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Abstract

Motivation: Text mining is increasingly used to manage the accelerating pace of the biomedical lit-

erature. Many text mining applications depend on accurate named entity recognition (NER) and

normalization (grounding). While high performing machine learning methods trainable for many

entity types exist for NER, normalization methods are usually specialized to a single entity type.

NER and normalization systems are also typically used in a serial pipeline, causing cascading

errors and limiting the ability of the NER system to directly exploit the lexical information provided

by the normalization.

Methods: We propose the first machine learning model for joint NER and normalization during

both training and prediction. The model is trainable for arbitrary entity types and consists of a

semi-Markov structured linear classifier, with a rich feature approach for NER and supervised se-

mantic indexing for normalization. We also introduce TaggerOne, a Java implementation of our

model as a general toolkit for joint NER and normalization. TaggerOne is not specific to any entity

type, requiring only annotated training data and a corresponding lexicon, and has been optimized

for high throughput.

Results: We validated TaggerOne with multiple gold-standard corpora containing both mention-

and concept-level annotations. Benchmarking results show that TaggerOne achieves high per-

formance on diseases (NCBI Disease corpus, NER f-score: 0.829, normalization f-score: 0.807) and

chemicals (BioCreative 5 CDR corpus, NER f-score: 0.914, normalization f-score 0.895). These re-

sults compare favorably to the previous state of the art, notwithstanding the greater flexibility of

the model. We conclude that jointly modeling NER and normalization greatly improves

performance.

Availability and Implementation: The TaggerOne source code and an online demonstration are

available at: http://www.ncbi.nlm.nih.gov/bionlp/taggerone

Contact: zhiyong.lu@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Many tasks in biomedical information extraction rely on accurate

named entity recognition (NER), the identification of text spans

mentioning a concept of a specific class, such as disease or chemical.

Recent research has demonstrated that a particular NER ap-

proach—namely, conditional random fields with a rich feature set—

consistently achieves high performance on a variety of NER tasks

when provided with an appropriate training corpus and a relatively

small investment in feature engineering. This approach has been

used to identify a wide variety of entities, including genes and pro-

teins (Leaman and Gonzalez, 2008; Wei et al., 2015a), diseases

(Chowdhury and Lavelli, 2010; Leaman et al., 2013), chemicals.

(Leaman et al., 2015b; Rocktaschel et al., 2012) and anatomic enti-

ties (Pyysalo and Ananiadou, 2014). However many end-user tasks
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also require normalization (grounding), the identification of the con-

cept mentioned within a controlled vocabulary or ontology, making

the utility of NER on its own relatively low.

We recently demonstrated DNorm, the first machine learning

based method for disease normalization (Leaman et al., 2013).

This method used supervised semantic indexing (Bai et al., 2010),

trained with pairwise learning to rank, to score the mentions

returned by a conditional random field NER system, BANNER

(Leaman and Gonzalez, 2008), against the disease names from a

controlled vocabulary. The method focuses primarily on semantic

term variation, such as when an author refers to the concept ‘renal

insufficiency’ with the phrase ‘decreased renal function.’ Our ex-

periments demonstrated the method to be highly effective for dis-

ease normalization.

Like many normalization systems, however, DNorm uses a pipe-

line architecture: the tasks of NER and normalization are performed

serially, making errors cascading from one component to the next a

common problem. Our error analysis of DNorm, for example, dem-

onstrated that over half of the overall system errors were caused by

NER errors that the normalization component could not recover.

One way to overcome cascading errors is to perform NER and

normalization simultaneously. Dictionary systems do this by directly

matching text to the names in a controlled vocabulary. Unfortunately,

NER systems employing machine learning typically have higher per-

formance. To the best of our knowledge, a machine learning method

that trains a joint model of NER and normalization has not been pre-

viously proposed.

In this work, we propose a model that simultaneously performs

NER and normalization—focusing on term variation—during both

training and prediction. We evaluate our model on two corpora con-

taining both mention and concept annotations; one contains disease

entities, the other contains both disease and chemical entities.

Figure 1 provides an example text with both disease and chemical

annotations. We achieve state-of-the-art performance on both dis-

eases and chemicals.

1.1 Related work
Named entity recognition (NER) and normalization have long been rec-

ognized as important tasks within biomedical text mining. Both tasks

have been the subject of community challenges (Hirschman et al., 2005;

Kim et al., 2009; Krallinger et al., 2015a,b; Morgan et al., 2008).

The development of NER and normalization systems for diseases

lagged behind genes and proteins for some time, primarily due to the

lack of annotated corpora. Jimeno et al. (2008) created a corpus of

sentences that was expanded by Leaman et al. (2009); this was fur-

ther expanded to become the NCBI Disease Corpus (Do�gan et al.,

2014). Diseases were also included in the set of entities annotated in

the CALBC silver standard corpus (Rebholz-Schuhmann et al.,

2010). Several rule or dictionary based systems have used these dis-

ease corpora for evaluation of NER (Campos et al., 2013; Song

et al., 2015) or normalization (Kang et al., 2012). Our previous

work DNorm demonstrated significantly higher normalization per-

formance when using a machine learning model (supervised seman-

tic indexing) trained with pairwise learning to rank (Leaman et al.,

2013). Most recently, the Chemical Disease Relation task at the

BioCreative V community challenge included disease normalization

as a subtask (Li et al., 2015; Wei et al., 2015a,c).

The development of chemical NER and normalization systems was

initially enabled by rigorous standards for the chemical nomenclature.

The OSCAR system normalizes many varieties of chemical mentions,

and is intended for mining chemistry publications (Jessop et al., 2011).

Kolarik et al. (2008) created the SCAI corpus of chemical mentions,

Klinger et al. (2008) used this to train and evaluate a machine learning

approach for chemical NER. Rocktaschel et al. (2012) expanded the

machine learning approach with extensive lexical resources. Chemicals

were also included in the CALBC silver standard corpus (Rebholz-

Schuhmann et al., 2010). The CHEMDNER task at BioCreative IV ad-

dressed chemical NER, releasing a large corpus of chemical mentions

in PubMed abstracts (Krallinger et al., 2015a), where our submission

tmChem achieved the highest performance out of 27 teams (Leaman

et al., 2015b). The CHEMDNER task at BioCreative V also addressed

chemical NER, but changed the domain to patents (Krallinger et al.,

2015b). Two recent surveys of the field are Vazquez et al. (2011) and

Eltyeb and Salim (2014).

Our method builds successfully on previous work in NER and

normalization. Cohen and Sarawagi (2004) were the first to apply

semi-Markov models to NER, motivated by a need to integrate soft-

match dictionary features. Okanohara et al. (2006) later applied semi-

Markov models to the biomedical domain. Tsuruoka et al. (2007) is a

method for learning term variation, trained directly from a lexicon

using similarity measures as features. DNorm instead learned the

similarity between individual tokens directly from training data

(Leaman et al., 2013). The advantage of joint learning has been dem-

onstrated for many tasks. For example, Finkel and Manning (2009)

learned a joint model for parsing and NER in newswire text, while

Durrett and Klein (2014) learned a model for joint coreference reso-

lution, named entity classification and entity linking (disambiguation)

when the named entity spans were provided as input. Recently, Le

et al. (2015) proposed a model that performs joint NER and normal-

ization for diseases in biomedical text during prediction, but not dur-

ing training. Our system is the first, to our knowledge, that performs

joint NER and normalization during both training and prediction. In

addition, our system is open source, trainable for arbitrary entity

types and optimized for high throughput.

2 Methods

In this section we describe our model for joint NER and normaliza-

tion. We describe the preprocessing steps used and the lexicons em-

ployed. We detail our joint model, describing the features used, how

it is trained and used for prediction. We also describe the disambigu-

ation steps performed. An overview of the TaggerOne system is pro-

vided in Figure 2. Finally, we describe the state-of-the-art open

source systems used for comparison.

2.1 Preprocessing
We use Ab3P to identify abbreviations within each document (Sohn

et al., 2008), and then replace each instance of the short form (e.g.

Fig. 1. Example text with chemical and disease entity annotations, adapted

from PMID 7420681. The outer boxes specify the annotated term and MeSH

identifier
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‘CT’) with the corresponding long form (‘copper toxicosis’). We use

SimConcept to identify composite mentions (e.g. ‘cleft lip/palate’)

and resolve them into their component parts (‘cleft lip’ and ‘cleft

palate’) (Wei et al., 2015a). We also segment text into sentences. We

use two tokenization approaches. For diseases, we segment tokens

at whitespace and separate punctuation characters into individual

tokens. For chemicals, we also separate tokens at letter/digit boun-

daries and lowercase to uppercase boundaries. When jointly model-

ing chemicals and diseases, we use the same strategy as for

chemicals.

2.2 Joint modeling of NER and normalization
NER is often handled as a sequence labeling problem and frequently

addressed with Markov models. These models derive their name

from the Markov property, which asserts that the current label in

the output is independent of all other labels except the one preced-

ing. Markov models assign a label to each token in the input se-

quence; an example text is shown in Figure 3.

In this work, we approach joint NER and normalization using

semi-Markov models. These models assign labels to contiguous

subsequences (segments) of variable length, as shown in Figure 3.

Like Markov models, semi-Markov models obey the Markov

property between transitions, but—unlike Markov models—do

not require a transition for each token. Because segmentation is

part of the model, semi-Markov models enable features that inte-

grate information across all tokens in the segment. We exploit this

ability to simultaneously learn a normalization scoring function,

enabling the creation of a practical model for joint NER and

normalization.

2.2.1 Problem statement

After preprocessing, our input consists of a sequence of tokens. The

objective of our model is to divide this sequence into segments, each

consisting of one or more tokens and assign a class to each. Since we

are performing NER and normalization simultaneously, the class

must indicate both the NER and normalization. Each segment must

therefore specify the NER label (such as Disease) and both the name

and entity mentioned by the text.

We extend the formal problem statement of Cohen and

Sarawagi (2004) describing semi-Markov models for NER to

our task of joint NER and normalization. Specifically, let

X ¼ X1; . . . ;X Xj j
� �

represent an input text as a sequence of tokens.

Let L be the set of NER labels (including a special non-entity label,

Other). LetN ‘ and E‘ be respectively the set of names and entities in

the lexicon for label ‘ 2 L. Let entity : N ! E be the mapping

defined by the lexicon from names to entities, which we assume

to associate each name n 2 N ‘ with exactly one entity e 2 E‘. Let

Y ¼ Y1; . . . ;Y Yj j
� �

be a segmentation of X. Each segment Yj 2 Y is a

5-tuple consisting of:

1. The index of the first token in the segment, aj: 0 � aj � Xj j

2. The (exclusive) index of the last token, bj: aj < bj � Xj j þ 1

3. The NER label, ‘j 2 L
4. The lexicon name, nj 2 N ‘j ; if ‘j ¼ Other then nj ¼1
5. The entity, ej ¼ entityðnjÞ; if ‘j ¼ Other then ej ¼1

Note that segmentations which have the same NER information

(segment indices and NER labels) but differ in any of the normaliza-

tion information (lexicon name or entity) are not equivalent.

A segmentation is valid if all tokens from X are used exactly

once, in order, and if the length of all segments with label Other is

exactly one token. Let Y Xð Þ be the set of all valid segmentations of

X. According to our definitions, the segmentation for the example

text shown in Figure 3 would be:

Y ¼ 0; 2; Chemical; ‘‘Gentamicins’’; D005839ð Þ;

2; 5; Disease; ‘‘Renal Insufficiency’’; D051437ð Þ;

5;6;Other;1;1ð Þ; 6;7;Other;1;1ð Þ; 7;8;Other;1;1ð Þ;

8; 10; Chemical; ‘‘Tobramycin’’; D014031ð Þ

2.2.2 Model description

We define a scoring function over the set of valid segmentations

Y Xð Þ, so that the task of prediction becomes finding the segmenta-

tion Y 2 Y Xð Þ with the highest score:

f Xð Þ ¼ argmax
Y2Y Xð Þ

score Y; s; t;Wð Þ

where s, t and W are the parameter weights of the model, to be

defined. We define the score for a segmentation Y as the sum of the

scores for each segment:

score Y; s; t;Wð Þ ¼
XYj j

j¼0

score Yj; s; t;W
� �

Under this formulation, the highest-scoring segmentation can be

found efficiently using a modification of the Viterbi algorithm (fully

described in the supplemental material). We perform NER and nor-

malization simultaneously by defining the score for each segment Yj

to be the sum of its NER and normalization scores:

score Yj; s; t;W
� �

¼ scoreNER Yj; s
� �

þ scoreNorm Yj; t;W
� �

We model the NER scoring function as a structured classification

problem using a multi-class linear classifier, similar to previous work

using structured perceptrons or support vector machines (Altun et al.,

2007; Crammer and Singer, 2001; Taskar et al., 2004) with a rich fea-

ture approach. This approach learns one weight vector per label

‘j 2 L, constrained so that the correct label for any given segment will

Fig. 2. Overview of the TaggerOne system. Joint modeling of NER and nor-

malization is performed by scoring all text segments against each NER class

and name in the lexicon Fig. 3. Example text labeled with both Markov and semi-Markov models. C

labels refer to chemicals, D labels to diseases and O labels to non-entities.

Markov models assign labels to individual tokens; semi-Markov models sep-

arate the input into segments of one or more tokens and assign a label to

each

TaggerOne 2841
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be the one with the highest score. Our rich feature approach for pre-

paring the NER feature vectors is detailed in Section 2.2.3. If we let rj

be the NER feature vector for segment Yj and let s‘j be the NER

weight vector for ‘j, then the NER score for Yj is their dot product:

scoreNER Yj; s
� �

¼ rT
j s‘j

Normalization is more difficult, however, due to the significantly

greater number of categories (one per name nj 2 N ‘j ). We use a

supervised semantic indexing approach (Bai et al., 2010; Leaman

et al., 2013), which converts both the segments Yj and names nj

2 N ‘j into vectors and then uses a weight matrix (W‘) to score pairs

of vectors. We describe the creation of the normalization vectors in

Section 2.2.4. In this work we introduce an additional term for the

cosine similarity, t‘. If we let the normalization vector for Yj be uj

and the normalization vector for name nj be vj, then the normaliza-

tion score for Yj is:

scoreNorm Yj; t;W
� �

¼ t‘j uT
j vj

� �
þ uT

j W‘j vj

Element i; jh i in matrix W‘ can be interpreted as the correlation

between token ti appearing in a text segment with NER label ‘ and

token tj appearing in any concept name for ‘ from the lexicon. The

model can thus learn a variety of relationships between tokens in

text and names from the lexicon, including both synonymy and con-

trast. While the diagonal elements of W‘ already model the same

values represented by the cosine similarity parameter t‘, it represents

the similarity between any token appearing in a text segment with

NER label ‘ and the same token in the lexicon. The term can there-

fore be considered a ‘base value’ for all of the diagonal elements; it

is also the only trained normalization parameter used for tokens not

seen during training.

We could also add an element to the scoring function that mod-

els the dependency of the current label (‘j) on the previous label

(‘j�1), as specified by the Markov property. The number of previous

labels included (the order) can also be varied; order 1 and order 2

are common choices. We found, however, that conditioning the clas-

sification on any number of previous labels reduced performance.

We use a scoring function that is independent of all other labels,

making our model an order 0 semi-Markov model.

2.2.3 NER features

The NER features are prepared using a rich feature approach, with fea-

ture templates defined for either individual tokens or segments as needed.

Token-level feature templates are similar to previous work in biomedical

NER (Leaman and Gonzalez, 2008; Leaman et al., 2015a), including:

• Token text, token stem
• Part of speech
• Character 2, 3 and 4—grams
• Patterns to recognize numbers and common variations in

capitalization

Feature templates defined at the segment level include:

• The number of tokens in the segment
• The characters and tokens surrounding the segment
• The first and last token in the segment
• Whether the segment contains unbalanced parenthesis
• Patterns to recognize common representations of Greek letters,

partial chemical formulas and amino acids.
• Whether the start or end token is a member of a closed class in

English

The NER feature vector for each segment is equal to the segment

level feature values summed with each of the token level features for

each token within the segment.

2.2.4 Normalization vector space

The normalization vector space is prepared similar to our previous

work with the tokens from the lexicon (Leaman et al., 2013), but

now also contains all tokens in the training data. To create the set of

tokens within the space, we process the names in the lexicon and all

segments in the training data as follows:

• Conversion to lower case.
• Punctuation removal.
• Stop word removal; we use the same set of stop words as

DNorm (Leaman et al., 2013).
• Stemming: diseases use the Porter stemmer (Porter, 1980) while

chemicals only remove plurals (Hartman, 1991).

We then define a corresponding vector space and create vectors

within that space for each segment in the input data and each name

in the lexicon. We use tf-idf weighting, modified so that the set of

documents used for the idf calculation is the set of names in the lexi-

con. Tokens not present in the vector space (i.e. present in the evalu-

ation set but not the training set) are represented as a unique

‘unknown’ token so that normalization scores reflect the reduced

quality of the match.

All normalization vectors are scaled to unit length, making the

normalization score independent of the number of tokens in the text

segment or lexicon name. This scaling requires information to be

integrated across the text segment, and is therefore enabled by our

use of semi-Markov models.

2.3 Training
We train our model using the margin-infused relaxed algorithm

(MIRA) (Crammer and Singer, 2003). Similar to the perceptron,

MIRA is an online algorithm that performs no update if the instance

is already correctly classified. Unlike the perceptron, the update

does not use a fixed step size. Instead, MIRA determines the min-

imum change to the weights that would score the (correct) anno-

tated segmentation higher than the (incorrect) segmentation

currently given the highest score by the model by at least as much as

the loss.

If we use s0, x0 and W 0 to respectively describe s, x and W after

the update, then the size of the update (u) is the length of the differ-

ence of all weights in Euclidean space:

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ks0 � sk2 þ t0 � tð Þ2 þ kW 0 �W‘k2

q

The goal of the MIRA update is to find the smallest update, sub-

ject to the constraint of correctly classifying the instance after the

update:

update ¼ argmin
s0;x0 ;W0

uþ c
X

n

nk

where nk are slack variables (nk � 0) to ensure separability, the c

parameter controls the size of the updates, and n is the number of

constraints. We use the hinge loss and constrain the update so that

the score for the annotated segmentation (Yþ) will be higher than

the score for the segmentation that currently has the highest score

(Y� ¼ f ðXÞ) by at least as much as the loss:
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score Yþ; s0; t0;W0ð Þ � score Y�; s0; t0;W 0ð Þ þ n0

� max 0; score Y�; s; t;Wð Þ � score Yþ; s; t;Wð Þð Þ

We found it useful to also add constraints focusing on the normal-

ization. For each segment Yþj in the annotated segmentation whose

label is not Other, we add a constraint that the normalization with

the highest score for that segment should be the one annotated:

scoreNorm Yþj ; t0;W 0
� �

� scoreNorm Y�j ; t0;W 0
� �

þ nk

� max 0; scoreNEN Y�; t;Wð Þ � scoreNorm Yþ; t;Wð Þð Þ

When the entity for the annotated segment Yþj has multiple syno-

nyms, we let the model determine which name should be used by se-

lecting the name with the highest score according to the current

model weights.

Determining the smallest update that satisfies the constraints is a

numerical optimization problem, specifically a quadratic program.

While it has an exact solution, it contains more than one constraint

and therefore must be solved numerically. We use an open source

numerical optimizer (ojAlgo: http://ojalgo.org) to solve for the

update.

To keep a single instance from making large changes to the

weights, we limit the change (k) to be at most m: k ¼ min m; uð Þ.
We empirically determine the value of c and m by performing a grid

search using a randomly selected subset of the training data (100

documents).

We iterate through all training instances in random order on

each iteration. All weights are initialized to 0 at the start of training.

To reduce overtraining, we use model averaging and also evaluate

the performance on a holdout set after each training iteration. We

use the harmonic mean of the NER and normalization f-scores (as

described in Section 3) as the holdout performance measure. We

output the current model if performance has improved over the pre-

vious iteration, and stop training when n ¼ 10 iterations have

elapsed without a performance improvement. We then consider the

last model output as the final model.

2.4 Disambiguation
Though our primarily normalization focus is term variation, if the

highest-scoring name vector is the name for two or more entities

then we perform two steps to disambiguate. First, if the name is

marked as a synonym for one entity and the primary name for the

parent of that entity, we prefer the parent. Second, we prefer the

entities that appear more frequently in the training data.

2.5 Lexical resources
In this work, the goal is to perform NER and normalization by

learning a mapping to a specific lexicon, rather than maximizing

performance by expanding the lexicon. We therefore exclusively use

the disease and chemical vocabularies distributed by the

Comparative Toxicogenomics Database project (CTD, http://

ctdbase.org). The CTD vocabulary for diseases, MEDIC, is derived

from a combination of OMIM (http://www.omim.org) and the dis-

ease branch of MeSH (https://www.nlm.nih.gov/mesh) and lists 11

885 disease entities and 76 685 names. The CTD chemical vocabu-

lary contains concepts from the MeSH chemical branch. We aug-

mented this vocabulary slightly to ensure it included all chemical

element names and symbols up to atomic number 103, resulting in a

total of 158 721 chemical entities and 414 246 names.

2.6 Comparison systems
We employ two open source systems with state-of-the-art perform-

ance for NER and normalization as comparison benchmarks. We

use DNorm (Leaman et al., 2013) for diseases; it has the highest

published performance on the NCBI Disease Corpus and also

achieved the highest performance in a previous disease challenge

task (Leaman et al., 2015a; Pradhan et al., 2015). We use tmChem

(Leaman et al., 2015b) for chemicals; it is an ensemble of two chem-

ical NER/normalization systems and achieved the highest perform-

ance in the recent CHEMDNER challenge task for chemical NER at

BioCreative IV (Krallinger et al., 2015a). In this work we exclusively

use Model 1, which is an adaptation of BANNER (Leaman and

Gonzalez, 2008) to recognize chemical mentions, combined with a

dictionary approach for normalization.

3 Results

We validate TaggerOne by applying it to two corpora containing

both mention- and concept-level annotations: the NCBI Disease cor-

pus (Do�gan et al., 2014) and the BioCreative V Chemical Disease

Relation task corpus (Li et al., 2015). Overall statistics for each

dataset are provided in Table 1. The NCBI Disease corpus consists

of 793 PubMed abstracts separated into training (593), development

(100) and test (100) subsets. The NCBI Disease corpus is annotated

with disease mentions, using concept identifiers from either MeSH

or OMIM. The BioCreative V Chemical Disease Relation

(BC5CDR) corpus consists of 1500 PubMed abstracts, separated

into training (1000) and test (500) sets. We created a holdout set by

separating the sample set (50 abstracts) from the remainder of the

training set. The BC5CDR corpus enables experiments simultan-

eously modeling multiple entity types; it is annotated with concept

identifiers from MeSH for both chemical and disease mentions.

We use two evaluation measures since our model performs both

NER and normalization. The NER measure is at the mention level;

we require the predicted span and entity type to exactly match the

annotated span and entity type. The normalization measure is at the

abstract level, comparing the set of concepts predicted for the docu-

ment to the set annotated, independent of their location within the

text. We report both measures in terms of micro-averaged precision,

recall and f-score.

We perform two sets of experiments. The first set of experiments

evaluates the ability of the model to generalize to unseen text and

whether joint NER and normalization improves performance over

performing NER separately. This set of experiments models diseases

and chemicals separately. The second set of experiments evaluates

the ability of the model to simultaneously handle multiple entity

types (both diseases and chemicals).

3.1 Results for single-entity models
The results for training and evaluating TaggerOne on a single entity

type can be found in Table 2 for NER and Table 3 for normaliza-

tion. For each corpus, the model was trained on the training set,

using the development (or sample) set as a holdout set, and eval-

uated on the official test set.

The NER f-score is higher for the joint NERþ normalization

model than for the NER-only model for all entity types and corpora.

Specifically, the error rate for NCBI Disease is reduced by 8%, for

BC5CDR (disease) by 15% and for BC5CDR (chemical) by 26%. In

all cases the NER f-score is also higher for the joint NERþ normal-

ization model of TaggerOne than for the comparison systems.

Finally, we note that the normalization performance has increased

TaggerOne 2843

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/18/2839/1744190 by guest on 23 April 2024

http://ojalgo.org
Deleted Text: R
http://ctdbase.org
http://ctdbase.org
http://www.omim.org
https://www.nlm.nih.gov/mesh
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: S
Deleted Text: S
Deleted Text: E
Deleted Text: M
Deleted Text: &hx2009;
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: &hx2009;
Deleted Text: &hx2009;


over the comparison systems; specifically the error rate for NCBI

Disease is 11% lower, BC5CDR (disease) is 16% lower and

BC5CDR (chemical) is 17% lower.

3.2 Results for disease1chemical
The results of training and evaluating TaggerOne on two entity

types simultaneously are described in Table 4. For this experiment

we trained a single model on the BC5CDR corpus, simultaneously

modeling both diseases and chemicals. We note that jointly model-

ing chemicals and diseases produces the same NER performance and

very similar normalization performance.

4 Discussion

The single-entity performance demonstrates both that our model is

effective and that jointly modeling NER and normalization im-

proves performance. Our results significantly improve on DNorm

for diseases and on tmChem for chemicals. Analyzing the DNorm

and TaggerOne results provides insight into the advantage of joint

prediction: DNorm often misses phrases that require term variation

to be resolved for the phrase to be recognized as an entity, such as

‘abnormal involuntary motor movements,’ annotated as MeSH

identifier D004409: Drug-induced Dyskinesia.

The experiment jointly modeling chemicals and diseases demon-

strates that the model maintains high performance while modeling

multiple entity types. Modeling multiple entity types simultaneously

may be advantageous when the entity types are more difficult to

distinguish, such as with anatomical types (Pyysalo and Ananiadou,

2014).

Our results on the NCBI Disease corpus are the highest of which

we are aware. The only normalization system with published results

on the NCBI Disease corpus besides DNorm is the sieve-based sys-

tem of D’Souza and Ng (2015). Their evaluation measure calculates

the proportion of mentions correctly normalized given perfect NER.

Using this measure, their system scored 0.847; TaggerOne scores

0.888.

The recent disease subtask at the BioCreative V chemical disease

relation task provides an excellent comparison for our system (Wei

et al., 2015c). The UET-CAM system (Le et al., 2015) performs joint

NER and normalization for prediction but unlike TaggerOne does

not perform joint training; it achieved an f-score of 0.764. The high-

est performing system at the BC5CDR disease subtask achieved

0.896 precision, 0.835 recall, for 0.865 f-score (Lee et al., 2015).

We note that expanding the lexicon was a significant feature in most

participating systems; in this manuscript our goal is to automatically

learn the best mapping to an existing lexicon. These two approaches

are complementary, however. We are not aware of any previous per-

formance evaluations on the chemical entities of the BC5CDR

corpus.

We originally trained our model using an averaged perceptron;

NER performance was similar but normalization performance was

several percent lower (data not shown). We believe this was due to

using the same update size for both the NER and normalization

weights. Our use of semi-Markov models allows us to scale the nor-

malization vectors for the mentions to unit length. Performance de-

grades significantly when this scaling is not performed (data not

shown).

4.1 Implementation
TaggerOne was implemented in Java as a general toolkit for bio-

medical NER and normalization. TaggerOne is not specific to any

entity type, and is designed to simultaneously handle multiple entity

types and lexical resources. The current implementation has an aver-

age throughput of 8.5 abstracts per second for diseases, compared to

3.5 for our previous work DNorm (using a single 2.80 Ghz 64-bit

Xeon processor limited to 20 Gb memory). The supplemental

Table 1. Statistics for the corpora used for training and evaluation,

differentiated by entity type. ‘Unique Mentions’ and ‘Unique

Concepts’ respectively refer to the number of annotations with

unique text or unique identifiers

Corpus and

entity type

Annotations Unique

mentions

Unique

concepts

NCBI Disease 6892 2135 753

BC5CDR (Disease) 12864 3271 1082

BC5CDR (Chemical) 15933 2630 1274

Table 2. NER results for the NCBI Disease and BC5CDR corpora. DNorm is the benchmark system for disease entities, tmChem model 1 the

benchmark system for chemicals. Precision, recall and f-score are respectively abbreviated as P, R and F. The highest value for each is

bolded

System NCBI disease BC5CDR (disease) BC5CDR (chemical)

P R F P R F P R F

Benchmark system 0.822 0.775 0.798 0.820 0.795 0.807 0.932 0.840 0.884

TaggerOne (NER Only) 0.835 0.796 0.815 0.831 0.764 0.796 0.924 0.847 0.884

TaggerOne 0.851 0.808 0.829 0.852 0.802 0.826 0.942 0.888 0.914

Table 3. Normalization results for the NCBI Disease and BC5CDR corpora. DNorm is the benchmark system for disease entities, tmChem

model 1 the benchmark system for chemicals. Precision, recall and f-score are respectively abbreviated as P, R and F. The highest value for

each is bolded

System NCBI disease BC5CDR (disease) BC5CDR (chemical)

P R F P R F P R F

Benchmark system 0.803 0.763 0.782 0.812 0.801 0.806 0.950 0.808 0.873

TaggerOne 0.822 0.792 0.807 0.846 0.827 0.837 0.888 0.903 0.895
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material describes optimizations critical for reducing the consider-

able computational cost of joint NER and normalization.

4.2 Error analysis and limitations
We manually analyzed a random sample of both corpora for errors

and describe the trends observed. False positives and negatives re-

main a significant source of error. Other entity types—particularly

gene names (e.g. ‘GAP 43’)—are frequently confused with both dis-

eases and chemicals. Diseases are particularly prone to error because

of the high similarity to the general biomedical vocabulary (e.g.

‘nephrostomy tube’), because individual tokens can change the

meaning significantly (e.g. ‘coproporphyrinogen oxidase’ was identi-

fied as the disease ‘coproporphyrinogen oxidase deficiency’), and be-

cause the model does not identify states considered desirable in

context (‘analgesia’).

Coordination ellipsis and noun compounds also remain a signifi-

cant source of error. This is an especially difficult problem for chem-

icals, since it can be difficult to distinguish the number of entities

present within a text snippet (e.g. ‘copper/zinc superoxide’).

We found that our model tends to rely more on the lexicon when

the vocabulary is previously unseen. Consistency with the lexicon

sometimes comes at the expense of consistency with the annotated

data, however. For example, the model identified ‘familial renal

amyloidosis’ though the corpus only contains an annotation for the

less specific ‘amyloidosis.’

Alternatively, segments are sometimes annotated to include

tokens not found in the concept name. For example, the phrase ‘iso-

lated unilateral retinoblastoma’ was annotated as a whole to ‘retino-

blastoma.’ The model correctly found ‘retinoblastoma’ and included

‘unilateral,’ but missed ‘isolated.’ While primarily an NER issue,

these sometimes cause difficulties with normalization (e.g. ‘GI tox-

icity’ was normalized to ‘gastrointestinal disorder’ instead of

‘toxicity’).

5 Conclusion

We conclude that jointly modeling named entity recognition and

normalization results in improved performance for both tasks. Our

model is not entity-specific and we expect it to generalize to arbi-

trary NER and normalization problems in biomedicine. In this work

we have demonstrated this capability for both diseases and chem-

icals. In future work, we intend to integrate a more robust disam-

biguation method to allow entity types such as genes and proteins to

be addressed. We are also interested in investigation its application

to the general domain.

While our goal has been to learn the best mapping to an existing

lexicon, expanding the lexicon is a complementary approach used

by many normalization systems (Wei et al., 2015a,b,c). We antici-

pate that applying our method to an expanded lexicon would fur-

ther increase performance (Blair et al., 2014).

An interesting research direction enabled by this work is the pos-

sibility of using data not annotated jointly (Finkel and Manning,

2010). Sources of annotations at the document-level are significantly

more abundant than annotations at the mention level (Usami et al.,

2011). We anticipate our model may enable entity-level distant

supervision by providing a joint model of both NER and normaliza-

tion that handles term variation.
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