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Abstract

Motivation: Recent advances in sequencing technology have made it possible to obtain high-
throughput data on the composition of microbial communities and to study the effects of dysbiosis
on the human host. Analysis of pairwise intersample distances quantifies the association between
the microbiome diversity and covariates of interest (e.g. environmental factors, clinical outcomes,
treatment groups). In the design of these analyses, multiple choices for distance metrics are avail-
able. Most distance-based methods, however, use a single distance and are underpowered if the
distance is poorly chosen. In addition, distance-based tests cannot flexibly handle confounding
variables, which can result in excessive false-positive findings.

Results: We derive presence-weighted UniFrac to complement the existing UniFrac distances for
more powerful detection of the variation in species richness. We develop PERMANOVA-S, a new
distance-based method that tests the association of microbiome composition with any covariates
of interest. PERMANOVA-S improves the commonly-used Permutation Multivariate Analysis of
Variance (PERMANOVA) test by allowing flexible confounder adjustments and ensembling mul-
tiple distances. We conducted extensive simulation studies to evaluate the performance of different
distances under various patterns of association. Our simulation studies demonstrate that the
power of the test relies on how well the selected distance captures the nature of the association.
The PERMANOVA-S unified test combines multiple distances and achieves good power regardless
of the patterns of the underlying association. We demonstrate the usefulness of our approach by
reanalyzing several real microbiome datasets.

Availability and Implementation: miProfile software is freely available at https:/medschool.vander
bilt.edu/tang-lab/software/miProfile.

Contact: z.tang@vanderbilt.edu or g.chen@vanderbilt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Biological and empirical evidences suggest that a diverse microbial
community plays an important role in human health (Alekseyenko
et al., 2013; Redel ez al., 2013; Segal et al., 2013). Understanding
the composition of the microbial community provides insight into
the functions of bacteria and their effects on the human host.
Sequencing technology has made it possible to capture high-
throughput data on the microbiome composition in human speci-
mens. A common unit of analysis for sequencing-based microbiome
identification studies is the operational taxonomic unit (OTU).
OTUs represent the conceptualization of species and are typically
constructed by clustering sequences at a certain similarity threshold
(e.g. 97%) (Caporaso et al., 2010; Schloss et al., 2009). Comparison
of OTU profiles with respect to differential clinical outcomes or con-
ditions lends important knowledge towards understanding the
underlying disease mechanisms and the effects of dysbiosis
(Alekseyenko et al., 2013; Cho et al., 2012).

Testing associations of the microbiome composition with covari-
ates of interest is challenging because the sample size is typically
modest and the number of OTUs is large. Distance-based omnibus
tests are popular, as these tests successfully address the challenges by
partitioning the distance matrix among sources of variation and
evaluating the statistical significance by permutation (Anderson,
2001a; McArdle and Anderson, 2001). Specifically, when testing for
the community difference between groups, the distance-based
method contrasts the pairwise distance within and between groups.
This statistic is an analogue to Fisher’s F-ratio.

The difference between two microbial composition profiles fol-
lows various patterns. The difference may exist in one or several
clusters of the species on the phylogenetic tree (lineages) or random
sets of species. The difference may be driven by the change of species
richness, evenness or a combination of the two. Richness and even-
ness are the two main factors that describe species diversity in mi-
crobial communities. Each of these measures addresses a different
aspect of community ecology; thus, by considering them together, a
much more insightful picture of the community structure is pro-
vided. Increased richness and evenness are often associated with
more stable and longer established ecosystems (Legendre and
Legendre, 2012; Relman, 2012). Such ecosystems tend to be resist-
ant to environmental pressures, such as diet, antibiotic use and
pathogen invasion (Cox et al., 2013; Shade et al., 2012).

Over two dozen distance measures are available in open source
packages, like vegan (Oksanen et al., 2015), ade4 (Dray and Dufour,
2007) and phyloseq (McMurdie and Holmes, 2013), to quantify the
variation in composition between microbiome samples (beta diver-
sity). The unweighted and weighted UniFrac are two commonly-used
distances constructed on the phylogenetic tree (Lozupone and
Knight, 2005; Lozupone et al., 2007). These distances are efficient in
detecting differential species in lineages of the tree. The unweighted
UniFrac uses the difference of the species presence—absence status be-
tween two samples to determine the inclusion of a particular tree
branch. The weighted UniFrac uses the difference of the species rela-
tive abundance (proportion) between two samples to weight the
branch. As an extension of the weighted UniFrac, the generalized
UniFrac introduces a parameter to attenuate the contribution from
high abundant lineages (Chen et al., 2012). Bray-Curtis and Jaccard
distances are two popular dissimilarity measures that do not utilize
the phylogenetic tree. They tend to be efficient in detecting associ-
ation on arbitrary species rather than in lineages. Bray-Curtis dis-
tance is defined as the difference of the abundance divided by the
total abundance contributed by both samples. Jaccard distance is

defined as the number of unique species present in either sample, div-
ided by the number of species present in any of the two samples.

Although distance-based methods provide powerful tools to dis-
cover associations between the microbiome composition and covari-
ates, they suffer from two main limitations. First, existing distance-
based tests cannot flexibly handle confounders, which are defined as
variables correlated with both the covariates of interest and the micro-
biome composition. Extending these methods to accommodate more-
sophisticated outcomes and study designs (Lin and Zeng, 2009; Lin
et al., 2013) in the presence of confounders is challenging (Zhao
et al., 2015). Treating confounders as covariates or omitting the con-
founders in the distance-based test distorts the true association.
Hence, the ability to properly model and adjust for confounders be-
comes critically important. Second, existing distance-based tests can-
not simultaneously incorporate multiple distances. As the underlying
biology is unknown a priori, the selected distance is most likely
suboptimal and may not yield good statistical power. Searching
multiple distances and reporting the one that produces the smallest
P-value is too liberal and vyields excessive false discoveries, unless
adjustments are made for multiple comparisons. On the other hand,
adjustments for multiple comparisons may result in poor power when
an excessive number of distances is tested. Hence, it is highly desirable
to have a unified test that combines multiple distances.

In this article, we derive presence-weighted UniFrac to comple-
ment the existing UniFrac distances for more powerful detection of
variation in species richness. The presence-weighted UniFrac dis-
tances achieve adequate power in a wide range of scenarios. We de-
velop PERMANOVA-S, a new distance-based method to test the
association of microbial communities with any covariates of inter-
est. PERMANOVA-S improves the commonly-used Permutation
Multivariate Analysis of Variance (PERMANOVA) test by allowing
flexible confounder adjustments and ensembling multiple distances.
We conducted extensive simulations to evaluate the performance of
different distances under various patterns of association. Our studies
demonstrate that the power of the test relies on how well the se-
lected distance captures the nature of the association. The
PERMANOVA-S unified test combines multiple distances and
achieves good power regardless of the patterns in the underlying as-
sociation. Application to real microbiome datasets demonstrates the
usefulness of the proposed methods. The relevant software miProfile
incorporating the new development is freely available.

2 Methods

The PERMANOVA is the most commonly applied distance-based
method to test the association of microbial composition with covari-
ates of interest. The test statistics directly use the distance matrix to
partition the diversity among sources of variation. This test is espe-
cially suitable for the analysis of composition data from ecology
studies with a small sample size and a large number of features.

Suppose we generate the microbiome profile Y with 7 OTUs
and collect the covariates X for 7 samples. We compute a distance
matrix D that quantifies the dissimilarity between samples based on
Y and potentially the phylogenetic structure of the OTUs. The
pseudo-F test statistic is defined as

Fe tr(HGH)
T tr(I-H)G(I-H))’

where tr(-) is the trace operator on a matrix, H = X(X'X)'XT",
T T . . . .

and G=—1(I— %)DZ(I — L), where I'is an 7 x 7 identity matrix,

1is an 7 x 1 vector consisting of ones and D? is the element-wise
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square of D. The significance of the pseudo-F statistic is evaluated
by simulating the null distribution from permutations.

2.1 Abundance and presence—-absence distances

We categorize all distances into abundance distances and presence—
absence distances according to the forms of the microbiome data
they use: abundance distances are based on the abundance data
(counts or proportions) of the species, and the presence-absence dis-
tances are based on the presence-absence data (binary indicator for
the presence) of the species.

Among the distances that do not utilize the tree information,
Bray-Curtis distance is an abundance distance and Jaccard distance
is a presence—absence distance. Let p;; and py; denote the abundance
of OTU i in samples j and k, respectively. Bray-Curtis distance be-
tween sample j and k is defined as

Z [pji — il
Dpc=-L— .
> (pji + Pri)

I
<N

Let n?k" and n;kl denote the count of the species present in only one
sample or both samples, respectively. Jaccard distance is defined as
01
7'
k
D=
01 4 11
my +ny
After converting the abundance data to the presence-absence
data (code the present OTU to 1 and the absent OTU to 0), Dpc be-

comes n;),g (n?kl + Zn}kl). This expression is almost identical to Dy ex-

cept for a factor of 2 multiplied to n/lkl in the denominator. This
difference has ignorable effects in terms of discriminating samples,
and we consider the presence-absence version of Bray-Curtis dis-
tance as equivalent to the Jaccard distance.

Among the tree-based distances, weighted UniFrac and generalized
UniFrac are abundance distances, and unweighted UniFrac is a pres-
ence—absence distance. Suppose we have a phylogenetic tree with L
branches associated with the OTUs. Let b; denote the length of branch
I, and pj; and py; denote the proportion of the OTUs descending from
branch / for samples j and &, respectively. The weighted UniFrac and
generalized UniFrac distances between samples j and k are defined as

L
> bilpj = pul
_ =

Dy S E— and
> bi(pji + )
=1
L Prpp—
> bipy + pu)” M
(2) -1 p/l + Pri
Dew = L ’
> bi(pji + pu)*

=1

respectively, where o takes a value between 0 and 1. The lower value
corresponds to weaker contribution from the high abundant
branches. The distance D((x\)x, reduces to Dy when a= 1.

Let 7 and 7 denote the number of present OTUs descending from
branch / for samples j and k, respectively. Unweighted UniFrac is defined as

L
IZ bill(njg > 0) — I(ny > 0)]
=1

Dyw =

)

L
> b
=1

where I(-) is the indicator function.

For generalized UniFrac, the corresponding version based on the
presence—absence data can be expressed as

L
ol il — 1,
Z bi(njp + 1y)” S
- i + 1l
p® _ =
PW L .
> bilm+ )’

=1

Distinct from Dy, D;f&, uses the relative richness difference |1
—ny|/(n; + ny) to weight the branch. By decreasing o in DK,)V, we
attenuate the contribution from the high rich branches and make the
dissimilarity measures more sensitive to the richness change on the
moderately rich lineage. The distance D&,)V is referred to as presence-
weighted UniFrac.

2.2 PERMANOVA-S

We develop a new method, PERMANOVA-S, to flexibly accommo-
date confounders and multiple distances. We first explain the
method for confounder adjustment in the presence of a single dis-
tance. Then, we tailor the permutation procedure to combine mul-
tiple distances.

2.2.1 Confounder adjustment
In the presence of confounding variables Z, we permute residuals
after regressing X on Z. We let yZ denote the linear predictor in the
regression model.

If X is a continuous variable, we use standard linear regression
to compute the residual and the Freedman—Lane permutation strat-
egy (Freedman and Lane, 1983) to obtain the P-value.

1. Regress X on Z and obtain the maximum likelihood estimator
(MLE) 7 for y, compute the residuals R = X —9Z and construct
the observed pseudo-F statistic based on R.

2. For each permutation, permute R to yield R*, and replace X by
X* =%Z +R"*. Regress X* on Z and obtain the MLE 7™ for 7,
compute the residuals R =X* —7"Z and construct the per-
muted pseudo-F statistic based on R*".

3. The final P-value is the proportion of the permuted pseudo-F
statistics larger than the observed statistic.

If X is a binary variable, we use standard logistic regression to
compute the residual and the parametric bootstrap (Davison and
Hinkley, 1997) to obtain the P-value.

1. Regress X on Z and obtain the MLE estimate y for y, compute

the residuals R =X — l:"pﬂ and construct the observed
exp()Z)
pseudo-F statistic based on R.

2. For each permutation, sample X* from Bernoulli distribution

with probability parameter % Regress X" on Z and obtain

the MLE 7" for y, compute the residuals R** = X* — %

and construct the permuted pseudo-F statistic based on R*.
3. The final P-value is the proportion of the permuted pseudo-F
statistics larger than the observed statistic.

We have implicitly assumed that the covariate X is univariate
and that the samples are unrelated. For repeated measures or paired-
sample studies, we restrict the permutation within each stratum. For
more complicated designs and data types, we need to seek suitable
permutation strategies (Anderson, 2001b; Pesarin and Salmaso,
2010). A comprehensive discussion of the existing strategies is be-
yond the scope of this paper.
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In order to control confounding effects, sequential F-test parti-
tions the distance matrix first with respect to confounders and se-
cond with respect to covariates of interest by fitting linear models to
distance matrices (Oksanen et al., 2015). Our approach is conceptu-
ally different because we obtain residuals through regression of the
covariates on confounders. Although the two approaches are
equivalent under certain scenarios (e.g. continuous covariates,
standard linear model), our approach is more flexible because suit-
able models can be employed according to the types of covariates
and study designs.

2.2.2 Ensembling of distances

Choosing the distance sensitive to the patterns of association yields
high power in the association test. Instead of considering one dis-
tance at a time, we develop a multistage permutation strategy that
enables us to ensemble multiple distances in a computationally effi-
cient manner. When unifying multiple distances, we use the minimal
P-value across distances as the test statistic. To obtain the unified P-
value, we employ a permutation procedure to simulate the null dis-
tribution for the minimal P-value. The procedure does not depend
on a large-sample approximation, so it can be used in a study with a
small sample size. Suppose we consider K distances Dy, D5, ..., Dg.
The testing procedure is described below

1. For each Dy, compute the observed pseudo-F statistic Fy.
Simultaneously generate B permuted pseudo-F statistics F,(:), .
F,EB) for the K distances. We suggest starting the value of B from
a small value (e.g. 500). As noted in the previous section, the se-
lected permutation strategy should be based on the study design
and the data types.

3. For each Dy, obtain the P-value pj based on the B permutations.
If pmin = min(py,...,px) < 1/(tol x B), increase B and repeat
step 2. Otherwise, go to step 4. The pre-specified parameter tol
takes a value between 0 and 1, with a smaller value correspond-
ing to a more stringent accuracy requirement.

4. For each Dy, calculate B permuted ‘P-values’ p;el),...,p;f) as
p;(b) =(B- rank(F,(eb)))/B, where rank(F,ib)) is the rank of F](eb)
among B permuted statistics. This step can be efficiently com-
pleted by the quick sort algorithm.

5. For each permutation, obtain the minimal permuted ‘P-value’

across K distances: pf:i)n = min(p(lb)., . 7P§<b))~

(1) (B)

min"“mein

6. The final P-value is the proportion of p, that is

smaller than pip.

To obtain the exact P-values for each permuted pseudo-F statis-
tic in step 2, one needs to perform another layer of permutation,
which is computationally infeasible. In our procedure, the permuted
‘P-values’ obtained in step 4 are based on the original round of per-
mutation. The accuracy of these ‘P-values’ depends on the value of
B. By adopting the multistage procedure in step 3, we subsequently
find a B that makes these ‘P-values’ accurate enough to calculate the
unified P-value. The existence of such B is because of the implicit
fact that the unified P-value cannot be smaller than the minimal P-
value across distances. In addition, the multistage procedure ensures
that the value of B is not so large as to squander computation time.

2.3 Software: miProfile

We have developed a software program miProfile that incorporates
the new development. miProfile implements all commonly-used abun-
dance and presence-absence distances. Users can request any combin-
ation of these distances. miProfile produces the P-value for each of the
requested distances and the unified P-value by combining all of the

distances. The operating interface is simple and can directly input the
.biom and .tre files. The OTU abundance table and the distance matri-
ces can be generated as output and reused in subsequent runs. The
permutation implemented in miProfile is optimized to achieve compu-
tational efficiency. It can finish one million permutations within
150 seconds on an IBM HS22 machine for 100 samples.

2.4 Simulation strategies

We performed extensive simulation studies to investigate the type I
error of PERMANOVA-S and to compare the power of abundance
distances, presence—absence distances and the PERMANOVA-S uni-
fied test in the detection of various association patterns. Following
Chen et al. (2012), we generated 856 OTUs under the Dirichlet-
multinomial (DM) model with proportion and dispersion parameters
estimated from a real respiratory tract microbiome dataset (Charlson
et al., 2010). Then, we partitioned the 856 OTUs into 20 lineages via
the Partitioning Around Medoids algorithm based on the patristic dis-
tance. We considered total sample sizes of 20 and 50 and split them
into two groups. We assumed the sequencing depth was 1000 reads
per sample. For all simulation studies, we considered six distances:
weighted UniFrac (Dy), Bray-Curtis (Dgc), presence-weighted
UniFrac with parameter 1 or 0 (Dl(,l\,)(,, D%,%)V), unweighted UniFrac
(Duw) and Jaccard (Dj). We performed the PERMANOVA-S unified
test across these six distances. For comparison, we conducted the
Bonferroni-adjusted test (Pmin) which uses the minimal P-value of the
single-distance test and multiplies it by six.

For the type I error simulation, we considered scenarios with and
without confounding effects. When no confounders exist, the sample
is evenly distributed between the two groups. To simulate a con-
founding effect, we first generated a variable related to the microbial
community. We then assigned the group label based on the value of
that variable. Specifically, we simulated a variable Z from the nor-
mal distribution with the mean being the standardized abundance or
richness of the most common lineage (19.7%), and we assigned the
sample to group one with probability exp(0.5Z)/(1 + exp(0.5Z)).
We used 10000 replicates to evaluate the type I error at a signifi-
cance level of 0.05.
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Relative change in richness

Fig. 1. Relative change in richness (total number of present OTUs) and even-
ness (Shannon’s diversity index) between two groups for the three patterns
of differentiation in a random lineage. Each dot represents the effect size we
considered in the simulation studies. The plots for the common lineage, rare
lineage and random 40 OTUs are similar and not shown
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For the power simulation, we focused on evaluating the perform-
ance of different single-distance tests and the unified test. We con-
sidered the situation with no confounding effects. The unified test
was provided using PERMANOVA-S to combine all six distances.
We assumed that the differentiation between groups occurred in one
of four possible OTU sets: a common lineage (19.7%), a rare lineage
(0.9%), a random lineage, or random 40 OTUs. In addition, we de-
signed three patterns of microbial community differentiation.

A. For each OTU i, we randomly changed absence (count of 0) to
presence with count of 1 in one group, such that the resulting
percentage of presences (positive counts) increased by a factor of
¢, where ¢ controls the degree of differentiation. Pattern A dom-
inantly changes richness between groups, while minimally fluc-
tuating evenness (blue curve in Fig. 1).

B. For each OTU i, we increased the relative abundance by a factor
of (\/;:)C only at the presences in one group, where p; is the

bi
average observed abundance in the other group. Pattern B dom-
inantly changes evenness between groups without fluctuating
richness (green curve in Fig. 1).

C. For each OTU i, we increased the proportion parameters p; in
DM distribution by a factor of (ﬁ)c for one group. Pattern C
changes richness and evenness at a balanced rate (red curve in
Fig. 1).

For all patterns, we renormalized the relative abundance, such
that the total proportion is equal to one. In all 12 possible scenarios
from the combination of four OTU sets and three patterns of differen-
tiation, we varied the degrees of the signal ¢ and generated the power
curves based on 2000 replicates at a significance level of 0.05.

3 Results

3.1 Simulation results

The empirical type I errors of PERMANOVA-S are shown in Table 1.
When confounders exist, the test without confounder adjustment pro-
duces inflated type I error. The inflation occurs mostly on abundance
distances (Dyw and Dgc) when the confounder is correlated with abun-
dance and on presence-absence distances (ng)v, Dg,%)y, Dyw and Dy)
when the confounder is correlated with richness. The Bonferroni-
adjusted test (Pmin) tends to be conservative.

Table 1. Empirical type | errors for PERMANOVA-S

Figure 2 shows the power results for three differentiation pat-
terns when the sample size is 20 (see Supplementary Fig. S1 for re-
sults with a sample size of 50). Under pattern A, where the change
of richness dominates the change of evenness (upper panel of Fig. 2),
the presence—absence distances (Df)lv)q7 Di,%)(,, Duyw, Dj) are dramatic-
ally more powerful than the abundance distances (Dw, Dpc) regard-
less of where differentiation appears. If the signal is on the common
lineage, D{,IV)V (overlapping with the curve for the unified test) is
more powerful than the other distances because it up-weights the
high rich branches that the common lineage harbors. If the signal is
on the rare lineage, Dyw produces the most powerful test, and D;R,)V
yields similar power as Dyy. Df,l\,)v is more powerful than the other
distances if the signal is in a random lineage or on random OTUs.

Under pattern B, where the change of evenness dominates the
change of richness (middle panel of Fig. 2), the use of the abundance
distances is substantially more powerful than the use of the presence—
absence distances, no matter where the differentiation occurs. Dy, pro-
duces the most powerful test if the differentiation occurs in a lineage,
and Dy produces the most powerful test if the differentiation occurs
on random OTUs.

Under pattern C, where the richness and evenness change at a bal-
anced rate (lower panel of Fig. 2), abundance distances and the corres-
ponding presence-absence distances produce more similar power than
in patterns A and B. If differentiation occurs on the common or random
lineage, the top two distances are abundance distance Dy and the cor-
responding presence—absence distance D;,{%, If differentiation occurs on
the rare lineage, the top two distances are Dy and Dg\),?,, as in pattern
A. If differentiation occurs on random OTUs, D; yields the top power.

The simulation study shows that the power for different dis-
tances can vary a lot across association patterns, and the proper
choice of distance is essential for conducting well-powered associ-
ation studies. In practice, the nature of the association usually ap-
pears as a mixture of these studied patterns, which makes the choice
of the best distance an impossible mission. The Bonferroni-adjusted
test is inevitably less powerful than the unified test because it ignores
the correlation of the tests using different distances. The power loss
of the Bonferroni-adjusted test will become larger if more distances
are considered. Our simulation demonstrates that ensembling the
abundance distances and presence—absence distances using the
PERMANOVA-S unified test yields good discovery power regard-
less of the underlying association pattern.

n Dy Dgc DLy, DY, Duw D, Pmin Unified
No confounder
20 0.049 0.046 0.051 0.049 0.050 0.049 0.032 0.048
50 0.048 0.051 0.050 0.044 0.042 0.047 0.035 0.050
Confounder Z correlated with abundance
Adjust for Z 20 0.049 0.047 0.052 0.048 0.050 0.050 0.037 0.053
50 0.051 0.048 0.052 0.051 0.050 0.052 0.035 0.052
Not adjust for Z 20 0.10 0.065 0.055 0.048 0.048 0.050 0.051 0.072
50 0.20 0.10 0.054 0.052 0.053 0.054 0.094 0.13
Confounder Z correlated with richness
Adjust for Z 20 0.053 0.053 0.051 0.051 0.051 0.052 0.036 0.053
50 0.047 0.047 0.049 0.052 0.050 0.054 0.035 0.051
Not adjust for Z 20 0.055 0.051 0.074 0.054 0.052 0.056 0.044 0.061
50 0.060 0.052 0.11 0.062 0.058 0.061 0.054 0.077
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Fig. 2. Power of abundance distances, presence-absence distances, Bonferroni-adjusted test and PERMANOVA-S unified test under various differentiation pat-
terns. Each curve is created by varying the degree of differentiation between two groups, with 10 samples per group

3.2 Cutaneous microbiome in psoriasis

Psoriasis is a common chronic inflammatory disease of the skin.
Alekseyenko et al. (2013) investigated the community differentiation
of the cutaneous microbiota in psoriasis. A total of 51 patients with
psoriasis were studied by swabbing the lesion and a contralateral
sample of normal tissue from each subject. The microbial OTUs
were constructed through the QIIME pipeline.

After removing samples with read depth less than 1000 and dis-
carding OTUs with only one read, we generated an OTU table of 50
complete pairs and 13429 OTUs. We compared the microbial com-
munity composition between the lesion and normal samples from pa-
tients with psoriasis using PERMANOVA-S (one million within-
subject permutations) and the six distances in the simulation studies.
All of the distances give statistically significant results, which indicates
that both the richness and evenness of the microbial community are

different between the lesion and normal samples. However, the
presence—absence distances (Di,lv)v P-value=1.1 x 1073,
DY, Pvalue=14x107% Dyy P-value=1.6x107; Dy
P-value=1.3 x 107%) produce stronger evidence of differentiation
than the abundance distances (Dy P-value =1.2 x 1073; Dy P-val-
ue=4.7 x 107*). The unified P-value is 3.1 x 10~°, which is close to
the P-values of the presence-absence distances. We performed the
principle
Dy, D%l\,)v, Dgc and Dy. We plotted the samples on the first two prin-

coordinate analysis using the distance matrices
ciple components (Fig. 3). The distances D%,l\%, and Dj separate the
samples better than the distances Dy and Dpc.

To identify the differential OTUs, we performed the Wilcoxon
signed-rank test for paired samples based on the abundance data, and
we performed the McNemar’s test based on the presence-absence

data. We identified 10 OTUs from either of the tests at a significance
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Fig. 3. Comparison of abundance distances and presence-absence distances
for discriminating lesion (L) and normal (N) samples. Principle component
analysis is performed on the four distance matrices. The samples are plotted
on the first two principle components. The ellipse center indicates groups
means, and the height and width represent the variances on the two
directions

level of 0.001 (Supplementary Table S1). The three related phyla were
associated with psoriasis status and were employed to characterize
and classify skin microbiota (Alekseyenko et al., 2013). It is interest-
ing to see that most of these OTUs have a significant P-value in only
one test. If the association is mainly driven by the differential abun-
dance, the Wilcoxon test yields more significant results than the
McNemar’s test; if the association is mainly driven by the differential
proportion of the presence, then the McNemar’s test produces more
significant results (Supplementary Fig. S2).

This example demonstrates that the abundance data and the
presence—absence data represent different views of the microbial
community and the PERMANOVA-S unified test is a very powerful
tool to identify the overall associations by combining the abundance
and presence—absence distances.

3.3 Microbiome in subtherapeutic antibiotics and
adiposity

Another study mimicked the common farm practice of administer-
ing low-dose antibiotics to promote animal growth. The laboratory
model investigated an increase in adiposity after administration of
low-dose antibiotic therapy to young mice and evaluated changes in
body fat and composition of the gut microbiome (Cho ez al., 2012).
Female mice were given four types of antibiotics or no antibiotics
(control), with 10 samples in each group. The mass and percentage
of body fat were measured. The microbes in the cecal contents of
these animals were analyzed, and the OTUs were constructed
through the QIIME pipeline. The study found that administration of
low-dose antibiotic therapy increased adiposity in young mice and
substantially changed the microbiome composition.

We deleted samples with low read depth and removed OTUs
with only one read. In the final dataset, we had 48 samples and
2877 OTUs. We tested whether there is an association between gut
microbes and body fat. We performed the unified test across the six
distances in the simulation studies. First, we did not adjust for any
potential confounders. The unified P-values produced marginally
significant association with P-values of 0.058 and 0.069 for mass
and percentage body fat, respectively. Among the six distances, the
Jaccard distance produced the most significant P-values (0.019 for

mass body fat and 0.025 for percentage body fat). We then ad-
justed for antibiotic treatment and repeated the analysis. The unified
P-values became 0.19 and 0.35, which are less significant than
the P-values of the tests without confounder adjustment. All of the
P-values are listed in the Supplementary Table S2. Our analysis indi-
cates that antibiotic treatment is a potential confounder when link-
ing body fat to the gut microbiome composition. This example
demonstrates the importance of confounder adjustment in the asso-
ciation analysis of microbiome composition.

4 Discussion

We derive the presence-weighted UniFrac based on the presence-ab-
sence data of the microbial species. Such distances are sensitive to
variation of richness. We develop PERMANOVA-S as an improved
version of PERMANOVA in order to facilitate the association study
of microbiome composition. PERMANOVA-S is superior to
PERMANOVA because it flexibly accommodates confounders and
multiple distances. We investigated the type I error and power of
PERMANOVA-S under different patterns of association by fluctuat-
ing the richness and evenness on various OTU sets. Our results show
that PERMANOVA-S properly controls type I error, and the unified
test is more robust than the single-distance test.

A method based on the maximum of the pseudo-F statistics
(maxF) has been proposed to combine different distances (Chen
et al., 2012). The validity of the maxF test relies on the assumption
that the reference distributions of the pseudo-F statistics are the
same under different distances. PERMANOVA-S uses the minimum
P-values as the test statistic, which is a scale-free approach that is
more robust to the various structures of the microbiome data and
distances under consideration. We have conducted maxF test on the
psoriasis dataset across the six distances and obtained a P-value of
1.2 x 1073, which is substantially less significant than the P-value of
our unified test (3.1 x 107°).

The permutation strategy of the unified test proposed in this
paper is very general and can be applied to any unified tests mini-
mizing P-values. For instance, Zhao et al. (2015) cast the prob-
lem in the kernel machine framework and developed a
regression-based kernel test MiRKAT. Their framework allows
for multiple distances. However, the P-value calculations of their
unified test depend on the asymptotic approximation, which is
not accurate when the sample size is modest. The Supplementary
Table S3 demonstrates that MiRKAT tends to be overly conser-
vative with small sample size. Our permutation strategy can be
readily implemented to improve the small-sample performance of
their test.

Failure to take into account the sampling variation can cause
inflated beta diversity and produce false positive results. To over-
come the potential adverse effects of unbalanced sampling, rarefac-
tion is usually adopted to subsample reads to equal depth. However,
if the signal is mainly driven by the change of evenness, throwing
away large numbers of observations adversely affects the power.
Fortunately, the abundance distances based on the unrarefied data
stabilize very quickly with increasing depths (Supplementary Tables
S4 and S5). As the read depth is usually large (>1000) in most target
sequencing studies, we suggest to use unrarefied data for the abun-
dance distances and rarefied data for the presence—absence distances
when testing the association of microbiome compositions. Of note,
rarefaction does not always obscure association when the presence—
absence distances are used (see power of the Dg,l\;, in Supplementary
Tables S4 and S5). For instance, the P-value for Dl(,l\,)(, becomes
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2.5 % 107" if we use the unrarefied psoriasis data, which shows
much weaker evidence of the association than the reported P-value
using the rarefied data (1.1 x 1075).

Many microbiome studies are being conducted with more com-
plicated designs and heterogeneous samples. We expect that the use
of PERMANOVA-S for the accommodation of confounders and
multiple distances will enable more robust discoveries in micro-
biome research.
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