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Abstract

Motivation: Identifying alterations in gene expression associated with different clinical states is im-

portant for the study of human biology. However, clinical samples used in gene expression studies

are often derived from heterogeneous mixtures with variable cell-type composition, complicating

statistical analysis. Considerable effort has been devoted to modeling sample heterogeneity, and

presently, there are many methods that can estimate cell proportions or pure cell-type expression

from mixture data. However, there is no method that comprehensively addresses mixture analysis

in the context of differential expression without relying on additional proportion information, which

can be inaccurate and is frequently unavailable.

Results: In this study, we consider a clinically relevant situation where neither accurate proportion

estimates nor pure cell expression is of direct interest, but where we are rather interested in detect-

ing and interpreting relevant differential expression in mixture samples. We develop a method,

Cell-type COmputational Differential Estimation (CellCODE), that addresses the specific statistical

question directly, without requiring a physical model for mixture components. Our approach is

based on latent variable analysis and is computationally transparent; it requires no additional ex-

perimental data, yet outperforms existing methods that use independent proportion measure-

ments. CellCODE has few parameters that are robust and easy to interpret. The method can be

used to track changes in proportion, improve power to detect differential expression and assign

the differentially expressed genes to the correct cell type.

Availability and implementation: The CellCODE R package can be downloaded at http://www.pitt.

edu/�mchikina/CellCODE/ or installed from the GitHub repository ‘mchikina/CellCODE’.

Contact: mchikina@pitt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Differential expression analyses are used widely in the study of

human biology, but their utility is often limited by the extreme vari-

ability (and the resulting poor reproducibility) of human molecular

measurements. One biological source of measurement variance is

heterogeneity in sample composition. Human samples are often

mixtures of multiple cell types with relative proportions that can

vary several fold across samples. For example, in diseased brain, cell

populations can change markedly, as some cell types die, whereas

others proliferate (Kuhn et al., 2011). In cancer samples, there may

be different amounts of stromal tissue and different sub-populations

of cancer cells that are molecularly distinct (Schwartz and Shackney,
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2010; Yoshihara et al., 2013). Cell-type variation is particularly pro-

nounced in blood, where proportions of different cell types can vary

4-fold naturally (Adalsteinsson et al., 2012; Shen-Orr et al., 2010).

Consequently, it is well established that mRNA and protein meas-

urements from human blood, or blood derivatives such as peripheral

blood mononuclear cells (PBMCs), are extremely variable.

Much effort has been devoted to the development of computa-

tional methods that can accurately model and analyze mixture sam-

ples. Existing approaches can computationally estimate proportions,

pure expression states or both [see Gaujoux and Seoighe (2013) and

Shen-Orr and Gaujoux (2013) for comprehensive reviews]. The

methods range from simple matrix decomposition to complex itera-

tive procedures. Importantly, these methods are largely focused on

estimating physical quantities (pure expression states and propor-

tions) rather than statistical ones (such as effects and interactions),

and most are not designed for differential expression analysis. A re-

cent R package unifying many of the existent methods lists only two

(DSection and csSAM) that can work as differential expression pipe-

lines, and both require independent cell proportion measurements as

input (Gaujoux and Seoighe, 2013).

Shen-Orr et al. had showed that csSAM can be effective at ad-

dressing two questions. It can be used both to find differentially ex-

pressed (DE) genes, when standard statistical methods fail, and to

assign the DE genes to the cell type in which their regulation has

been altered. The latter is an important goal as disease-associated

expression changes are expected to be cell-type specific and knowing

which cells are affected by the disease state is important for inter-

preting the results.

In this study, we demonstrate that these two goals, improving

the power to detect DE genes and assigning altered expression to the

cell type of origin, can be effectively approached with latent variable

analysis. Our Cell-type COmputational Differential Estimation

(CellCODE) method is designed for DE analysis and requires no

additional dataset-specific knowledge. In particular, we demonstrate

that by relying on the data structure alone, we can correct for mix-

ture variation and improve statistical power as well as or better than

methods that use explicit cell proportion measurements. We also

show that the CellCODE framework can be used to assign expres-

sion alterations to their cell type of origin with high accuracy. Our

method is widely applicable and we demonstrate that it can be used

to derive new insights from existing data.

2 Results

The biological complexity of quantitative measurements derived

from mixture samples raises many challenges. The variation of mix-

ture components from sample to sample induces large variance in

gene expression measurements, making it difficult to detect relevant

gene regulation. On the other hand, the cell-type proportions them-

selves may be different between the clinical groups, giving rise to

many DE genes that do not correspond to any actual transcriptional

regulation. Finally, for genes that are altered within a cell-type the

source of transcriptional regulation is ambiguous, as many cell types

are assayed together.

We propose a multi-step statistical framework that uses latent

variable analysis to analyze differential expression from mixture sam-

ples. We first estimate a set of surrogate proportion variables (SPVs)

by cross-referencing putative marker genes with the data correlation

structure. These SPVs are then included in the differential expression

analysis to improve the detection of bona fide regulated genes.

Finally, the DE genes are assigned to the cell type in which they are

regulated, evaluating interaction between genes and estimated SPVs.

2.1 CellCODE SPVs
To resolve the relative contributions of proportion changes and gene

regulation in a statistical framework, our approach relies on estimat-

ing the relative differences in cell proportion (but not the actual nu-

merical fractions) directly from molecular expression measurements.

Our approach relies on using external reference datasets to deter-

mine which genes are likely to track cell-type abundance, i.e. marker

genes, which has been successful previously (Kuhn et al., 2011;

Repsilber et al., 2010). However, obtaining a set of reliable markers

is not always a trivial task. In blood-derived mixtures, many genes

express in more than one cell type, and even canonical surface pro-

teins do not always provide good markers at the mRNA level (e.g.

the CD4 marker of a T-cell subtype is not T-cell specific).

In general, exactly which genes reliably track which cell type is a

product of a number of interacting factors (such as marker and iso-

form specificity, technical platform aspects, similarities among cell

types and absolute cell-type abundance), which vary from dataset to

dataset. To address this, we propose a data-dependent approach

that finds marker genes that are reliable for the specific dataset being

analyzed. Specifically, we use putative marker genes to guide the de-

composition of the dataset structure into separate variance compo-

nents that track mixture proportions. Our methodology is based on

using singular value decomposition (SVD) to combine marker genes,

a technique known as an eigengene summarization (Langfelder and

Horvath, 2008), which effectively negates the contribution of

any inconsistent marker assignments. Unlike previous approaches

that rely on a few robust marker genes, our method has the advan-

tage of using a larger list of putative marker genes, while requiring

them to be correct only on average. This allows a permissive ap-

proach to marker selection, while improving the robustness of the

result.

The CellCODE pipeline includes a visualization step that can be

used to explore the structure of marker expression and ensure accur-

ate estimation. After regressing out any known clinical variables, we

compute the correlation coefficients of all marker genes of interest

along with our computed SPVs. We expect that markers for the

same cell type should correlate with each other, whereas markers for

different cell types should be largely uncorrelated, resulting in a

block-like correlation structure that is captured by the CellCODE

SPVs. This visualization step also ensures that we have selected a set

of cell types that can be reliably tracked as separate components by

their marker sets. Some cell proportions may be fundamentally

unmodelable, for example, if they are too rare or co-vary with an-

other variable. Markers for such cell types would not form distinct

correlated blocks.

We illustrate this approach by extracting SPVs from the Shen-

Orr dataset using markers derived from the IRIS (Immune Response

In Silico) (Abbas et al., 2009) and DMAP (Differentiation Map)

reference datasets (Novershtern et al., 2011). As expected, we find

that the correlation structure is block-like, although not all of the

cell markers for an individual cell-type cluster together (Fig. 1). In

fact, a number of selected markers cluster with genes from the

wrong cell type, highlighting the potential inconsistencies that arise

from differences in platforms and experimental conditions.

Importantly, however, the CellCODE SPVs (denoted in black) al-

ways cluster with the majority of the cell-type markers. The

CellCODE eigengene-based approach extracts the consensus correl-

ation signature and is therefore robust to outliers.

We emphasize that because they are eigenvectors of an SVD,

SPVs do not directly quantify cell-type proportions; in particular,

SPVs will take on negative values. Nevertheless, SPV values should

reflect the relative differences in cell-type composition. As such,
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SPVs should be well-correlated with true cell-type composition. We

test this by making use of the Coulter counter measurements associ-

ated with the Shen-Orr dataset. Because Coulter counter analysis

separates cells based on size, thus combining some molecularly dis-

tinct cell types, there is no direct correspondence between the cell

types reported in this dataset and those for which CellCODE com-

putes corresponding SPVs. Despite these limitations, when we plot

the Coulter counter measurements for the three most abundant cell

types against the relevant SPVs, we find that the two measures show

good correlation (Fig. 2). Our technique also captures variation in

other cell types, such as NK cells, B cells and non leukocyte cells

that were not resolved by Coulter counter analysis.

Ideally, SPVs, which are eigengene-based summaries of cell-type

marker genes, should not just correlate with true proportions, but

should also be consistent, i.e. produce the same values for samples

with the same cell-type proportions, independently of other sources

of expression variation. This goal presents a potential challenge if

marker genes themselves are subject to regulation within the cell

type they represent.

To overcome these limitations, CellCODE employs a modifica-

tion of the eigengene approach. Specifically, we only compute an

eigengene summary for those genes that are estimated to not be

regulated at the individual cell-type level. Our approach is related to

the ‘surrogate variable analysis’ (SVA) two-step algorithm (Leek and

Storey, 2007) (see Section 4 for details). As shown below, even in

the presence of proportion differences between clinical groups and

differential expression of 30% of marker genes, CellCODE was able

to produce proportion estimates that are unbiased.

To explore this effect in a controlled manner, we formulate a

pipeline for simulating a realistic mixture dataset. This pipeline

relies on the Coulter counter cell-type proportions determined in

Shen-Orr et al. and on experimentally determined pure-cell

expression vectors from the IRIS study (see Section 4). We simulate

two clinical groups, which differ in their proportion distributions

and in marker gene expression at the individual cell-type level. We

extract SPVs from the resulting data and plot them against true pro-

portions for each clinical group. If the SPVs are indeed consistent,

the plotted points should fall on a single functional curve, i.e. be ag-

nostic to the clinical group. We find that while taking the naive

eigengene approach or normalizing across groups produces bias, the

CellCODE method is able to map proportions independently of clin-

ical groups (Fig. 3).

2.2 CellCODE improves differential expression

discovery
Analyzing differential expression in samples composed of diverse cell

populations is a two-fold challenge. On the one hand, variation in

mixture components increases measurement variance, thus reducing

the power to detect small expression changes. On the other hand,

when individual differences in cell proportions are asymmetrically

distributed among the clinical groups, standard methodologies are

prone to picking up false positives (genes whose expression values are

altered, but that are not regulated on an individual cell-type level).

To investigate how the CellCODE approach can be harnessed to

improve discovery of transcriptionally regulated genes, we employ

Fig. 1. Evaluating consistency of surrogate proportion estimates in the Shen-

Orr dataset. The heatmap represents correlation coefficients between all pairs

of marker genes with red (darker) representing high correlation and green

(lighter) representing anti-correlation. Marker genes initially selected for a

specific cell type are indicated by colors as shown in the key. The CellCODE

SPVs (indicated by black) are also included. The heatmap is clustered with 1-q

as a distance metric. Despite some apparent inconsistencies in marker as-

signments, distinct clusters of high correlation emerge for each cell type, and

each SPV reliably associates with the correct cluster (Color version of this fig-

ure is available at Bioinformatics online.)

Fig. 2. CellCODE SPVs track Coulter counter measurements

Fig. 3. Recovery of cell proportions from simulated expression data. The

SPVs recovered using three different approaches are plotted against the true

proportions used for simulation (x axis). We simulated two clinical groups

plotted in red (grey) and black with global proportion differences (in neutro-

phils and T cells) and true transcriptional differences coming from the T-cell

population. We specifically enforced that 30% of the T-cell markers are DE.

Generally, all estimates track known proportions, even for very rare cell

types. The relationship is non-linear due to log transformation of expression

values. However, aside from providing high correlation, the ideal estimation

procedure should be unbiased, resulting in red and black points falling on a

single curve. Computing eigengenes with the raw expression values (first

row) or expression normalized across clinical groups (second row) leads to

biased proportion estimates. CellCODE (third row) is able to provide accurate

estimates that track global proportion changes while being agnostic to tran-

scriptional alterations within individual cell types (Color version of this figure

is available at Bioinformatics online.)
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our simulation approach described above to create datasets with both

cell-type proportion changes and individual cell-type expression

changes. We simulate cell-type-specific expression differences occur-

ring in different cell types, ranging from very frequent to very rare.

We begin by examining the performance of a simple T-test on

this simulated dataset (Fig. 4). The number of altered genes in our

simulation is a constant 10%, and the fold-change in expression is

drawn from the same normal distribution (and thus the magnitude

of change has constant expected value). Nonetheless, recovery of the

DE genes by the T-test varies considerably with the relative abun-

dance of the cell type involved. DE genes are easiest to recover when

they are altered in a common cell type, such as neutrophils, and are

very difficult to detect when the change is coming from a cell type

that represents only 1% of the population, such as dendritic cells. As

can be seen in Figure 4 for any method, the percentage of DE genes

recovered is much lower for rare cell types. Because most genes are

expressed in multiple cell types, any differential expression in rare

cell types has a small effect on the overall expression level.

Though in mixture datasets many expression changes may be

small in magnitude, we can improve their detection by accounting

for the variance induced by cell-type proportion variation. The sim-

plest statistical approach is to include the confounding variables as

covariates, generating a modified estimate for the group effect.

Indeed, as expected, including the same cell proportions that were

used to simulate the dataset as covariates in our T-test

(T-testþmeasured, Fig. 4) improved the detection of DE genes.

An alternative deconvolution approach to mixture data was sug-

gested by Shen-Orr et al. This method uses independent proportion

measurements to extract pure cell profiles from the mixture expres-

sion matrix. This approach produces a different T statistic for each

cell type and a renormalized summary T statistic (where the decon-

volved pure expression vectors are recombined in standard propor-

tions). The method is equivalent to fitting interaction models

without an intercept, which is a theoretically correct model of mix-

ture data, but requires estimating more coefficients. In our simula-

tion, neither the summary T statistic nor the cell-type-specific

interaction coefficient, perform particularly well, and neither im-

proves on the raw T-test (Fig. 4).

Finally, we consider the CellCODE approach, which neither re-

quires nor utilizes independent proportion measurements. Instead, we

first estimate the SPVs from marker genes and then use these estimates

as covariates in our differential expression analysis. Even though

CellCODE does not require independent knowledge of cell-type pro-

portions, it still outperforms other methods at detecting differential

expression. It may be surprising that plugging in CellCODE SPVs

(which are accurate but not perfect) leads to better results than using

the true proportions directly. This phenomenon results from the fact

that the CellCODE SPVs directly model the existing data structure

and consequently result in a better fit that explains more variance.

2.3 Assigning DE genes to cell type of origin
We have shown that the CellCODE method can be used to improve

the detection of DE genes from mixture samples. We next examine

how the same framework can be extended to determine which cell

type is responsible for the differential expression.

Although our analysis suggests that interaction models are not

well suited for improving the power to detect differential expression,

they are useful for attributing the DE genes to their cell type of origin.

Therefore, we investigated a sequential approach in which the first

step employs CellCODE to detect DE genes and the second step as-

signs the DE genes to the cell type in which the genes are regulated.

To evaluate assignment accuracy, we first select DE genes using

the CellCODE approach, and then, in a subsequent step, test the ac-

curacy of different methods at assigning those genes to a cell type.

We first tested the total deconvolution method described by Shen-

Orr et al. by assigning each DE gene to the cell type with maximal

cell-type-specific T statistic. We find that once we separate the task

of finding DE genes and assigning them to a cell type, the deconvolu-

tion method is effective for the second step. This method is able to

correctly determine the cell type of origin for the majority of the de-

tectable DE genes that are regulated in frequent and rare cell types

(Fig. 5). The drawback of this method for our purposes is that it re-

quires accurate independent knowledge of the relative frequencies of

the different cell types, and thus cannot accept the CellCODE SPVs

as input because they are not to scale.

To make use of CellCODE SPVs, we consider three cell-type as-

signment statistics that do not require correct scaling. The inter-

action T-test assigns genes based on maximal interaction coefficient

between the clinical group and proportion variation and has been

applied successfully to similar problems (Kuhn et al., 2011;

Repsilber et al., 2010). The correlation test assigns each gene to cell

type based on correlation with the proportion variable. Although

this test ignores all information regarding clinical groups, it has been

successfully used to annotate gene sets Bolen et al. (2011), and is

very effective for rare cell types. In general, the interaction T-test

works best at assigning regulated genes that are expressed in mul-

tiple cell types, whereas the correlation test assigns genes based on

baseline expression specificity and works well for genes with exclu-

sive expression. To capture both of these scenarios, we propose the

F-test for the overall interaction model fit, which combines features

of the interaction T-test and correlation metrics (see Supplementary

Text for an in depth discussion).

Comparing the different assignment procedures, we find that the

deconvolution method is the best at assigning genes regulated in the

most common cell type (neutrophil) (Fig. 5). However, this is not in-

dicative of higher accuracy, as this method is in general biased to-

ward the most common cell type and thus produces a large number

of neutrophil assignments under all simulation conditions.

Of the three methods that are able to use CellCODE rescaled

covariates, we find that the F-test performs best. Additionally, for

Fig. 4. Increasing differential expression detection power in mixture datasets.

Mixture datasets were simulated by combining pure cell expression in differ-

ent proportions. For half of the 24 samples simulated, one pure cell expres-

sion vector was altered to have 10% DE genes. Cell-type origin of differential

expression was varied to create a range of simulated datasets. Each resulting

dataset was ranked for differential expression using different methods, and

the number of genes identified with a false discovery rate of 0.1 is shown as a

boxplot distribution over 20 repeats of the simulation. The CellCODE method,

which uses only the data structure, outperforms methods that use known cell

proportions (Color version of this figure is available at Bioinformatics online.)
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all methods that are capable of using rescaled covariates, estimating

SPVs from data structure was more effective than using known pro-

portions (Fig. 5). Notably, this is true despite the fact that in our

simulation the latter are exact values and are not even subject to the

measurement error, which would occur in a real application.

In summary, we propose a multi-step pipeline for analyzing dif-

ferential expression in mixture datasets. First, using independently

obtained cell-type markers, we use the CellCODE approach to ex-

tract SPVs. The resulting SPVs can themselves be analyzed for differ-

ences between clinical groups. In the next step, the SPVs are used as

covariates in a differential expression analysis. Genes that are pre-

dicted to be altered transcriptionally at the individual cell-type level

can be assigned to the cell type of origin based on the F-test

procedure.

2.4 Analysis of vaccination time course data
We demonstrate the utility of our method by applying it to a recent

vaccination time-course study (Nakaya et al., 2011). This study

compares gene expression changes in PBMCs following the adminis-

tration of two types of flu vaccines: the live attenuated influenza

vaccine (LAIV) and the trivalent inactivated vaccine (TIV). Vaccine

response produces large expression changes that result from both

cell proportion changes and cell-specific transcriptional alterations.

We apply CellCODE to resolve the sources of vaccine-related differ-

ential expression.

First we determine which cell proportion variation can be ex-

tracted from the data correlation structure. Using markers from the

IRIS dataset, we extract separate components for neutrophils,

monocytes, dendritic cells, NK cells, T cells, B cells and plasma cells

(Supplementary Fig. S1). We find that some marker genes appear to

be incorrectly assigned. Because the CellCODE SPVs track the main

variance component, these have a negligible effect on the result.

Importantly, we find a robust signature for plasma cells, which are

particularly relevant to the study of vaccine biology but comprise a

very small fraction (1–3%) of peripheral lymphocytes. Because of

their relevance, the frequency of plasma cells was assayed independ-

ently in the original study. We find that our SPV estimates using ex-

pression data are in good agreement with the true proportions as

measured by flow cytometry (Spearman rank correlation of 0.87,

Supplementary Fig. S2).

The CellCODE SPVs explain a large fraction of the global gene ex-

pression changes observed with standard differential analysis by sum-

marizing them as proportion changes. In particular, we find that the

live vaccine causes an increase in the proportion of monocytes and the

inactivated vaccine causes a large increase in the proportion of plasma

cells (Fig. 6). After including the CellCODE SPVs as covariates in the

differential expression analysis, the number of differentially regulated

Fig. 5. Evaluating cell-type assignment methods using simulated data. Cell-type origin of differential expression is varied to create a range of simulated datasets. For

each dataset, the set of DE genes is selected using the CellCODE approach (FDR 0.1) and is fixed for the subsequent analysis. These genes are assigned to the most

likely cell type of origin using the different assignment methods. The fraction of correct assignments is plotted as a distribution boxplot for 20 independent repeats of

the simulation. Methods that can accept rescaled covariates were evaluated using both the actual simulated cell proportions (‘Measured’, light colors) and the

CellCODE SPVs (dark colors). Overall, we find that the F-test with CellCODE SPVs performs best (Color version of this figure is available at Bioinformatics online.)

Fig. 6. Vaccine administration induces global changes in cell-type propor-

tions. SPVs were extracted using the CellCODE method and evaluated for

vaccine-related changes by comparing a model that captures individual vari-

ation only against one which includes post-vaccination day. The points and

lines represent the median and interquartile range (IQR) of SPVs normalized

to have mean 0 for each individual (which reduces variance without altering

the trend). D0, D3 and D7 indicate day after vaccination (Color version of this

figure is available at Bioinformatics online.)
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genes is substantially reduced, as genes whose expression level simply

tracks proportion changes are no longer included.

Those genes that are found to be DE after correcting for confound-

ing proportion changes represent candidates for cell-type-specific tran-

scriptional regulation. Using the CellCODE SPVs and F-test

procedure to attribute these genes to specific cell types, we find that a

large number of genes that are regulated in the LAIV time course are

assigned to the T-cell population.

Further investigation of the top ranked T-cell DE genes suggest that

the LAIV response regulates a T-cell-specific proliferation program.

One top ranked gene is ZEB1, which is downregulated. ZEB1 is known

to repress T-cell-specific IL2 expression, thereby inhibiting T-cell prolif-

eration. We also find that BCLAF1, a pro-apoptotic gene is down-

regulated, while the expression BCL2, which antagonizes BCALF1, is

increased. The direction of other gene expression changes is likewise

consistent with a survival and proliferation program. As these changes

were specific to the LAIV time course, the CellCODE analysis suggests

that a unique T-cell transcriptional profile contributes to mechanistic

differences between responses to the LAIV and TIV.

One goal of the original vaccine study was to define molecular de-

terminants of vaccine efficacy. Efficacy of the TIV, as measured by

antibody titers 28 days after vaccination, varied widely among indi-

viduals. The authors reported that the level of CAMK4 (Calcium/

Calmodulin-Dependent Protein Kinase IV) mRNA on Day 3 post-vac-

cination was negatively correlated with antibody titers (a result also

present in our reanalysis, Fig. 7A). The involvement of CAMK4 in

regulating the antibody response was further confirmed by observa-

tions of a higher antibody titers in response to the TIV in mice lacking

a functional CAMK4. Because antibodies are produced by cells from

the B-cell lineage, it would be expected that the CAMK4 effect on

antibody titers and its regulation involves B cells. We therefore applied

the CellCODE pipeline to determine the cell type responsible, using

the interaction F-test. Surprisingly, we find that CAMK4 is assigned

to T cells (Fig. 7B). Various observations corroborate this prediction.

In the IRIS dataset, CAMK4 is specific to T cells and RNAseq of

human or mouse B cells confirms low B-cell expression [GSE39229:

RPKM¼0.09 (Abraham et al., 2013) and GSE49027:

RPKM¼0.25]. Our computational analysis predicts that the effect

CAMK4 exerts on antibody titers is not B-cell intrinsic and instead in-

volves T-cell interactions. Although this hypothesis is strengthened by

the dearth of CAMK4 transcripts in B cells, the original observation

was made based solely on multivariate analysis of microarray mixture

data, which demonstrates the potential power of our approach.

3 Discussion

We propose a method for dissecting mixture datasets that is specific-

ally designed for analyzing differential expression. Our method ex-

tracts cell proportion covariates from the data structure and

estimates the confounding and interaction effects. We demonstrate

the sensitivity and accuracy of this method on simulated data and its

capacity to generate biological insights using experimental datasets.

Our method neither requires nor utilizes independent proportion

measurements. Even when such measurements are available, be-

cause of various limitations in these data, they may not produce op-

timal covariates for statistical testing. For example, Coulter counter

measurements can have an error of 5% or more for the rare cell

types (Aulesa et al., 2003). Additionally, some cell types that are

counted may preferentially lose RNA due to processes such as apop-

tosis and, consequently, cell counts may not accurately reflect

pooled mRNA composition. Most importantly, independent cell

proportion measurements may not identify important molecularly

distinct cell types. For example, the study by Shen-Orr et al. did not

differentiate B-cells and T-cells, which cannot be distinguished by

the Coulter principle alone. In contrast, CellCODE can capture vari-

ation from molecularly distinct cell types as long as some independ-

ent proportion variation in present and appropriate marker genes

are available. Despite these limitations of the independent cell pro-

portion measurements, it may be possible to develop a hybrid ap-

proach that makes use of this additional information. For example,

a method that constrains the estimated latent variables to correlate

with known covariates [see Mostafavi et al. (2013) for an example]

might be adapted to extract mixture variation.

In summary, we propose a statistical framework for the analysis

and interpretation of mixture samples that requires no dataset-spe-

cific prior knowledge yet performs comparably to or better than

methods that use additional information. We demonstrate the gen-

eral utility of evaluating interaction effects between known clinical

groups and latent variables. In our case, the latent variables are cell-

type proportions, but the methodology can be readily adapted to

other latent sources of variation.

4 Methods

4.1 Data and processing
The DMAP dataset was downloaded in processed format from

<http://www.broadinstitute.org/dmap/home>. All other datasets

discussed in this article use Affymetrix arrays. They were processed

using RMA with default parameters. The most highly expressed

probe was chosen as a representative for a single gene. The values

from the bg.params() method were used to compute a cutoff for

non-expressed genes as lþ 2 � r, and genes with average value

below this threshold were removed. For the vaccination data, we

used the largest cohort corresponding to the 2008 vaccination year.

4.2 Simulated data
If we have n genes and m samples and the samples are composed of

k cell types, then the n by m gene expression matrix En�m can be

modeled as

A B

Fig. 7. CAMK4 effects antibody response through a T-cell-dependent mechan-

ism. (A) Expression of CAMK4 on Day 3 negatively correlates with an increase

in influenza-specific antibody titers. (B) CAMK4 expression correlates

strongly with T-cell SPV but only slightly with B-cell SPV. Correlation with

other cell-type proportions is negative (data not shown), suggesting that

CAMK4 is T-cell specific. Colors denote the fold increase in antibody titers

and are the same as in panel (A) (Color version of this figure is available at

Bioinformatics online.)
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En�m ¼ Pn�kCk�m (1)

Where P is a matrix of pure cell expression and C is a matrix of mix-

ture proportions in each sample. In our simulation, we use the real

cell-type proportions determined in Shen-Orr et al., which capture

the fact that some cell types are much more common than others.

We also use experimentally determined pure-cell expression vectors

from the IRIS study (Abbas et al., 2009), GSE22886. These capture

realistic expression values and real dependency structure because

some cell types are more similar molecularly than others. The simu-

lated data were derived from the IRIS dataset, whereas the Garvan

[Jeffrey et al. (2006), GSE3928] dataset was used to define the cell-

type-specific markers for CellCODE.

A simulated dataset was compiled as follows. A pure cell expres-

sion matrix on 5 cell types and 13 696 genes, P, was obtained from the

IRIS data in linear (not log-transformed) space. An altered expression

state, P*, is simulated by altering the expression of 10% of the genes in

one of five cell types by a factor drawn from Nf0; 2g. The cell C5�24

proportions were taken directly from Shen-Orr et al. and permuted so

that when split into 2 groups of 12, the corresponding within group

proportions were significantly different (Fig. 3). The control and dis-

ease datasets are simulated as PC5�f1::12g and PC5�f13::24g. Noise, pro-

portional to the gene expression mean, is added to the gene expression

values (corresponding to constant variance in log space). The amount

of noise is chosen so that the average variance explained by cell propor-

tion variation was equal to 0.35, which is similar to that of real data-

sets. The final log transformed data serve as the input to all the

methods discussed in this article. Functions used to simulate the data

are part of the CellCODE package.

4.3 Marker genes
The general strategy for marker selection was to find genes whose ex-

pression value in one cell type exceeds that of all other cell types being

considered by some defined threshold. For the IRIS and Garvan data-

sets, we used a cutoff of 2 in log 2 expression space. For the DMAP data-

set, which has been normalized for batch effect and does not report true

expression values, we found that a cutoff of 0.7 worked well. For ease of

visualization, we also propose taking only the top most highly expressed

marker genes. We find that adding more genes did not alter results but

made the correlation structure more difficult to visualize. We found that

restricting each marker list to 15 provides a good balance between cap-

turing a robust consensus signature and interpretable visualization.

For analyzing real mixture datasets, we used the IRIS dataset to

determine leukocyte markers and the DMAP dataset for other blood

cell types. Many of the cells profiled in these experiments belong to

the same lineage and have profiles that are too similar to yield

marker genes with the expression difference we require. Therefore,

we restrict our analysis to a subset of cell types that could produce a

set of differentiating markers. In the IRIS dataset, we chose CD4 T

cells to represent the T-cell population, naive B cells, ‘Day 0’ mono-

cytes, stimulated dendritic cells, naive NK cells and plasma cells. For

each mixture dataset analyzed, we relied on the visualization strat-

egy to confirm a block-like correlation structure and ensure that

SPVs tracked independent variance components.

We supply a function that implements our marker selection heur-

istics as part of the CellCODE R package, and code to reproduce the

analysis of the Shen-Orr dataset, including marker selection, is sup-

plied in the package vignette.

4.4 Proportion estimation
Estimating proportion variation from a pre-defined set of markers is

complicated by the fact that some of the markers may themselves be

transcriptionally altered within the cell type they represent. The goal

then is to separate the variation that is due to proportion changes

from that which is due to transcriptional alterations. Our method

proceeds by evaluating all the genes for group effect with an F-test

and discarding a fraction fexclude of genes with the most changes.

The eigengene from the remaining genes becomes the initial

estimate.

To formalize, suppose that we have a set of genes M that are can-

didate markers of a cell type. Let EM represent the subset of the

expression matrix restricted to those marker genes. Then the corres-

ponding SPV can be expressed as the first right singular vector

(eigengene) of the following weighted SVD:

WEM ¼ UDVT (2)

The matrix W is diagonal with, wii 2 f0;1g, where the value of

1 denotes the genes that are stable markers of cell type and are not

themselves regulated.

We first determine W by sorting the marker genes in order

of differential expression. Specifically, we evaluate the

model fit, gi ¼ ĝi þ ayþ �, where in the simplest case of two clinical

groups, gi is the baseline expression level and y is a vector

(yi 2 f0; 1g) indicating group membership. Setting fexclude fraction of

genes with the greatest group effect to a weight of wii¼0 gives us

the initial SPV estimate sinitial via Equation (2). Once we have the

initial SPV estimate, we can reevaluate which marker genes have a

group effect conditioned on proportion variation. This is achieved

by including the initial SPV and the group–SPV interaction in

out F-test. This second F-test compares the model

gi ¼ ĝi þ bsinitial þ ayþ cðy � sinitialÞ þ � [where � denotes element-

wise multiplication and ðy � sinitialÞ specifies the interaction term] to

gi ¼ ĝi
0 þ b0sinitial þ �0. This new list of top DE marker genes is given

a weight of 0 and the eigengene is recomputed.

This procedure is similar to the two-step implementation of SVA

with an additional interaction term. However, because we only

have a few marker genes to evaluate, we cannot rely on the local

FDR calculation to select the genes to discard and instead a fraction

fexclude is specified a priori. Although fexclude is technically a free par-

ameter, we found that in simulations 0.3 was a reasonable choice as

overestimating the fraction was not a problem, and unbiased values

are obtained even when there are no DE markers. In a real dataset,

the line between proportion changes and transcriptional changes

may be blurred if the cell types being considered belong to the same

lineage. In these cases, there may not be a unique correct solution,

and it is likely that this procedure will be refined further as more

real datasets are analyzed and interpreted.

4.5 Differential expression and cell-type assignment

tests
Using the notation above, differential expression is evaluated as the

T statistic for the a coefficient in the multiple regression denoted by

gi ¼ ĝi þ ayþ BSþ �, where S now represents a matrix of all the

SPVs estimated from the data. The cell-type assignment relies on the

interaction fit

gi ¼ ĝi þ ayþ b � sj þ cðy � sjÞ þ � (3)

evaluated individually for all the SPVs sj. For cell-type assignment

based on a T-test, we take the maximal T statistic for the interaction

coefficient c. For cell-type assignment based on the F-test (which we

found performs best), we generate F statistics for each SPV by com-

paring the model in Equation (3) to a common null model

gi ¼ ĝi
0 þ a0yþ �0. Note, the option of including additional SPVs as
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non-interacting covariates in Equation (3) is also implemented,

though we find that for smaller datasets it degrades the performance

of the assignment metrics.
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