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Abstract

Motivation: Principal component analysis (PCA) is a crucial step in quality control of genomic data

and a common approach for understanding population genetic structure. With the advent of large

genotyping studies involving hundreds of thousands of individuals, standard approaches are no

longer feasible. However, when the full decomposition is not required, substantial computational

savings can be made.

Results: We present FlashPCA2, a tool that can perform partial PCA on 1 million individuals faster

than competing approaches, while requiring substantially less memory.

Availability and implementation: https://github.com/gabraham/flashpca.

Contact: gad.abraham@unimelb.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Principal component analysis (PCA) of genotypes is an established

approach for detecting and adjusting for population stratification

and technical artefact in genome-wide association studies and

similar genomic analyses (Galinsky et al., 2016; Novembre and

Stephens, 2008; Patterson et al., 2006; Price et al., 2010). The

widely-used smartpca (EIGENSOFT) implementation has proven

useful but it relies on two computationally expensive steps: (i) com-

puting the genetic relatedness matrix (GRM) 1
m XXT (X is the n�m

matrix of standardised genotypes for n individuals and m single nu-

cleotide polymorphisms, SNPs), and (ii) eigen-decomposition of the

GRM. Although this approach is effective for relatively small data-

sets (up to several thousand individuals), it becomes infeasible both

in terms of memory requirements and computation time for larger

datasets (Oðmn2Þ and Oðn3Þ, respectively).

Since most genomic analyses involving PCA only make use of the

top 10–20 or so principal components, alternative approaches that

perform a partial decomposition have been proposed, including

FlashPCA1 (Abraham and Inouye, 2014) and FastPCA (Galinsky

et al., 2016). These tools have enabled analyses of far-larger datasets

than would be practical otherwise. However, as shown below, these

algorithms may not always converge rapidly to the solution or have

substantial memory requirements. These shortcomings will be par-

ticularly challenging when analysing large datasets that are now

becoming available, such as the UK Biobank (Sudlow et al., 2015)

(n ¼ 500 000 individuals) or the Precision Medicine Initiative

(Collins and Varmus, 2015), which intends to genotype 1 million in-

dividuals in the coming years.

Here we present FlashPCA2, which outperforms existing tools in

terms of computation time on large datasets (n ¼ 1 000 000 individ-

uals and 100 000 SNPs or more), while utilising bounded memory

and maintaining high accuracy for the top eigenvalues/eigenvectors.

FlashPCA2 is implemented in Cþþ (based on the Eigen numerical li-

brary, http://eigen.tuxfamily.org), and relies on the Implicitly

Restarted Arnoldi Method as implemented in the Cþþ library

Spectra (https://spectralib.org).

2 Materials and Methods

Key to performance is the fact that the Arnoldi iterations only rely

on matrix-vector multiplication with the genotype matrix X.

FlashPCA2 employs a blockwise approach whereby a suitably sized

subset of the matrix is loaded into memory at one time. Other
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computational gains stem from precomputing the SNP-wise mean 2

pj and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjð1� pjÞ

p
, where pj is the minor allele

frequency for the jth SNP, only once and performing a lookup of

these values in subsequent passes. In addition, in our experiments

(below) the Arnoldi method exhibited better convergence than the

algorithm of FlashPCA1, which can get stuck in local minima before

converging to the final estimates.

We used HAPGEN2 (Su et al., 2011) with the 1000 Genomes

2009 CEU haplotypes (1000 Genomes Project Consortium, 2015) to

simulate genotypes on chr1 (600 k SNPs) for up to 1 000 000 indi-

viduals. We used PLINK 1.9 (Chang et al., 2015) to thin the SNPs

by linkage-disequilibrium (LD) down to 104 531 SNPs, making the

SNPs approximately independent (Patterson et al., 2006). We first

characterised the peformance of FlashPCA2 as a function of mem-

ory allocated to it (Supplementary Fig. S1). Best performance was

obtained when the data could be loaded into RAM fully, however,

this strategy is not practical for large datasets, and we chose to allow

a total of 2GiB RAM as a compromise.

Next, we compared FlashPCA2 with FastPCA, FlashPCA1 and

PLINK 1.9, examining wall run time, memory usage, and the de-

composition error as a function of the n individuals and m SNPs

using K ¼ 20 dimensions for FlashPCA2 and FastPCA. The error

was defined as

RMSEK ¼
1

nK

XK

k¼1

���� 1

m
XXTuk � ukd2

k

����
2

2

" #1=2

; (1)

where jj � jj2 is the Euclidean norm, uk is the kth left singular vector

and dk is the kth singular value of X.

As Figure 1 shows, FlashPCA2 was the fastest, followed by

FastPCA (2.6� slower), FlashPCA1 (8.9� slower) and finally

PLINK (316� slower) (see Supplementary Fig. S2 for run time as a

function of the number of SNPs). Note that some FlashPCA1 and

PLINK analyses could not be run due to the large memory require-

ments. FastPCA used up to 44GiB RAM for the largest analysis (n ¼
1 000 000), whereas FlashPCA2 used only 2GiB RAM for all ana-

lyses. FlashPCA2 matched the accuracy of PLINK (full eigen-

decomposition), followed closely by FlashPCA1, whereas FastPCA

had an RMSE three to four orders of magnitude higher (see

Supplementary Fig. S3 for results of up to 100 000 individuals).

3 Conclusion

FlashPCA2 enables scalable and accurate PCA of large genotype

datasets, using small amounts of memory (2GiB for 1 000 000 indi-

viduals and 100 000 SNPs in <12 h, single core), making it feasible

to run such analyses on a standard personal computer, all within the

R environment.
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Fig. 1. Performance on the HAPGEN2 chromosome 1 simulated datasets

(104 531 SNPs), as a function of sample size. (a) Wall time (hours, average

over three runs), truncated at 72 h; (b) memory usage (GiB); (c) accuracy of

the rank K ¼ 20 decomposition (Equation 1). The wall time excluded LD-thin-

ning in PLINK.
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