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Abstract

Motivation: Text mining has become an important tool for biomedical research. The most funda-

mental text-mining task is the recognition of biomedical named entities (NER), such as genes,

chemicals and diseases. Current NER methods rely on pre-defined features which try to capture

the specific surface properties of entity types, properties of the typical local context, background

knowledge, and linguistic information. State-of-the-art tools are entity-specific, as dictionaries and

empirically optimal feature sets differ between entity types, which makes their development costly.

Furthermore, features are often optimized for a specific gold standard corpus, which makes ex-

trapolation of quality measures difficult.

Results: We show that a completely generic method based on deep learning and statistical word

embeddings [called long short-term memory network-conditional random field (LSTM-CRF)]

outperforms state-of-the-art entity-specific NER tools, and often by a large margin. To this end,

we compared the performance of LSTM-CRF on 33 data sets covering five different entity

classes with that of best-of-class NER tools and an entity-agnostic CRF implementation. On aver-

age, F1-score of LSTM-CRF is 5% above that of the baselines, mostly due to a sharp increase in

recall.

Availability and implementation: The source code for LSTM-CRF is available at https://github.com/

glample/tagger and the links to the corpora are available at https://corposaurus.github.io/corpora/.

Contact: habibima@informatik.hu-berlin.de

1 Introduction

Text mining is an important tool for many types of large-scale bio-

medical data analysis, such as network biology (Zhou et al., 2014),

gene prioritization (Aerts et al., 2006), drug repositioning (Wang

and Zhang, 2013) or creation of curated databases (Li et al., 2015).

The most fundamental task in biomedical text mining is the recogni-

tion of named entities (called NER), such as proteins, species, dis-

eases, chemicals or mutations. To date, the best performing NER

tools rely on specific features to capture the characteristics of the dif-

ferent entity classes. For instance, the suffix ‘-ase’ is more frequent

in protein names than in diseases; species names often consist of two

tokens and have latin suffixes; chemicals often contain specific syl-

labi like ‘methyl’ or ‘carboxyl’, and mutations usually are sequences

of letters and digits encoding genomic position, type of mutation,

and base changes. Feature engineering, i.e. finding the set of features

that best helps to discern entities of a specific type from other tokens

(or other entity classes) currently is more of an art than a science,

incurring extensive trial-and-error experiments. On top of this costly

process, high-quality NER tools today need further entity-specific

modules, such as whitelist and blacklist dictionaries, which again

are difficult to build and maintain. Defining these steps currently

takes the majority of time and cost when developing NER tools

(Leser and Hakenberg, 2005) and leads to highly specialized solu-

tions that cannot be used for other entity types than the ones they

were designed for. On the other hand, the method used to identify

entities in a given text based on the defined features nowadays is
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fairly homogeneous: conditional random fields (CRFs) (Lafferty

et al., 2001), a statistical sequential classification method, is the de-

facto standard method. Here, we show that an entirely generic NER

method based on deep learning and distributional word semantics

outperforms such specific high-quality NER methods across differ-

ent entity types and across different evaluation corpora.

In the general field of information extraction, two recent develop-

ments lead to substantial improvements. First, word embeddings have

been introduced to represent a single word by a low-dimensional vector

capturing—in some way—the frequencies of co-occurring adjacent

words. When compared with the bag-of-words approach underlying

the conventional methods outlined earlier, word embeddings capture se-

mantic similarities between words (as mathematical similarities between

their vectors) that are not visible from their surface; for instance, the

words ‘enables’ and ‘allows’ are syntactically very different, yet their

meaning is somewhat related, which leads to similar sets of co-

occurring words, whereas the co-occurrences of the word ‘swim’ would

be completely different. The underlying idea of representing words ‘by

the company they keep’ (Mackin, 1978) is an old concept in linguistics,

usually called distributional semantics; its recent popularity is based on

the novel idea that the embeddings are automatically adjusted such that

information extraction tools benefit the most. Second, it has been

shown that the application of artificial neural networks (ANNs), which

automatically learn non-linear combinations of features, leads to better

recognition results than the usage of CRFs, which can only learn (log-

)linear combinations of features. Deep neural networks, and especially

long short-term memory networks (LSTM), perform this task particu-

larly efficiently and effectively. As with word embeddings, this idea is

not new (Hochreiter and Schmidhuber, 1997), but only recent progress

in the available data volumes and machine capabilities made it applic-

able to practically relevant problems (Pascanu et al., 2014).

Following a suggestion from Lample et al. (2016), we combined

the power of word embeddings, LSTMs and CRFs into a single

method for biomedical NER, called LSTM-CRF. This method is

completely agnostic to the type of the entity; all it requires is an

entity-annotated gold standard and word embeddings pre-computed

on a large, entity-independent corpus (typically all PubMed ab-

stracts). We assessed the performance of LSTM-CRF by performing

33 evaluations on 24 different gold standard corpora (some with an-

notations for more than one entity type) covering five different en-

tity types, namely chemical names, disease names, species names,

genes/protein names, and names of cell lines. These corpora encom-

pass patents and scientific articles and partly consist of abstracts and

partly of full texts. We compared the performance of LSTM-CRF

with that of best-of-class, entity-specific NER tools and with an-

other generic NER method using a CRF with a typical NER feature

set plus the word embeddings as input. LSTM-CRF turned out to

have the best F1-score on 28 of the 33 cases; on average, it is 5%

better than the entity-specific NER tools and 3% better than the

CRF method with word embeddings.

2 Materials and methods

In the following sections, we give a technical explication of the

LSTM-CRF approach and describe the competitor NER systems.

Furthermore, we describe the corpora we used for evaluation, the

different embeddings evaluated, and details regarding text pre-pro-

cessing and evaluation metrics.

2.1 LSTM-CRF
LSTM-CRF (Lample et al., 2016) is a domain-independent NER

method which does not rely on any kind of background knowledge.

We first describe LSTM, a specific kind of ANN, and then discuss

the architecture of LSTM-CRF in detail.

An LSTM is a special kind of ANN which processes sequences of

arbitrary length and is able to model dependencies between sequence

elements even if they are far apart (Hochreiter and Schmidhuber,

1997). The input to an LSTM unit is a sequence of vectors x1;x2; . . .

;xT of length T, for which it produces an output sequence of vectors

h1;h2; . . . ; hT of equal length by applying a non-linear transform-

ation learned during the training phase. Each ht is called the activa-

tion of the LSTM at token t. The exact formula to compute one

activation of an LSTM unit in the LSTM-CRF model is provided

below (Lample et al., 2016):

it ¼ rðWxixt þWhiht�1 þWcict�1 þ biÞ

ct ¼ ð1� itÞ � ct�1 þ it � tanhðWxcxt þWhcht�1 þ bcÞ

ot ¼ rðWxoxt þWhoht�1 þWcoct þ boÞ

ht ¼ ot � tanhðctÞ

where all Ws and bs are trainable parameters, r denotes the

element-wise sigmoid function and � is the element-wise product.

Such an LSTM-layer processes the input only in one direction and

thus can only encode dependencies on elements that came earlier in the

sequence. As remedy for this problem, we use another LSTM-layer pro-

cessing in the reversed direction, which allows detecting dependencies

on elements later in the text. The resulting neural network is called a bi-

directional LSTM (Graves and Schmidhuber, 2005).

The architecture of LSTM-CRF is shown in Figure 1. It is com-

prised of three main layers. The first layer is the embedding layer. It

receives the raw sentence S made of the sequence of words w1;w2; . . .

;wT as its input and produces an embedding (i.e. a dense vector repre-

sentation) x1; x2; . . . ; xT for each word in S. The embedding vector xt

of word wt is a concatenation of a word- and a character-level embed-

ding. The word-level embedding is simply retrieved from a lookup-

table (see the example in Fig. 1) of word embeddings trained on a

large corpus (see Section 2.3). The character-level embedding is ob-

tained by applying a bi-directional LSTM to the character sequence of

each word and then concatenating the last activations of both direc-

tions, as exemplified for the word ‘SH3’ in the left side of Figure 1.

The resulting sequence of embeddings x1;x2; . . . ; xT is fed into an-

other bi-directional LSTM-layer that produces a refined representa-

tion of the input, which is the input to a final CRF-layer. The classical

Viterbi algorithm is used to obtain the final output from this layer. All

components together form a single fully differentiable neural network

that can be trained by backpropagation.

In our experiments, we used a learning rate of 0.005 for all cor-

pora except for BioSemantics where we set it to 0.0005, because the

model did not converge with the default one. Regarding the other

hyperparameters, we used the default values from (Lample et al.,

2016) except for (i) the tag scheme which we set to IOB instead of

IOBES, and (ii) the dropout rate which we set to 0.3 instead of 0.5

because this value was optimal for most corpora evaluated by

Lample et al. (2016).

2.2 Competitor systems
We compare the performance of LSTM-CRF against two types of

competitors: a CRF using a generic feature set for NER tasks plus
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word embeddings, and entity-specific NER tools for each class. The

former should help to separate the impact of using word embeddings

from the impact of using the LSTM-CRF architecture. For the latter

we selected the current best-in-class entity-specific NER tools. All

trainable baseline systems were retrained using the same corpora

and folds.

2.2.1 Baseline CRF

We used CRFSuite (http://www.chokkan.org/software/crfsuite/)

(Okazaki, 2007) with default settings to train a first-order linear-

chain CRF model utilizing identical features for all entity types.

These features were defined by the NER feature extractor shipped

with CRFsuite and were designed for domain-independent NER.

Additionally, we provided as features (in turn) one of the word

embeddings described in Section 2.4.

2.2.2 Baseline methods

For each of the five entity classes considered in our evaluation, we

chose the presumably best performing and publicly available current

NER tool:

• Chemicals: we employed tmChem (https://www.ncbi.nlm.nih.

gov/CBBresearch/Lu/Demo/tmTools/) (Leaman et al., 2015)

Model I, considered as the state-of-the-art chemical NER tool

also in other recent studies (Habibi et al., 2016; Leaman and Lu,

2016;). tmChem Model I trains a first-order CRF using features

from BANNER (Leaman and Gonzalez, 2008) plus further ones

obtained through a trial-and-error procedure, including charac-

ter n-grams, chemical specific identifiers, and the output of

ChemSpot (Rockt€aschel et al., 2012) (another high-quality chem-

ical NER tool). The output of the model is filtered by several

type-specific post-processing steps for abbreviation resolution,

enforcing of tagging consistency and balancing of parentheses.
• Genes/proteins: we utilized Gimli (http://bioinformatics.ua.pt/

software/gimli/) (Campos et al., 2013), an open source retrain-

able gene/protein NER tool with competitive performance

(Campos et al., 2012). Gimli trains both first- and second-order

CRF models using a set of specific features, such as orthographic,

morphological, linguistic-based, dictionary-based and a conjunc-

tion of features from adjacent tokens. Post-processing steps like

parentheses correction, abbreviation resolution, and name exten-

sion using a domain dictionary are also applied.
• Species: we used SPECIES (http://species.jensenlab.org/) (Pafilis

et al., 2013), a freely available dictionary-based tool with state-

of-the-art tagging quality. Species is the only NER tool in our set

which does not build on a CRF, and it is also the only tool which

does not train a corpus-specific model.
• Diseases: we used DNorm (https://www.ncbi.nlm.nih.gov/

CBBresearch/Lu/Demo/tmTools/) (Leaman et al., 2013), a freely

available tool showing excellent performance in several studies

(Leaman and Lu, 2016; Wei et al., 2015). It uses the rich feature

set provided by BANNER and a dictionary of disease names cre-

ated by the authors to train a first-order CRF model. The output

of the model is also filtered by manual rules like abbreviation

resolution.
• Cell Lines: we used a model presented in (Kaewphan et al.,

2016), reported to outperform many other available systems in a

cross-corpus setting. It is based on the domain-independent CRF-

based tool NERsuite (http://nersuite.nlplab.org/). In addition to

the pre-defined NERsuite features, it uses a comprehensive dic-

tionary of cell line names from multiple sources.

2.3 Gold standard corpora
We performed our evaluations on five entity types: genes/proteins,

chemicals, diseases, cell lines and species. We relied on a total of 24

corpora, each containing manual annotations for one or more of

these entity types, such as CHEMDNER patent (Krallinger et al.,

2015a,b) for chemicals and genes/proteins, NCBI Disease (Do�gan

et al., 2014) for disease names, Gellus (Kaewphan et al., 2016) for

cell lines and S800 (Pafilis et al., 2013) for species. The corpora en-

compass two different genres of texts: (i) patent texts from the

European Patent Office (EPO) (http://www.epo.org/), World

Intellectual Property Organization (WIPO) (http://www.wipo.int/),

and United States Patent and Trademark Office (USPTO) (http://

www.uspto.gov/) and (ii) scientific articles from PubMed Central

(PMC) (http://www.ncbi.nlm.nih.gov/pmc) and PubMed (https://

www.ncbi.nlm.nih.gov/pubmed/).Table 1 lists all corpora together

with important characteristics like the number of sentences, tokens,

and annotated entities per entity class (measured after text pre-pro-

cessing as described in Section 2.5).

2.4 Word embeddings
We utilized word embedding techniques to capture the semantics of

words (and their similarities) based on their surrounding words. We

evaluated three different embedding models. The first model,

denoted PubMed-PMC, was trained on a combination of PubMed

abstracts (nearly 23 million abstracts) and PMC articles (nearly 700,

000 full texts). The second model, denoted Wiki-PubMed-PMC,

was trained using these two collections plus approximately four mil-

lion English Wikipedia articles. The second model thus mixes

domain-specific texts with domain-independent ones. Both models

were created by Pyysalo et al. (2013) using Google’s word2vec

(http://bio.nlplab.org/); we use 200D vectors. To also be able to

study the impact of text genre, we trained a third model with 50 di-

mensions, denoted Patent, on a set of roughly 20 000 European pa-

tents with biomedical topics using the Gensim toolkit. We optimized

the hyper-parameters of Gensim for the F1-score of the CRF model

(see Section 2.2) on the development set of the CHEMDNER patent

corpus.

2.5 Text pre-processing
All corpora first were converted into a simple uniform format to

ease further processing. In this format, all texts and all annotations

are stored in one single file. Each document is represented by a docu-

ment identifier, a tab separator and the entire document text in one

line. Annotations are given in the following lines, one annotation

Fig. 1. CRF-LSTM architecture. For instance, for the word wt�1 ¼ ‘SH3’ from

the input sentence S, the character-based representation is computed by

applying a bi-directional LSTM onto the sequence of its characters ‘S’, ‘H’, ‘3’.

The resulting embedding is concatenated with the corresponding word

embedding, trained on a huge corpus. This word representation is then pro-

cessed by another bi-directional LSTM and finally by a CRF layer. The output

is the most probable tag sequence, as estimated by the CRF

Biomedical NER with deep learning i39
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per line, with start character position end character position, entity

mention text, and entity type. An empty line indicates the end of a

document, and the next document starts after this empty line. We

converted this file into the specific input format defined by each

baseline NER tool. Moreover, we used Apache OpenNLP (https://

opennlp.apache.org/) to split documents into sentences, sentences

into tokens, and to assign part-of-speech tags. Finally, we created a

file in CoNLL2003 (Tjong Kim Sang and De Meulder, 2003) format

as input for the LSTM-CRF model and the CRFSuite tool.

2.6 Evaluation metrics
We randomly divided each corpus into three disjoint subsets. 60%

of the samples were used for training, 10%, as the development set

for the training of methods, and 30% for the final evaluation. We

compared all methods in terms of precision, recall and F1-score on

the test sets. We performed exact matching to compute these per-

formance values. We also performed an error analysis by comparing

the sets of false positives (FPs) and false negatives (FNs) of the differ-

ent NER methods. To this end, we measured the number of FP and

FN counts for each mention by each method and then calculated the

overlap between sets of FP or FN using fuzzy set operations that

take into account the frequency of mistakes per entity mention

(Thole et al., 1979).

3 Results

We assessed the performance of a novel method for entity-type inde-

pendent NER, namely LSTM-CRF, on 33 different evaluation sets

covering five different types of biomedical entities. LSTM-CRF uses

as features only low-dimensional representations of the words in the

vicinity of the to-be-classified tokens, created by mixing word-level

embeddings created in an unsupervised fashion with character-level

embeddings trained on the respective corpus. Results were com-

pared with a traditional CRF using typical NER features and the

same word embeddings, and to type-specific baselines representing

the state-of-the-art in biomedical NER.

3.1 Impact of different word embeddings
We first studied the impact of using different word embeddings. We

compared the results of three models, differing only in the unsuper-

vised part, i.e. the text collections used for computing word-level

embeddings. For evaluation, we considered the LSTM-CRF and the

pure CRF approach. The macro averaged performance values over

all corpora in terms of precision, recall and F1-score are provided in

Table 2; detailed performance values are given in Appendix A. In

five out of six cases, Wiki-PubMed-PMC achieves the best perform-

ance, and this model is also very close to the best one in the sixth

case. Based on this data, we used the Wiki-PubMed-PMC embed-

dings in all further evaluations.

3.2 Performance of LSTM-CRF, CRF, and baselines
We compared the performance of five baseline NER tools, the CRF,

and the LSTM-CRF using Wiki-PubMed-PMC embeddings on 33

evaluation sets. Results in terms of F1-score for each entity type and

each corpus are shown Figure 2; exact precision, recall, and F1 val-

ues are given in Appendix A. LSTM-CRF achieves the best perform-

ance for 28 out of 33 evaluations and is very close to the best

method in the remaining five cases. On average (macro average),

F1-scores are 81.11% for the generic LSTM-CRF method, 78.04%

for the generic CRF method and 76.61% for the baselines. The im-

provements are mainly due to a strong increase in recall (mean

81.08%, 73.26%, 75.13%) at the cost of decrease in precision

(mean 81.77%, 84.49%, 80.38%).

We also computed performance metrics aggregated per entity

type to see if methods are more suitable for some types than for the

others. Both macro and micro averaged performance values in

Table 3 reveal that this does not seem to be the case; LSTM-CRF

achieves the best average F1-score and recall for all entity types.

An interesting observation is that the pure CRF method often

performs better than the entity-specific baseline algorithms. There

are two explanations for this apparent contradiction to our intro-

ductory words, claiming that the best methods to date are CRF with

type-specific feature sets. First, NER methods are often developed

for a very specific sub-problem, and often only have excellent per-

formance on a particular evaluation corpus. Our evaluation on a

much larger set of corpora reveals that such corpus-specific advan-

tages cannot be simply extrapolated to other settings. Second, by

using word embeddings our CRF model represents words in a

context-encoding space, which enables it to recognize semantic simi-

larity between words. This feature is missing in the word-based

baseline tools.

3.3 Error analysis
We compared the errors made by the three methods by computing

intersections of the sets of FPs and FNs for each method and each

entity type. Results per entity class are shown in Figure 3.

The Venn diagrams of FP sets or FN sets for the different entity

types follow a similar pattern. Generally, error sets of CRF and

LSTM-CRF are more similar to each other than to errors of the

baseline methods, probably due to the strong reliance of all baselines

on entity type-specific dictionaries, creating their own specific

errors. Relying on dictionaries carries two types of dangers: first,

they are notoriously incomplete, leading to FNs; second, dictionary

matching disregards context which leads to FP matches in case of

ambiguous terms. This is particularly visible for species, where the

baseline only uses dictionary matching, leading to the worst preci-

sion among all entity types.

Table 2. Macro averaged performance values in terms of precision,

recall and F1-score for CRF and LSTM-CRF methods with word

embedding features: (i) Patent, (ii) PubMed-PMC and (iii) Wiki-

PubMed-PMC

Precision (%) Recall (%) F1-score (%)

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

CRF 82.71 84.55 84.49 71.98 73.07 73.26 76.36 77.98 78.04

LSTM-CRF 80.10 81.39 81.77 81.04 80.72 81.08 80.26 80.79 81.11

The highest values for each method are represented in bold. Fig. 2. F1-scores of baseline (B), generic CRF (C) and generic LSTM-CRF (L)

for five entity types, each measured within 4–12 corpora. The score for each

corpus per entity type is depicted by a specific colored circle
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We also speculated that the length of an entity might have an im-

pact on the performance of approaches. Very short entities are often

abbreviations which are notoriously ambiguous; entities consisting

of multiple tokens often produce errors at the border tokens, which

are severely punished in any exact matching evaluation (one FP and

one FN). To this end, we measured the average length of a FP or FN

mention in terms of non-space characters for the three methods per

entity class. Furthermore, we computed the F1-scores of single- and

multi-token mentions separately. Results are shown in Table 4.

First, LSTM-CRF is the best method regardless whether an entity

name consists of only one or of multiple tokens. Only for species,

the dictionary-based baseline method has a slightly better F1-score

for multi-token entities, which is, however, outweighed by a much

worse F1-score for single entity names in the overall evaluation.

This result shows that the LSTM-CRF method with word embed-

dings manages to tag precisely also multi-token entities, without

relying on any post-processing rules. However, we also observe that

the performance of CRF and LSTM-CRF on single-token mentions

is considerably better than on multi-token entities, showing that

there is still room for improvement regarding such entity names.

Second, there is an interesting tendency that FPs tagged by LSTM-

CRF are slightly shorter than those found by the CRF, while FNs

are slightly longer, indicating that LSTM-CRF seems to be biased to-

wards shorter entity names.

3.4 Precision-recall trade-off
The results in Table 3 show that, on average, LSTM-CRF signifi-

cantly outperforms CRF and baselines in terms of recall at the ex-

pense of a less strong decrease in precision. Since, for some

applications, obtaining high precision is more important than high

recall, we also implemented and evaluated a method which assigns

confidence scores to the predictions made by LSTM-CRF, followed

by an entity-type independent filter for low confidence predictions

with the aim to reduce the number of FP entities. The filter removes

a percentage of entities with the lowest confidence values from the

output of the generic LSTM-CRF method. First, the labels for all the

Table 4. The average length of errors from the lists of FPs and FNs,

and the F1-scores of single-token and multi-token entities meas-

ured for baselines (B), generic CRF methods (C) and generic LSTM-

CRF methods (L) per entity type

F1-score (%) Mention length

Single-Token Multi-Token FP FN

Chemicals L 84.02 79.90 19.07 20.69

C 82.53 78.07 25.1 20.11

B 76.77 76.84 19.13 16.49

Diseases L 86.13 76.54 14.51 15.58

C 84.20 74.92 15.09 14.66

B 80.42 73.80 13.90 14.36

Species L 86.11 79.10 10.68 12.34

C 85.57 76.75 11.55 11.52

B 67.72 79.80 8.00 9.15

Genes/Proteins L 86.49 72.64 12.85 14.13

C 84.77 69.32 13.50 13.52

B 83.21 70.99 11.73 11.98

Cell Lines L 72.94 64.93 20.02 15.65

C 64.77 62.52 19.01 15.24

B 62.55 64.24 18.41 13.91

The highest F1-scores are emphasized in bold.

Table 3. Macro and micro averaged performance values in terms of precision, recall and F1-score for the baselines (B), the generic CRF

method (C) and the generic LSTM-CRF method (L) over the corpora per each entity type

a) Macro averaged performance

Precision (%) Recall (%) F1-score (%)

B C L B C L B C L

Chemicals 79.8 85.81 82.82 80.73 79.26 84.77 80.22 82.32 83.71

Diseases 78.54 82.48 81.66 73.67 73.47 78.70 75.89 77.56 80.11

Species 72.75 89.59 80.84 79.63 76.15 87.64 73.03 82.09 83.60

Gene/protein 83.77 82.54 81.57 75.87 74.67 80.06 79.35 78.15 80.58

Cell lines 85.14 84.04 82.65 61.32 56.91 73.22 70.35 66.96 77.2

Average 80.38 84.49 81.77 75.13 73.26 81.08 76.61 78.04 81.11

b) Micro averaged performance

Precision (%) Recall (%) F1-score (%)

B C L B C L B C L

Chemicals 75.16 83.45 81.81 79.7 79.12 83.86 77.36 81.23 82.82

Diseases 79.29 83.62 82.56 75.98 77.17 81.68 77.60 80.26 82.12

Species 77.33 88.92 83.84 67.74 76.68 83.33 72.22 82.35 83.59

Gene/protein 81.34 81.79 81.50 77.45 78.14 82.71 79.35 79.92 82.10

Cell lines 71.82 70.20 68.59 57.20 57.60 66.84 63.68 63.28 67.70

Average 76.4 83.11 81.72 78.87 78.71 83.45 77.62 80.85 82.58

The highest values for each entity class are highlighted in bold.

Fig. 3. Venn diagrams demonstrating the area of overlap among the FP sets

or the FN sets of the three methods: the baseline (B), the generic CRF method

(C) and the generic LSTM-CRF method (L) per entity type
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tokens of a sentence are predicted by Viterbi decoding using the

trained model (as described in Section 2.1). Then, all tokens labeled

as entity are assigned a confidence score which estimates the prob-

ability (given the LSTM-CRF model) of the predicted entity label

being part of the true labels of the sentence. The score for a given en-

tity is obtained by summing the scores of all possible label sequences

of the sentence which produce this entity label normalized by the

sum of scores of all the possible label sequences. These scores can be

obtained by the constrained forward-backward algorithm (Culotta

and McCallum, 2004) (The implementation is available online at

“https://github.com/leonweber/tagger”.).

We removed 5, 10 and 15% of the entities tagged by the generic

LSTM-CRF model with lower confidence values and, on average,

obtained precision (recall) scores of 83.62% (78.97%), 85.16%

(76.22%) and 86.45% (73.05%), respectively; detailed performance

values are given in Appendix A. Across all evaluations, the generic

LSTM-CRF model without the 10% lowest confidence predictions

obtains, on average, higher precision and higher recall values than

the generic CRF model and the baselines. In Figure 4, we compare

precision and recall values of the LSTM-CRF method before and

after applying filters together with CRF and baselines, macro-

averaged by entity type. For four out of five entity types, precision

and recall values of this configuration is very close to or higher than

those of the generic CRF method and of the baselines. The only ex-

ception is species, where even the most stringent filtering that we

applied cannot make the LSTM-CRF method reach a precision

higher than that of the CRF method. We inspected these evaluations

in more detail. The lower precision values on average are mostly due

to the two corpora CellFinder and Variome. However, both corpora

miss some of the species annotations. For instance, the 41 FP predic-

tions of LSTM-CRF for Variome are 21 times the term ‘mouse’, 4

times ‘mice’ and 16 times ‘human’—all of which are valid species

names, and all of which achieve high prediction confidence. The

situation is similar for CellFinder, with tokens like ‘goat’, ‘human’

or ‘EColi’ being not annotated as species.

4 Discussion

4.1 Genre and word embeddings
The word embeddings we used for our study were either derived

from patents, from scientific articles or from a mixture of scientific

articles and Wikipedia entries. Since also some of our corpora are

based on patents and others on scientific articles, we wondered if

the use of patent-derived embeddings is advantageous for patent

corpora yet less adequate for scientific articles and vice versa.

Indeed, our patent-derived embeddings slightly outperform the

others on patent-derived corpora in terms of F1-score (recall)

(Patent: 78.52% (82.75%), PubMed-PMC: 78.48% (81.85%),

Wiki-PubMed-PMC: 77.84% (81.00%)) and the model derived

from Wiki-PubMed-PMC achieves a better F1-score (recall) on cor-

pora consisting of scientific articles (Patent: 80.50% (80.81%),

PubMed-PMC: 81.11% (80.57%) and Wiki-PubMed-PMC:

81.56% (81.09%)). This observation again shows that patents are

different from scientific articles (Habibi et al., 2016) and that their

analysis calls for specific resources.

4.2 Corpus size and word embeddings
The performance values obtained in Section 3.1 show that both

CRF and LSTM-CRF achieve the best performance using Wiki-

PubMed-PMC embeddings in most of the cases. Notably, this model

is derived from a collection of domain-specific texts (PubMed,

PMC) mixed with domain-unspecific texts (Wikipedia). A possible

explanation for its superiority is that it uses the largest text base

among the three models; previous works have shown that word

embeddings tend to be the more effective the larger the text base is

(Stenetorp et al., 2012). Furthermore, the use of general domain cor-

pora in addition to the domain-specific ones may add more out-of-

domain information to the embeddings. However, more investiga-

tions are required to define optimal corpora for derivation of word

embeddings for concrete tasks.

4.3 Related work
Traditional biomedical NER methods have relied on rule- or

dictionary-based approaches. The rule-based techniques recognize

biomedical entities using several rules manually defined based on

the textual patterns of entities (Narayanaswamy et al., 2003; Eltyeb

and Salim, 2014). These patterns vary depending on the specific

textual properties of an entity class. The definition of such entity-

specific patterns is time consuming and requires domain-expert

knowledge. Dictionary-based methods extract named entities by

searching them in dictionaries constructed for each entity type. For

instance, Hettne et al. (2009) employ a dictionary-based approach

for the extraction of drugs, and Gerner et al. (2010) use a

dictionary-based approach for species names extraction. Again,

building such dictionaries is time consuming and challenging (Liu

et al., 2015a). Moreover, the recall obtained using these methods is

generally low due to the inherent difficulty of the methods in captur-

ing new entities; a strong advantage of dictionary-based methods is

that they directly solve the named entity normalization (NEN) prob-

lem, i.e. they can output a database identifier for each recognized

entity.

Over the last years, pattern- and dictionary- based methods have

been superseded by approaches relying on supervised machine learn-

ing, especially sequential classification algorithms, such as Hidden

Markov Models (Rabiner, 1989) and CRFs (Lafferty et al., 2001).

CRFs have become the de-facto standard model, being the method of

choice for essentially all tools winning recent NER competitions, such

as BioCreative IV (Krallinger et al., 2013) or i2b2 (Uzuner et al.,

2011). Popular biomedical NER tools using CRFs are, for instance,

ABNER (A Biomedical Named Entity Recognizer) (Settles, 2005) and

BANNER (Leaman and Gonzalez, 2008). Hybrid methods combine

machine learning methods with dictionary- or rule-based techniques.

For instance, ChemSpot (Rockt€aschel et al., 2012) integrates results

of a CRF model with a dictionary-matching module for chemical

NER, and Gimli (Campos et al., 2013) applies post-processing steps

like parentheses balancing to the output of the CRF models.

Fig. 4. Aggregated precision and recall of the generic LSTM-CRF method be-

fore (L) and after applying filters, removing 5 (L—5%), 10 (L—10%) and 15

(L—15%) of entities, per entity type. The highest averaged precision and recall

per entity type obtained by baselines or the generic CRF model are repre-

sented by the green and the orange dash line, respectively
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All these methods build upon pre-defined sets of features, whose

correlations with other features and the target class of tokens are

learned from the gold standard annotations. In contrast, methods

based on deep ANNs also consider non-linear combinations of fea-

ture values (Hastie et al., 2001). This drastically increases the search

space, leading to the fact that ANNs for long were considered im-

practical for many applications. This situation changed only recently

due to the steep increase in the compute power of machines. When

combined with specifically trained word embeddings, deep learning

with ANNs has been shown to outperform other methods in many

areas, such as sentiment analysis (Dai and Le, 2015) or language

modeling (Jozefowicz et al., 2016). These methods are also grad-

ually entering the field of biomedical information extraction, yet re-

sults so far have been mixed. Segura-Bedmar et al. (2015) used word

embeddings as input to a CRF and reported only marginal effects in

chemical NER. Liu et al. (2015b) found word embeddings to only

marginally improve the performance of a CRF-based method using

comprehensive dictionaries as features. Tang et al. (2014) compared

several ways of obtaining word embeddings and reported up to 2%

increase in recall. The method we use in this paper, LSTM-CRF,

was proposed as a general NER algorithm by Lample et al. (2016).

A few previous works have applied LSTM-CRF for biomedical NER

(e.g. Chalapathy et al., 2016a,b). However, all these evaluations

considered at most a handful of corpora. In contrast, our evaluation

of biomedial NER methods based on 33 evaluations using 24 cor-

pora to our knowledge is the most comprehensive one ever per-

formed in this field. Larger previous evaluations we are aware of

were performed in Campos et al. (2012), who measured the per-

formance of different machine learning-based NER methods on 14

corpora, and Batista-Navarro et al. (2015), who reported on the per-

formance of a CRF-based NER tool using nine different corpora.

5 Conclusion

In summary, our results indicate that LSTM-CRF improves consid-

erably upon current biomedical NER methods. We find this exciting

particularly because the method is completely agnostic to entity

types; thus, the costly development of specific tools using specific

dictionaries could become superfluous. However, further research is

necessary to turn this observation into useful applications. In par-

ticular, LSTM-CRF only helps with the recognition of entities in

texts; the next step in most text-mining applications, which is map-

ping recognized entities to standard nomenclature (e.g. Entrez-IDs

for genes, ChEBI-IDs for chemicals etc.), is not addressed. Thus,

LSTM-CRF should be combined with generic NEN tools, as for in-

stance presented in (Leaman et al., 2013). In the future, we plan to

study the inclusion of background knowledge into the LSTM-

approach, for instance in the form of post-processing rules to deal

with long multi-token entities; the hope is to achieve further im-

provements especially in terms of precision, though the price will be

to lose the entity-independence. Nevertheless, our results imply that

the advances in statistical NLP and machine learning can help to

make biomedical text mining (i) more accurate, (ii) less laborious to

develop and (iii) more robust with respect to the specific texts being

mined.
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