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Abstract

Motivation: Gene–gene interaction (GGI) is one of the most popular approaches for finding and ex-

plaining the missing heritability of common complex traits in genome-wide association studies.

The multifactor dimensionality reduction (MDR) method has been widely studied for detecting GGI

effects. However, there are several disadvantages of the existing MDR-based approaches, such as

the lack of an efficient way of evaluating the significance of multi-locus models and the high com-

putational burden due to intensive permutation. Furthermore, the MDR method does not distin-

guish marginal effects from pure interaction effects.

Methods: We propose a two-step unified model based MDR approach (UM-MDR), in which, the sig-

nificance of a multi-locus model, even a high-order model, can be easily obtained through a regres-

sion framework with a semi-parametric correction procedure for controlling Type I error rates. In

comparison to the conventional permutation approach, the proposed semi-parametric correction

procedure avoids heavy computation in order to achieve the significance of a multi-locus model.

The proposed UM-MDR approach is flexible in the sense that it is able to incorporate different types

of traits and evaluate significances of the existing MDR extensions.

Results: The simulation studies and the analysis of a real example are provided to demonstrate the

utility of the proposed method. UM-MDR can achieve at least the same power as MDR for most

scenarios, and it outperforms MDR especially when there are some single nucleotide polymorph-

isms that only have marginal effects, which masks the detection of causal epistasis for the existing

MDR approaches.

Conclusions: UM-MDR provides a very good supplement of existing MDR method due to its effi-

ciency in achieving significance for every multi-locus model, its power and its flexibility of handling

different types of traits.

Availability and implementation: A R package “umMDR” and other source codes are freely avail-

able at http://statgen.snu.ac.kr/software/umMDR/.

Contact: tspark@stats.snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Detecting gene–gene interaction (GGI) or epistasis has been recog-

nized as one of the most effective remedies in genome-wide associ-

ation studies (GWAS) for explaining missing heritability (Eichler

et al., 2010; Mackay, 2014). Many efficient approaches have been

proposed for GGI analysis and there are generally two types of

approaches: model-based approaches and model-free approaches.

The model-based approaches assume a statistical model between

genotype and phenotype, such as those in Park and Hastie (2008),

Wan et al. (2010), Wu et al. (2009), Yang et al. (2009) and Zhang

and Liu (2007), while the model-free approaches often have no prior

assumptions about the model and data, such as in Dong et al.

(2008), Li et al. (2014), Ritchie et al. (2001) and Zhang et al.

(2010). Van Steen (2012) and Wang et al. (2011) provides compre-

hensive discussions of these approaches.
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Among these approaches, the multifactor dimensionality reduc-

tion (MDR) approach (Ritchie et al., 2001) is a very popular non-

parametric combinatorial approach that reduces the number of di-

mensions by converting a high-dimensional multi-locus model into a

1D model for case-control studies. MDR reduces multiple genotype

combinations into two groups—high risk (H) and low risk (L).

There are a number of extensions of MDR: quantitative MDR

(QMDR) for quantitative traits (Gui et al., 2013), generalized MDR

(GMDR) for both quantitative and binary traits (Lou et al., 2007),

Surv-MDR and Cox-MDR for survival data (Gui et al., 2011; Lee

et al., 2012), FAM-MDR for family data (Cattaert et al., 2010; Lou

et al., 2008), GEE-MDR and Muti-MDR for multivariate pheno-

types (Choi and Park, 2013; Yu et al., 2015) and etc. Through these

extensions, MDR-based approaches have been demonstrated great

power in broad applications of identifying high-order interactions.

However, MDR has several shortcomings. First, it is hard to

obtain the significance of a multi-locus model without a subsam-

pling procedure such as permutation, which introduces a heavy

computational burden. Second, MDR does not distinguish mar-

ginal effects from pure interaction effects. To account for such

kinds of problems, Calle et al. (2008) and Cattaert et al. (2011)

have proposed a model-based MDR approach (MB-MDR) that

first classifies all the genetic combination cells into H or L and

an intermediate group based on statistical testing, and then evalu-

ate the significance of each genetic model through another testing.

Unfortunately, MB-MDR needs a lot of tests even in the classifi-

cation stage, and the significance of the final model still needs a

computationally intensive permutation scheme.

To circumvent the above drawbacks, we propose a novel two-

step unified model MDR approach (UM-MDR). UM-MDR first

classifies all the genetic combination cells into H and L groups using

a simple classification rule as in MDR-based approaches and then

evaluates the significance of each genetic model by regression or a

penalized regression framework. There are three main differences

between our approach and MB-MDR. (i) We avoid using significant

tests in the classification step, and instead we use simple classifica-

tion rules as in traditional MDR approaches. (ii) We suggest apply-

ing ridge regression or logistic ridge regression to adjust the

marginal effects. (iii) Finally, a simple and easily computed semi-

parametric procedure is proposed for correcting the raw P-values

from the regression model instead of an intensive permutation

process.

2 Method: UM-MDR

In this section, we introduce UM-MDR for detecting GGI. Basically,

this framework includes two steps, namely, a classification (or di-

mension reduction) step and a modeling step. The classification step

reduces the multi-level genotype combinations into a 1D variable, as

the traditional MDR approaches do. The modeling step evaluates

the significance of the GGI model, while adjusting for the covariate

effects and/or the marginal effects simultaneously.

First, we classify each genotype combination (cell) into high (H)

or low (L) risk group, and we use S, which stands for the H/L status.

There are several methods available for classification. For example,

for a dichotomous trait, we can classify a cell into H(L) group if the

ratio of the number of case to the number of control in the cell is

greater (smaller) than a given threshold, e.g. the global ratio of the

numbers of cases and controls. For a quantitative trait, we can sim-

ply classify a cell into H(L) group if the mean value of the trait in

that cell is greater (smaller) than a given threshold, such as the glo-

bal mean, as QMDR does.

Second, we can model the effect of the H/L status S defined in

the first stage by fitting a generalized linear model:

g lð Þ ¼ a0 þ bSþ cTX ; (1)

where l is the mean vector of phenotype Y, gð�Þ is the link function,

and X is the covariate vector such as some environmentally related

variables. The model parameters can be estimated by maximum like-

lihood (ML) estimation.

The main idea of the UM-MDR is to define an indicator variable,

say S, for high- or low-risk groups classified by the given v-order sin-

gle nucleotide polymorphism (SNP) pair and to test the significance

of effect of S on the response variable to check the GGI, instead of se-

lecting the best combination of SNPs by the intensive cross-validation

procedure. Since S is an indicator of the high or low risk groups which

is reduced from the multi-level genetic combination cells constructed

by the given v-order SNP pair, the non-zero effect of S implies that

there is an interactive effect of the corresponding pair of SNPs on the

response variable. Therefore, we can easily obtain the significance of

the corresponding multi-locus model by testing the null hypothesis

H0 : b ¼ 0, in which we check the association between S and the

phenotype Y.

To account for the strong marginal effect, we can modify Model

(1) to

g lð Þ ¼ a0 þ bSþ cTX þ
Xv

i¼1

aiSNPi: (2)

A potential problem of (2) is that Y and some SNPs may be

highly correlated, and so the ordinary ML estimator may suffer

from the multi-collinearity problem. To overcome such problem, we

recommend using the ridge regression model (Cule et al., 2011;

Vago and Kemeny, 2006).

The advantages of UM-MDR include the following. (i) The sig-

nificance of every genetic model is easily obtained through the

standard regression analysis (or regularized regression), while ad-

justing for the covariant effects and/or the marginal effects. (ii) The

flexibility is reflected through the following two aspects: it can han-

dle both quantitative traits and qualitative traits, and a lot of exist-

ing classification methods can be used to define H/L in the first step.

The UM-MDR procedure is summarized as follows:

i. For each given v-order SNP combination, classify the genotype

combination cell into H(L), and let S stands for the H/L status.

ii. Fitting either model (1) or model (2) and then

testing H0 : b ¼ 0 using the following model based framework.

2.1 Ridge regression and logistic ridge regression
We use the ridge regression (for a quantitative trait) or logistic ridge

regression (for a binary trait to adjust for the marginal effects (Cule

et al., 2011; Vago and Kemeny, 2006). Specifically, consider a

standard linear regression model as follows:

Y ¼ Zbþ �:

Here Y and Z stand for the response vector and design matrix of

the covariate variables, respectively, and we assume that

� � Nð0; r2IÞ. The ordinary least squares estimator for b is ðZ0
ZÞ�1

Z
0
Y and the ridge regression estimator is bbk

¼ ðZ0
Zþ kIÞ�1Z

0
Y,

where k a positive tuning parameter, and I is the identity matrix,

and note that
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var bbk� �
¼ r2ðZ0

Zþ kIÞ�1Z
0
ZðZ0

Zþ kIÞ�1:

For a binary response variable, the logistic regression model is

defined as

log
P Y ¼ 1jXð Þ
P Y ¼ 0jXð Þ

� �
¼ Xb:

Then the corresponding ridge regression estimator can be found

by maximizing the log-likelihood function with a L2 norm penalty

of b, equivalently,

bbk
¼ argminb �log L bð Þð Þ þ k bj jj j2

� �
;

where LðbÞ is the likelihood function. The Newton-Raphson algo-

rithm can be used to find bbk
and the variance is estimated by

var bbk� �
¼ ðZ0

WZþ 2kIÞ�1Z
0
WZðZ0

WZþ 2kIÞ�1;

where W ¼ diag½bpið1� bpiÞ] and bpi ¼ eXi
bbk

1þeXi
bbk :

2.2 Significance test of a multi-locus model and a semi-

parametric P-value correction procedure
In step 2, we use the Wald type statistic W ¼ bb2

=var bb� �
for testing

the significance of a multi-locus model, but the null distribution may

not necessarily follow the chi-square distribution (Calle et al.,

2008). Instead of using a computationally intensive permutation

process, we suggest the following semi-parametric procedure to cor-

rect the raw P-value. First, assume that the null distribution follows

a non-central chi-square distribution with degree of freedom one

and estimate the non-central parameter through only a few numbers

of permutations (e.g. 5 or 10). Then re-calculate the P-value based

on the non-central chi-square distribution. This approach avoids the

heavy computational cost compared to the conventional permuta-

tion method for estimating P-values. The rationale of this procedure

can be justified as follows: consider a very simple regression model

defined as

Yi ¼ aþ bSi þ ei;

for which the least square estimator is given as bb ¼ Nð �Y � bY HÞ=NL,

where �Y and bY H are the global mean and mean of H group, and N

and NL are the total sample size and sample size of the L group, re-

spectively. Therefore, testing b ¼ 0 is equivalent to testing

E Yð Þ ¼ EðYHÞ. Note that for quantitative trait, like QMDR, we

classify cell into H if its mean is larger than the global mean, which

means that we have implicitly set bY H > �Y in the first step.

Consequently, the null distribution of z-statistic bb= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðbbÞq

is pre-

sumed to have a nonzero mean due to the classification step.

Therefore, it is natural to assume that the z-statistic follows approxi-

mately a normal distribution with a nonzero mean and standard de-

viation 1, i.e. the statistic W follows a non-central chi-square

distribution with one degree of freedom and non-centrality param-

eter k. Because the mean of the non-central chi-square distribution

is kþ 1, we can estimate the non-centrality parameter asbk ¼ maxð0; bl � 1Þ, where bl is estimator for the mean of W under

the null distribution. To estimate bl, we can permute the trait a few

times, say 5 or 10, repeat step 1 and step 2, and take the sample

mean for W statistic as bl. We can estimate the non-centrality param-

eter for each multi-locus model or pool all the statistics and then es-

timate the common non-centrality parameter for all multi-loci

models.

Note that the proposed semi-parametric correction procedure

does not necessarily need a very large number of permutations as the

conventional method of obtaining the null distribution by permuta-

tion. Through the following simulation studies, we demonstrate that

such a correction procedure controls the Type I error rate well.

3 Simulation studies

3.1 Type I error
In this section, we first check whether the Type I error rate is well

controlled for in the proposed two-step approach. To do this, we

randomly generate two SNPs and a binary (or quantitative) trait

under the null hypothesis of no association. We permute the pheno-

type variable five times to estimate the non-centrality parameter of

the null distribution in all the following simulation studies. The sam-

ple size is 400 and 100 data sets are simulated under various minor

allele frequencies (MAFs). The nominal size is set to be 0.05 and the

proportion of the corrected P-values that are smaller than the nom-

inal size is defined as the Type I error rate. As shown in Table 1, the

Type I error rates are well controlled after using the proposed semi-

parametric correction procedure. We also present the QQ plot of

the raw and corrected P-value in Figure 1.

We then study whether the proposed method can identify the

causal interaction in different contexts, such as binary or quantita-

tive trait with/without marginal effects. We also examine whether

our approach can avoid detecting those multi-locus models just be-

cause one locus has a significant marginal effect. For comparison,

MDR or QMDR analysis are also performed correspondingly. We

consider the following four different scenarios: Case 1) binary trait

without marginal effect, Case 2) quantitative trait without marginal

effect, Case 3) quantitative trait with a marginal effect SNP and

Case 4) a three-order GGI analysis.

Fig. 1. QQ plots for the raw P-value (left panel) and the corrected P-value

(right panel)

Table 1. Type I error rates

MAF

Binary trait Quantitative trait

Raw Corrected Raw Corrected

0.05 0.14 0.03 0.14 0.04

0.10 0.26 0.04 0.22 0.04

0.20 0.38 0.03 0.39 0.02

0.30 0.51 0.03 0.51 0.02

0.40 0.65 0.02 0.63 0.03

Raw and Corrected stand for using the raw P-value and the proposed cor-

rected P-value, respectively.

Unified model based multifactor dimensionality reduction framework i607
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3.2 Case 1: binary trait without marginal effect
In this scenario, we generate data by following the model introduced

in Velez et al. (2007). 70 different penetrance functions and a prob-

abilistic relationship between the trait and SNPs, are used, where the

trait is dependent on two SNPs, say SNP1 and SNP2, in the absence

of any marginal effects. There are two different MAFs 0.2 and 0.4

and seven different heritability 0.01, 0.02, 0.05, 0.1, 0.2, 0.3 and

0.4. Five models for each of these 14 combinations are generated.

We generate m (i.e. 10 or 20) SNPs, but we only present the results

for 10 SNPs, since very similar patterns are found for the different

numbers of SNPs. All the simulation results for 20 SNPs are shown

in Supplementary Figures S1–S4.

The power of UM-MDR can be defined as the proportion of the

P-values (after Bonferroni correction) for the causal model that are

less than a given nominal size, for instance, 0.05. We denote such

power as PBonf. On the other hand, the power of the traditional

MDR approach is defined as a successful detection rate in identify-

ing the true causal model as the best model, so it is not feasible to

compare the power of the traditional MDR with that of our ap-

proach directly. For a fair comparison, we suggest defining another

power of UM-MDR denoted as PRank as the rate of the causal

model with the smallest P-value among all possible multi-locus mod-

els. We present both powers PBonf and PRank for UM-MDR in

Figure 2. It is clear that PRank and the power of the traditional

MDR approach showed very similar patterns, with MDR approach

providing slightly higher powers for some models. However, the

PBonf showed quite low power for many cases among the 70 mod-

els (Fig. 2).

3.3 Case 2: quantitative trait without marginal effects
In this scenario, we consider quantitative traits instead of binary

traits. The phenotype is generated in the same way as in (Gui et al.,

2013), that is, YjðSNP1 ¼ i; SNP2 ¼ jÞ � Nðlfij; 1Þ, where l is set

to be 1 and fij ¼ Pðhigh riskjSNP1 ¼ i; SNP2 ¼ jÞ is the penetrance

function, which is the same penetrance function used in Case 1.

From Figure 3, we can see similar pattern as in Case 1; UM-MDR,

especially when PRank is used, can achieve almost the same power

as QMDR.

We also calculate the ratio of the computation time for QMDR

to that for UM-MDR, which has mean 1.06 across the 70 models,

with 95% CI (1.01, 1.11), suggesting that the two approaches take

similar computation times. However, since the QMDR approach

only provides the best model without evaluating its significance, an

extra conventional permutation procedure (Gui et al., 2013) is

needed to obtain the significance of the selected model, which reruns

the QMDR procedure for a large number times, for instance 1000

times to achieve a P-value as small as 0.001, indicating that QMDR

takes 1000 times more computation cost than that of UM-MDR.

3.4 Case 3: quantitative trait with a marginal SNP effect
In this case, we consider a scenario in which a ‘noisy’ SNP, say, SNP3,

exists and it has only a marginal effect. This is a very realistic scenario,

since there are possibly many SNPs, which have only marginal effects

and the true epitasis is less frequently observed. This simulation is de-

signed to check whether either our approach or the MDR approach can

detect the causal multi-locus model (SNP1, SNP2). Here, the trait is gen-

erated as YjðSNP1 ¼ i; SNP2 ¼ jÞ � N lfij; 1
	 


þNðaSNP3; 1Þ, and

we set l ¼ a ¼ 1. Figure 4 shows that UM-MDR, especially with

PRank, is very powerful in identifying the causal interaction model,

while MDR, as expected, fails completely to identify the causal model

for all 70 models.

3.5 Case 4: a three-order GGI analysis
We consider the three-order interaction model introduced by Ritchie

et al. (2001) for a binary trait. For certain genotype combinations,

there is an increased disease risk. We use a similar strategy as in

Case 3 to make the penetrance function for quantitative traits and

add a marginal effect of another SNP. That is, we gener-

ate Yj SNP1 ¼ i; SNP2 ¼ j; SNP3 ¼ kð Þ
� N lfijk; 1

	 

þNðaSNP4; 1Þ, where fijk is the penetrance func-

tion, which is specified in the Supplementary document, and we set

l ¼ 1; a ¼ 0:5. The results are summarized in Figure 5. Although

all of these three powers are very low when MAF is small, UM-

MDR with PRank always gives highest power in identifying the

causal three-order model across all MAF values, especially when the

MAF is large.

Fig. 2. Power of PBonf, PRank and MDR for Case 1 over 70 models

Fig. 3. Power of PBonf, PRank and QMDR for Case 2 over 70 models

Fig. 4. Power of PBonf, PRank and QMDR for Case 3 over 70 models

i608 W.Yu et al.
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In summary, UM-MDR approach with PRank can achieve at

least the same power as MDR (or QMDR) for most scenarios, and it

outperforms MDR (or QMDR) approaches when there are some

SNPs only having marginal effects (Case 3) and/or when there is

higher-order causal model (Case 4). We have shown that while the

computation times for UM-MDR and QMDR are similar, UM-

MDR provides significance for each multi-locus model automatic-

ally while QMDR does not. To present the significance, QMDR

needs an extra computationally intensive permutation scheme,

which results in QMDR taking a computation time exceeding that

of UM-MDR by a thousand times.

4 Real example

We analyze a real dataset from the Korean Association Resource

project to demonstrate the proposed approach. Three phenotypes,

high-density lipoprotein cholesterol (HDL), low-density lipopro-

tein cholesterol and triglyceride were measured. A total of 8581

samples are available after removing the subjects with at least

one missing phenotype value. The genomic DNAs are genotyped

using Affymetrix Genome-Wide Human SNP Array 5.0. For our

GGI analysis, we only use 19 candidate SNPs identified in an

earlier study (Willer et al., 2008) from the single SNP GWAS

analysis. For the purpose of demonstration, we use HDL in the

GGI analysis.

In the second step of UM-MDR, we also consider the covariate

adjustments for sex, age, and recruitment area. Figure 6 displays the

P-value profile for all second-order genetic models and shows that

the significance of a multi-locus model depends largely on adjusting

for the marginal effects. After a Bonferroni correction, a lot of sig-

nificant models were identified without adjusting for the marginal

effects whereas no significant model was found with a marginal

effect adjustment. This implies that the significance of most models

identified without considering marginal effects might be false-

positive.

Table 2 displays the top five second-order interaction models

after marginal effect adjustment. The top five models were signifi-

cant at the 5% significance level, although these models were not

significant after multiple testing adjustments. These models may

have a higher chance of detecting the true epitasis, since we have al-

ready adjusted for the marginal effects. On the other hand, the

QMDR method identifies a pair of SNPs (rs12596776, rs17321515)

as the best second-order model with Cross Validation Consistency

(CVC)¼6. However, the P-value of this model is estimated to be

0.34 by UM-UMDR. This model is selected as the best model by

QMDR perhaps due to the strong marginal effect of the SNP

(rs12596776). For comparison, we also list the top detected models

when marginal effects adjustment is not considered (Table 3). As

shown in Tables 2 and 3, the top five models are quite different and

the corresponding P-values are substantially different. This implies

that it is difficult to detect the significant epistasis when there are

SNPs with strong marginal effects.

Fig. 5. Power of PBonf, PRank and QMDR for Case 4: a three-order model

Fig. 6. Plot of P-value over all possible SNP pairs in real example: negative log(P-value) plots in the real example study for all second-order multi-locus models

without marginal effect adjustment (left panel) and with marginal effect adjustment (right panel). The sold blank horizontal line corresponds to the significant

level 0.05 after Bonferroni correction

Table 3. Top 5 second-order interaction models for real example

study, without marginal adjustment

Top SNP1 SNP2 P-value

1 rs780049 (CNTNAP5) rs10402271 (ZNF107) 5:62� 10�9

2 rs780049 (CNTNAP5) rs12596776 (SLC12A3) 7:19� 10�9

3 rs780049 (CNTNAP5) rs4149268 (ABCA1) 8:44� 10�9

4 rs780049 (CNTNAP5) rs1566439 (HPR) 1:18� 10�8

5 rs17321515 Unknown) rs12596776 (SLC12A3) 1:82� 10�8

The corresponding gene name related to each SNP is presented in the

parentheses.

Table 2. Top 5 second-order interaction models for real example

study, with marginal adjustment

Top SNP1 SNP2 P-value

1 rs2156552 (FH0D3) rs17145738 (TBL2) 0.0018

2 rs2144300 (GALNT2) rs2338104 (KCD10) 0.0128

3 rs2144300 (GALNT2) rs1748195 (DOCK7) 0.0267

4 rs2338104 (KCD10) rs17145738 (TBL2) 0.0303

5 rs2144300 (GALNT2) rs10402271 (ZNF107) 0.0322

The corresponding gene name related to each SNP is presented in the

parentheses.
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5 Discussion

We proposed a UM-MDRto overcome the shortcomings of the

existing MDR approaches for GGI analysis. The main contribution

of UM-MDR is to provide a P-value for the testing of GGI with a

simple and effective semi-parametric procedure instead of a compu-

tationally intensive permutation. The UM-MDR can handle flexibly

different types of traits by adjusting for the marginal effects along

with covariate effects through a regularized regression approach, the

ridge regression or logistic ridge regression, and by correcting the

raw P-value through a simple and effective semi-parametric proced-

ure, which avoids using the conventional computationally intensive

permutation method to achieve the P-value of every multi-locus

model. Through simulation studies, UM-MDR can provide at least

the same power as MDR for most scenarios and outperforms MDR

for some cases, especially when there are some SNPs with only mar-

ginal effects, which can mask the detection of causal epistasis.

The classification step of our approach has many options, in that

all classification strategies used by MDR and its extensions can be

applied. Consequently, the proposed UM-MDR can provide the sig-

nificance of many existing MDR extensions for different types of

traits, even for multivariate phenotypes, as in Choi and Park (2013)

and Yu et al. (2015).

In the second step of UM-MDR, we use an alternative way of mod-

eling by reversing the roles of response (Y) and H/L status (S), that is,

we treat S as the response variable and Y as the explanatory variable.

Such modeling enjoys more flexibility because it uses a logistic regres-

sion framework for all different types of traits, which can even handle

multivariate traits. Furthermore, this kind of multivariate analysis can

also present significance for each trait on every multi-locus model and

provide more information when detecting epistasis.
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