. Comparison of THetA2 results on WGS and whole-exome data

Sample Path. ABS WGS Purity (# populations) WXS Purity (# populations) Overlap CNA Sim

TCGA-06-0185 0.95 0.89 0.87 (3) 0.83 (2*) 0.97 0.91

TCGA-06-0188 0.6–0.8 NA 0.70 (3) 0.63 (3) 0.96 0.79, 0.62

TCGA-06-0214a 0.25–0.8 0.66 0.67 (3) 0.67 (3) 0.96 0.97, 0.92

TCGA-56-1622 0.9 – 0.68 (3) 0.78 (3) 0.96 0.89, 0.57

TCGA-A2-A0EU 0.9 – 0.77 (3) 0.90 (3) 0.91 0.61, 0.22

TCGA-AO-A0JJ 0.8 – 0.52 (3) 0.52 (2) 0.85 0.67

TCGA-BH-A0W5 0.7 – 0.51 (2*) 0.54 (2*) 0.98 0.97

Notes. Path. are purity estimates reported in TCGA histopathology reports. ABS are ABSOLUTE purity estimates reported by Carter et al. (2012) (samples marked with ‘–’

do not have published purity estimates from ABSOLUTE). WGS Purity, WXS Purity and # populations are values predicted by THetA2. Overlap is I�

jIWGS j[jIWXS j
where IWGS

and IWXS are the interval partitions for the WGS and whole-exome data, respectively, and I� is the set of intervals longer than 100kb contained in both IWGS and IWXS. CNA

Sim is the fraction of I� where the copy number estimates are the same between the two data types. *Indicates that the sample did not pass the criteria to be considered for

multiple tumor populations (see Supplemental Material). aFor sample TCGA-06-0214, WGS data were aligned to hg18 and WXS data aligned to hg19. See Supplementary

Table S3 for purity estimates across all genomes analyzed and results using an additional similarity metric. Bolding indicates the sample for which THetA2 can estimate purity,

but ABSOLUTE reports as highly non-clonal and is unable to estimate purity.
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information, such as BAFs for somatic and germ line SNPs,

into the model (Andor et al., 2014; Roth et al., 2014) may
also increase the scope of samples for which THetA2 is

applicable.
Second, while the improvements presented here greatly de-

crease the computational burden of the algorithm when consider-

ing multiple tumor populations, the algorithm remains
exponential in the size of the interval partition of the reference

genome—making it impractical to infer tumor composition with
more than a handful of subpopulations in many cases.
Identification of further mathematical restrictions to the

domain of interval count matrices, or use of sampling techniques
in place of complete enumeration are future avenues of investi-

gation, which may prove useful in this respect. Additionally,
when considering multiple tumor subpopulations, the quality
of the results is limited by features of the data including the

presence of copy number aberrations that distinguish

subpopulations as well as the number of sequence reads available

to identify these aberrations. The later is a function of sequencing
coverage, aberration length and proportion of cells that have the

aberration.
While the limited number of tumor subpopulations that

THetA2 analyzes may not be sufficient to fully analyze tumor

progression, THetA2’s ability to recover subpopulations with
relatively low-coverage sequencing data can provide some insight

into tumor subpopulations in cases where methods that rely on
high-coverage data (Jiao et al., 2014; Roth et al., 2014) cannot.
Combining THetA2s output with other methods that do expli-

citly consider the phylogenetic history of a tumor such as Jiao
et al. (2014) or Hajirasouliha et al. (2014) may prove a useful

avenue of exploration.
The two-step procedure introduced here allows us to infer

subclonal copy number aberrations at much smaller scales.

However, some care is required to avoid overfitting the data,

Fig. 5. Analysis of squamous cell lung cancer sample TCGA-56-1622. (a) (Left) Read depth ratios (gray dots) within 50kb bins and the inferred copy

number aberrations calculated by THetA2 when the tumor is considered to be a mixture of three subpopulations: normal cells (black) and two tumor

subpopulations (blue and red). (Right) A reconstruction of the tumor mixture along with ancestral clonal population (purple) with the inferred

aberrations and estimated fraction of cells in each population (see Supplementary Material). (b) Expected read depth ratios (see Supplementary

Material) for intervals longer than 2Mb based on inferred C and � (black) overlaid on observed read depth ratios (gray dots). (c) Virtual SNP

array showing BAFs at germ line SNPs on indicated chromosomes and the mean BAF in each segment (see Supplementary Material)

3539

Quantifying tumor heterogeneity

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/30/24/3532/2422230 by guest on 20 April 2024

B-allele frequencies
ly
 - 
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu651/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu651/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu651/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu651/-/DC1


particularly for small, subclonal copy number aberrations where

GC bias or other sequencing artifacts may lead to incorrect in-

ferences. Incorporating more sophisticated segmentation proced-

ures that account for such effects and appropriately scale read

counts (Benjamini and Speed, 2012) are useful directions for

future research.

Finally, this work focuses on the important first step of quan-

tifying intra-tumor heterogeneity from a single mixed tumor

sample. Downstream analysis including the clinical and func-

tional impact of the inferred tumor composition is an important

area for future work.

5 CONCLUSION

We present a new algorithm, THetA2, to infer the composition

of a tumor sample—including both the percentage of normal

admixture and the fraction and content of one or more of

tumor subpopulations that differ by copy number aberrations.

The new algorithm builds on our THetA algorithm (Oesper

et al., 2013), and includes several improvements that allow us

to analyze highly rearranged genomes from WGS (high and low

coverage) or WXS sequencing data. In addition, the new algo-

rithm is orders of magnitude faster and allows us to use BAFs to

distinguish between different reconstructions.
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