
Sequence analysis

CALQ: compression of quality values of aligned

sequencing data

Jan Voges1,*, Jörn Ostermann1 and Mikel Hernaez2,*

1Fakultät für Elektrotechnik und Informatik, Institut für Informationsverarbeitung (TNT), Leibniz Universität

Hannover, 30167 Hannover, Germany and 2Carl R. Woese Institute for Genomic Biology, University of Illinois,

Urbana-Champaign, IL 61801, USA

*To whom correspondence should be addressed.

Associate Editor: Bonnie Berger

Received on May 16, 2017; revised on October 23, 2017; editorial decision on November 10, 2017; accepted on November 22, 2017

Abstract

Motivation: Recent advancements in high-throughput sequencing technology have led to a rapid

growth of genomic data. Several lossless compression schemes have been proposed for the cod-

ing of such data present in the form of raw FASTQ files and aligned SAM/BAM files. However, due

to their high entropy, losslessly compressed quality values account for about 80% of the size of

compressed files. For the quality values, we present a novel lossy compression scheme named

CALQ. By controlling the coarseness of quality value quantization with a statistical genotyping

model, we minimize the impact of the introduced distortion on downstream analyses.

Results: We analyze the performance of several lossy compressors for quality values in terms of

trade-off between the achieved compressed size (in bits per quality value) and the Precision and

Recall achieved after running a variant calling pipeline over sequencing data of the well-known

NA12878 individual. By compressing and reconstructing quality values with CALQ, we observe a

better average variant calling performance than with the original data while achieving a size reduc-

tion of about one order of magnitude with respect to the state-of-the-art lossless compressors.

Furthermore, we show that CALQ performs as good as or better than the state-of-the-art lossy com-

pressors in terms of variant calling Recall and Precision for most of the analyzed datasets.

Availability and implementation: CALQ is written in Cþþ and can be downloaded from https://

github.com/voges/calq.

Contact: voges@tnt.uni-hannover.de or mhernaez@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the release of the latest next-generation sequencing (NGS)

machines the cost of human whole genome sequencing (WGS) has

dropped to merely US $1000. This milestone in sequencing cost has

opened the doors to personalized medicine, where the DNA of the

patient will be sequenced and analyzed as part of a standard proce-

dure. In this scenario, massive amounts of NGS data are expected to

be generated. Furthermore, in the course of the next decade the

amount of genomic data is expected to surpass astronomical data in

volume (Stephens et al., 2015).

NGS machines produce a multitude of readouts—reads in

short—of fragments of DNA material (Mardis, 2011). During the

sequencing process, a quality value (QV), also known as quality

score in the literature, is assigned to each nucleotide in a read. These

quality values express the confidence that the corresponding nucleo-

tide has been read out correctly (Ewing and Green, 1998). The

reads, the quality values and the associated read identifiers are com-

monly stored in the FASTQ format (Cock et al., 2010).

Moreover, after the raw data (i.e. the set of reads stored in

FASTQ files) have been generated, one of the most common

VC The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1650

Bioinformatics, 34(10), 2018, 1650–1658

doi: 10.1093/bioinformatics/btx737

Advance Access Publication Date: 23 November 2017

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1650/4653693 by guest on 23 April 2024

https://github.com/voges/calq
https://github.com/voges/calq
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data
Deleted Text: ,
Deleted Text: ,
https://academic.oup.com/

subsequent processing steps is the reference-based alignment of the

reads (Langmead and Salzberg, 2012; Langmead et al., 2009;

Marco-Sola et al., 2012). During the alignment process, additional

information is generated for each read such as the mapping positions

or the set of operations needed to be performed on a read so that it

aligns perfectly at that position. As a result of the alignment, the

data of the FASTQ file are further extended to include all the infor-

mation generated during the alignment process. These data are usu-

ally stored in the form of BAM files (Li et al., 2009).

Note that BAM files can be up to twice the size of the com-

pressed raw data as they include both the raw data (from the

FASTQ file) and all the information generated by the aligner.

Moreover, since all the information contained in the raw data is also

contained in the BAM file, these files have become the baseline for

performing further analysis on the sequencing data. One example of

this trend is the new Genomic Data Commons Data Portal by the

National Institute of Health (NIH) where the baseline data are

stored as BAM files.

To comprehend the volume of data that is represented, stored

and transmitted in BAM files, current sequencing machines are

capable of delivering over 18 000 whole human genomes a year,

which accounts for almost five PB of new data per year. Therefore,

efficient storage and transmission of these prohibitively large files is

becoming of uttermost importance for the advancement towards

routine sequencing.

To partially address this issue, several specialized compression

methods have been proposed in the literature. Currently, CRAM

(Bonfield, 2014; Hsi-Yang Fritz et al., 2011), which was proposed

in 2010 and last updated in 2014, is the one seeing the broadest

acceptance. However, newer methods like CBC (Ochoa et al., 2014)

or DeeZ (Hach et al., 2014) have shown to achieve better compres-

sion ratios than CRAM (Numanagi�c et al., 2016). In addition, other

algorithms have been proposed to address or improve further impor-

tant features like random access (Voges et al., 2016) or scalability

(Cánovas et al., 2016; Roguski and Ribeca, 2016).

Nevertheless, none of the above solutions focuses primarily on

the compression of the quality values. It has been shown that quality

values can take up to 80% of the lossless compressed size (Ochoa

et al., 2016). To further reduce the file sizes, Illumina proposed a

binning method to reduce the number of different quality values

from 42 to 8. With this proposal, Illumina opened the doors for

allowing lossy compression of the quality values. The drawback is

that downstream analyses could be affected by the loss incurred

with this type of compression. However, Yu et al. (2015), Ochoa

et al. (2016) and Alberti et al. (2016) showed that quality values

compressed with more advanced methods could achieve not only a

better performance in downstream analyses than Illumina-binned

quality values, but even better performance than the original quality

values in some cases because these methods remove noise from the

data.

All the previously proposed lossy compressors for quality values

are primarily focused on the FASTQ file format; and even if those

compressors could be easily applied to SAM files (SAM files are the

uncompressed version of BAM files), they do not exploit the extra

alignment information stored in these files. To the knowledge of the

authors, no specialized compressors for the quality values in SAM

files have been proposed so far in the literature. Therefore, it is of

primary importance to propose specialized compressors for aligned

data, given the size of these files and its impact on the future of per-

sonalized medicine.

In this work, we propose a novel lossy compressor, CALQ

(Coverage-Adaptive Lossy Quality value compression), for the

compression of the quality values in SAM files. Specifically, CALQ

exploits the alignment information of the reads included in the SAM

file to measure the uncertainty of the genotype at each locus of the

genome. Hence, the raw reads must be aligned prior to compression.

Since most of the generated raw sequencing data is subsequently

aligned, we do not believe that this requirement is significant. The

proposed algorithm further uses the alignment information to deter-

mine the acceptable level of distortion for the quality values such

that subsequent downstream analyses such as variant calling are pre-

sumably not affected. Finally, the quality values are quantized

accordingly. To the knowledge of the authors, CALQ is the first

compressor of its type, which exploits alignment information to

minimize (or even eliminate) the effect that lossy compression has in

downstream applications. Thus, high compression is achieved with

a negligible impact on downstream analyses.

2 Materials and methods

Broadly described, the proposed method CALQ first infers the ‘gen-

otype uncertainty’ for each genomic locus l from the observable data

using a statistical model. Given the sequencing depth N at locus l,

the immediate observable data are the read-out nucleotides (and

their corresponding alignment information) and the associated qual-

ity values of all reads overlapping locus l. The genotype uncertainty

can be regarded as a metric that measures the likeliness that a unique

genotype is the correct one. This metric is then used to determine the

level of quantization to be applied to the quality scores at the corre-

sponding locus. The level of quantization is parametrized by an

index k representing a quantizer with k quantization levels.

Specifically, if our method believes that two or more different geno-

types are likely to be true, then the genotype uncertainty will be high

and hence, k will be high. However, if there is enough evidence in

the data that a particular genotype is likely the correct one, then the

genotype uncertainty will be low, and therefore, k will be low. Thus,

the compressibility of the quality values associated to each locus l

will be driven by the uncertainty on the genotype at that particular

locus.

This idea is depicted in the example of Figure 1, which shows at

the top the alignment of four reads with their respective quality val-

ues. Quality values represented by special characters or digits corre-

spond to lower qualities, and quality values represented by capital

letters correspond to higher qualities. For simplicity, let us assume

that these reads were sequenced from a haploid organism. Below the

reads, the figure shows with colors the ‘genotype uncertainty’ for

each genomic locus, where green and red indicate a low uncertainty

and a high uncertainty, respectively. After the genotype uncertainty

for each locus has been computed, the algorithm uses this metric to

estimate the manageable level of quantization for the quality values

at that locus, i.e. the index k. Thus, each of the numbers in the col-

ored row represents the number of quantization levels k that will be

used at that genomic locus. A large number is associated with a high

‘genotype uncertainty’ and vice versa. The bottom of the figure

shows the quantized quality values after a quantization with k levels

has been applied to the original quality values. Note that the number

of different quantized quality values in each locus are up to k.

As an example, at the left-most locus shown in Figure 1, there is

not enough evidence for a particular genotype as only two bases

cover that position, with one of them having a rather high quality

value and the other one of them having a rather low quality value.

Thus, the number of different quantized quality values that can

appear in that locus will be high, namely k¼8 in this example. On

CALQ: compression of quality values of aligned sequencing data 1651

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1650/4653693 by guest on 23 April 2024

Deleted Text: ,
Deleted Text: 5
Deleted Text: ; C&hx00E1;novas <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text: 2 Methods
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;

the other hand, the figure also contains several loci with low ‘geno-

type uncertainty’, highlighted in dark green. In these cases, only two

quality values (i.e. k¼2) will be used to represent all quality values

at each of these loci. Finally, note that at the fifth genomic locus

(l¼4), all bases aligning in that position match perfectly. However,

since half of the quality values in that position are low, the ‘genotype

uncertainty’ is also increased. This results in an increment of the

number of quantization levels that will be used at that locus.

Algorithm 1 shows the set of instructions performed by the pro-

posed algorithm. In words, for every locus l, the encoder gathers the

sequences of reads and quality values covering that locus, the read

mapping positions, the CIGAR strings and optionally the reference

sequence(s), as defined in the SAM file format specification (Li

et al., 2009). For each read in the SAM file, its associated CIGAR

string is the set of instructions that need to be performed to align the

read to the reference, excluding substitutions. Then, CALQ com-

putes the genotype uncertainty at that locus l which is then used to

select a specific quantizer with k levels from a previously computed

set of quantizers. The chosen quantizer is used to quantize all quality

values associated with locus l. Finally, entropy encoders are used to

compress the quantized quality values and the indexes k.

Supplementary Figure S2 shows the block diagram of the CALQ

codec, together with the necessary side information needed for com-

pression and decompression.

Lines 5–7 and lines 10 and 11 from Algorithm 1 are explained in

detail in what follows.

2.1 Genotype uncertainty computation
This section describes the computations performed by CALQ to infer

the genotype uncertainty (line 5 of Algorithm 1). As mentioned above,

the genotype uncertainty is computed from the observable data using a

statistical model. In this paper, we use a Bayesian model similar to the

one used by the tool UnifiedGenotyper from the Genome Analysis

Toolkit (GATK) (McKenna et al., 2010). However, in other implemen-

tations, the model could be controlled or selected depending on the tar-

geted application or depending on general preferences of the user.

At any locus l in the sequenced genome, the genotype is repre-

sented by a random variable G drawn from the genotype alphabet G
with cardinality jGj. The genotype G is the set of alleles found at a

locus l across all reads covering it. We express the genotype as

G ¼ ðA1; . . . ;Aa; . . . ;AhÞ, where the allele Aa is drawn from the

allele alphabet A with cardinality jAj, and h is the ploidy of the spe-

cies. Then we can derive the number of possible genotypes jGj by

computing all possible allele combinations with repetitions as

jGj ¼
jAj þ h� 1

jAj � 1

 !
: (1)

For example, in the case of DNA sequencing, we consider the allele

alphabet A ¼ fA;C;G;Tg with jAj ¼ 4 symbols. As an example, for

a diploid organism with h¼2, this would result in jGj ¼ 10 possible

genotypes. Note that the symbol N is emitted by a sequencing

machine if no decision about a nucleotide at a specific position can

be made. However, since real DNA sequences cannot contain sym-

bol N, we omit it here.

Let us consider a set of reads that are aligned to a reference

sequence and let us assume that the reads have been sorted by their

mapping positions. Given such set of reads, we denote by N the num-

ber of reads covering locus l. Let ni be the symbol from read i covering

the locus l and qi the value of the corresponding quality value.

The goal is to compute the posterior distribution of the genotype

G, given the observable nucleotides n ¼ fnigN
i¼1 parameterized by

the observable quality scores q ¼ fqigN
i¼1. The posterior probability

is proportional to the likelihood times the prior:

PðGjn; qÞ / PðnjG; qÞ � PðGÞ: (2)

The likelihood is given by

PðnjG; qÞ ¼
YN
i¼1

PðnijG; qiÞ; (3)

where PðnijG; qiÞ is the likelihood of having observed ni given that

the genotype was G, parameterized by qi. Recall that the genotype G

is expressed as G ¼ ðA1; . . . ;Aa; . . . ;AhÞ, where Aa is the a-th allele.

Note that the nucleotide ni was drawn from only one of the alleles.

Hence, we give all alleles equal probability of being the one from

which the nucleotide ni was drawn. Thus, the likelihood is given by

P nijG ¼ ða1; . . . ; ahÞ; qið Þ ¼
Xh

a¼1

P nijAa ¼ aa; qið Þ
h

; (4)

where PðnijAa ¼ aa; qiÞ is the likelihood of having observed ni given

the assumption that the true symbol was the allele aa, parameterized

by qi. This probability is given by

Fig. 1. Genotype uncertainty level inference. The figure shows at the top the

alignment of four reads. The colored bar in the middle represents the geno-

type uncertainty at each locus, where dark green represents low uncertainty

while red represents high uncertainty. The numbers shown in the middle bar

are the indexes k chosen for each locus. The value of k also indicates the

number of different quantization levels of its associated quantizer. Finally, the

figure shows at the bottom the quantized quality values for the four reads

Algorithm 1: CALQ

Data: SAM file and the reference genome with length L

Result: compressed quality values

1 set locus index: l 0;

2 while l<L do

3 read all reads covering locus l;

4 extract CIGAR, POS, QUAL and SEQ for each of

these reads;

5 compute the genotype uncertainty;

6 compute the index k from the genotype uncertainty;

7 quantize the quality values;

8 l l þ 1;

9 end

10 compress the quantized quality values using an entropy

encoder;

11 compress the indexes k using an entropy encoder;

1652 J.Voges et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1650/4653693 by guest on 23 April 2024

Deleted Text: &hx201C;
Deleted Text: &hx201D;,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data
Deleted Text: to

P nijAa ¼ aa; qið Þ ¼
1� 10

�
qi

10; ni ¼ aa

10
�

qi

10

jAj � 1
; ni 6¼ aa

:

8>>>>><
>>>>>:

(5)

Finally, given the genotype likelihood PðnjG; qÞ, the genotype uncer-

tainty is calculated by applying the metric MðPðnjG; qÞÞ over the

genotype likelihood. Specifically, we choose M to be one minus the

difference between the maximum likelihood PML and the second

largest likelihood P2, i.e.

M ¼ 1� ðPML � P2Þ: (6)

The difference ðPML � P2Þ can be interpreted as the genotype cer-

tainty (and hence, one minus the genotype certainty yields the geno-

type uncertainty). Note that any other metric, such as the entropy or

the Kullback-Leibler divergence, could also be used. Specifically, we

chose the metric M as defined in Equation 6 over the entropy and

the Kullback-Leibler divergence because it yields more meaningful

results in the case that the genotype likelihood PðnjG; qÞ consists of

few approximately equally likely genotypes. Finally, by using the

likelihood (without the prior) to compute the genotype uncertainty

levels, the proposed scheme is able to operate without a reference.

However, the posterior could be used instead of the likelihood if a

reference is available.

2.2 Quantizer index k computation
We use the already computed genotype uncertainty M to compute

the quantizer index k as

k f ðMðPðnjG; qÞÞÞ; (7)

where f is a monotonous increasing function. Specifically, it is a uni-

form quantization function mapping the possible metric values to an

integer set of possible quantization indexes. We configure f to out-

put integer values in the interval ½2;8�. These values represent the

number of quantization levels to be used for the quantization of

quality values at the corresponding locus. Hence, in the current

implementation, CALQ is preloaded with seven uniform quantizers

with two to eight quantization levels. For example, if for a specific

locus the computed genotype uncertainty is very low, then CALQ

will select the lowest quantization index, namely k¼2. Thus, a uni-

form quantizer with two quantization levels is selected for that

locus.

We chose two quantization levels for the coarsest quantizer,

since this binary decision is well suited for loci with a low genotype

uncertainty. Given the trend to reduce the quality values resolution,

we chose 8 quantization levels for the finest quantizer to mimic

Illumina’s 8-binning. In other words, CALQ takes 8-binning as a

baseline and at the same time still leaves room for improvement of

both the resulting compression rate and the variant calling perform-

ance by selecting quantizers with fewer quantization levels when

appropriate.

2.3 Quantization
The quantizers transform the input quality values into quantization

indexes i. For a quantizer with k uniform quantization levels, the

possible output quantization indexes i are in the interval ½0; ðk� 1Þ�.
Using the same example as above, after choosing the quantizer index

to be k¼2, the quantizer will output the quantization index i¼0

for the low quality values in that locus, and the quantization index

i¼1 for those which are high. The threshold that determines what is

a low or a high quality value is set by the quantizer.

At the decoder, the quality values have to be reconstructed using

the quantization indexes i (in correspondence with the correct quan-

tization tables k). The representative quality values are placed at the

mid-points of the corresponding bins.

2.4 Entropy encoder
CALQ processes the input data in fixed-size blocks, where each block

contains b sequence alignments. We empirically derived a suitable

block size of b¼10 000 sequence alignments using an E.coli DH10B

strain dataset, sequenced with Illumina (i.e. short-read paired-end)

technology at a coverage of 422�. For more details on the selection

of the block size, we refer the reader to the Supplementary Material.

The quantization indexes i outputted by the quantizers are

encoded with seven order-0 arithmetic encoders (Witten et al.,

1987), selected by the corresponding quantizer index k. In other

words, the seven arithmetic encoders model the seven conditional

probability distributions PðijkÞ. The quantizer indexes k are encoded

with another order-0 arithmetic encoder, which models the proba-

bility distribution P(k). All arithmetic encoders work non-

adaptively, i.e. they accumulate the individual symbol probabilities

of a block of data before performing the actual compression. The

outputs (including the accumulated probabilities) of all entropy

coders are then multiplexed and written to the output file. Note that

to reconstruct the quality values at the decoder, the mapping posi-

tions, the CIGAR strings and the reference sequence(s) are required

by the decoder. These can be provided by an existing SAM/BAM

compressor [for example CRAM (Bonfield, 2014; Hsi-Yang Fritz

et al., 2011) or TSC (Voges et al., 2016)].

3 Results and discussion

We start this section by showing how the genotype uncertainty cor-

relates with the sequencing depth. To that end, we computed the

genotype likelihood as specified in the Materials and methods

(Section 2.1) on an E.coli DH10B strain dataset with an average

sequencing depth (i.e. coverage) of 422�. Note that in this case the

organism is haploid, thus, h¼1.

Figure 2 shows the sequencing depth (blue, top curve) and the

genotype certainty (yellow, bottom curve) for the first 1000 loci. For

ease of visualization, we computed the genotype certainty as the

negative decimal logarithm of the entropy of the genotype

Fig. 2. Sequencing depth (blue, top curve) and genotype certainty (yellow,

bottom curve) for the first 1000 loci of the E.coli DH10B strain. For ease of vis-

ualization we plot the genotype certainty instead of the genotype uncertainty

(Color version of this figure is available at Bioinformatics online.)

CALQ: compression of quality values of aligned sequencing data 1653

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1650/4653693 by guest on 23 April 2024

Deleted Text: ,
Deleted Text: 7
Deleted Text: 2
Deleted Text: 8
Deleted Text: 2
Deleted Text: 2
Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data
Deleted Text: ,
Deleted Text: (
Deleted Text:)
Deleted Text: D
Deleted Text: Methods
Deleted Text:
Deleted Text:
Deleted Text: ,
Deleted Text: ,

likelihood, i.e. �log10 HðPðnjG; qÞÞ. As shown in the figure, the gen-

otype certainty curve accurately follows the sequencing depth one.

This is to be expected, as more sequencing depth at a given locus

yields more information to estimate the genotype. As observed in

the figure, the genotype uncertainty is extremely low at most loci

(high values in the figure). In these cases, the quality values could be

highly compressed as they will likely play a minor role in determin-

ing the genotype at these loci.

However, for a few loci deep narrow valleys are observed. These

represent those loci where the genotype uncertainty is high (low val-

ues in the figure). Hence, the quality values will play an important

role in the computation of the genotype at these loci. In these cases,

by applying finer quantization, the quality values will remain very

close to the original ones.

3.1 Impact on variant calling
Since CALQ is a compressor where the reconstructed (i.e. decom-

pressed) quality values can be different from the original ones, it is

of uttermost importance to assess the effect that these changes in the

quality values have on downstream applications. In the scope of this

paper, we choose variant calling as it is crucial for clinical decision

making and thus widely used.

We selected three different variant calling pipelines. The first

pipeline is composed by the GATK Best Practices pipeline (DePristo

et al., 2011). Moreover, this pipeline is used in the MPEG initiative

for the standardization of genomic information representation

(Alberti et al., 2016). Its last step consists of filtering the called var-

iants to remove possible false positives. Although the GATK Best

Practices call for the use of the Vector Quality Score Recalibration

(VQSR) method, to the knowledge of the authors this is still not

widely adopted. Hence, we also consider the more traditional hard

filtration of variants as the second pipeline. The third pipeline con-

sists of the variant caller Platypus as presented in (Rimmer et al.,

2014).

The outputs of all pipelines are analyzed using the hap.py bench-

marking tool as proposed by Illumina and adopted by the Global

Alliance for Genomics and Health (GA4GH, https://github.com/

ga4gh/benchmarking-tools).

We refer to the Supplementary Material accompanying this

paper for the specific commands and parameters used in these

pipelines.

The datasets used for this analysis pertain to the same individual,

namely NA12878. The reason behind this choice is that the

National Institute of Standards and Technology (NIST) has released

a consensus set of variants for this individual (Zook et al., 2014).

With the publication of this consensus set we have the means for

analyzing, in a more concise manner, the effect that lossy compres-

sion of quality values has on variant calling. Note that similar analy-

ses were conducted in other works (Alberti et al., 2016; Ochoa

et al., 2016).

Figure 3 shows the scheme of the used pipelines for the analysis.

The box shown in the middle of the figure is where each of the

analyzed lossy compressors will transform the quality values. To

generate the metrics that will be used as baseline (i.e. the lossless

results) the same pipeline is used but with the green box removed.

Although in Ochoa et al. (2016) and Alberti et al. (2016) an

argument was made to perform the lossy compression at the begin-

ning of the pipeline, we believe that placing it just before the variant

calling is a more realistic position since it is the point where all proc-

essing of the SAM file has been done. We believe that if one would

need to store a SAM file, it would be the one at this point, after all

processing, and not the ones before, which have been subject to less

processing.

After each run of the pipeline, a set of variants is obtained which

are stored in the well-known VCF file format. Note that when using

the GATKþVQSR pipeline, in the last step, a filter level must be

specified such that all variants below that filter value are discarded.

Specifically, and similar to Ochoa et al. (2016) and Alberti et al.

(2016), we have chosen to use four different levels of filtering,

namely (and ordered from more to less restricting) 90, 99, 99.9 and

100. For more information about the meaning of this filter values

and the specific filters of the other pipelines we refer the reader to

the Supplementary Material.

Afterwards, each set of variants (stored in the output VCF file) is

compared against the consensus set of variants released by the

NIST. This comparison is performed using the benchmarking tool

hap.py. Note that a BED file is also used to restrict the comparison

to the high-confidence regions of the consensus set.

The benchmarking tools output the following values.

• True Positives (T.P.): All those variants that are both in the con-

sensus set and in the set of called variants.
• False Positives (F.P.): All those variants that are in the called set

of variants but not in the consensus set.
• False Negatives (F.N.): All those variants that are in the consen-

sus set but not in the set of called variants.
• Non-Assessed Calls: All those variants that fall outside of the

consensus regions defined by the BED file. This distinction was

not considered in previous papers by Malysa et al. (2015),

Ochoa et al. (2016), Alberti et al. (2016) and Yu et al. (2015),

where all these variants were accounted as positives, and there-

fore inflating the false positives metric. This could be the reason

behind the bad performance of the variant callers seen in the

mentioned works.

These values are used to compute the following two metrics:

• Recall/Sensitivity: This is the proportion of called variants that

are included in the consensus set; that is, R ¼ T:P:=ðT:P:þ F:N:Þ,
• Precision: This is the proportion of consensus variants that are

called by the variant calling pipeline; that is,

P ¼ T:P:=ðT:P:þ F:P:Þ.

We use these metrics to assess the performance of CALQ, as well

as the performances of previously proposed algorithms.

Fig. 3. The variant calling pipelines used for the performance assessment of

the proposed lossy compressor CALQ

1654 J.Voges et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1650/4653693 by guest on 23 April 2024

Deleted Text: ,
Deleted Text: ,
https://github.com/ga4gh/benchmarking-tools
https://github.com/ga4gh/benchmarking-tools
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data
Deleted Text:
Deleted Text: ; Alberti <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data

We start by assessing the performance of the proposed algorithm

using the GATK Best Practices pipeline as proposed by the Broad

Institute, which includes VQSR as the variant filtering step.

For the first set of simulations we used the paired-end run

ERR174324 of the NA12878 individual. This run was sequenced by

Illumina on an Illumina HiSeq 2000 system as part of their Platinum

Genomes project. The coverage of this dataset is 14�. Following the

approach of Ochoa et al. (2016) we consider chromosomes 11 and

20. In addition to using chromosomes 11 and 20, to broaden our

test set, we also considered chromosome 3.

Figure 4 shows the bits per quality value versus the average

Recall and Precision over the considered variant calling pipeline

achieved by the proposed algorithm CALQ, and by Crumble (for

two different modes) (https://github.com/jkbonfield/crumble),

Illumina binning (performed with DSRC) (Deorowicz and

Grabowski, 2011), P-Block (for two different modes) (Cánovas

et al., 2014), Quartz (Yu et al., 2015), QVZ 2 (for five different

compression modes) (Hernaez et al., 2016) and R-Block (for two

different modes) (Cánovas et al., 2014). We refer the reader to the

Supplementary Material for brief descriptions of these tools. The

values shown in the figure are the result of averaging over the four

VQSR filtering values mentioned above as well as over all three

chromosomes. For the individual values for each filter and chromo-

some we refer to the Supplementary Material.

From the figure we can observe that CALQ achieves the best per-

formance in terms of both Recall and Precision. Moreover, CALQ

achieves a considerably higher average Recall than that of the lossless

case. This means that the variant caller identifies more true positives

with CALQ quality values than with the original ones. Note that this is

also true for some of the other lossy compressors, although in a minor

scale. This seems to indicate that by applying a lossy compressor, more

true positives are discovered. These results may seem surprising, how-

ever, similar findings for different lossy compressors were found by

Alberti et al. (2016), Ochoa et al. (2016) and Yu et al. (2015).

Regarding the Precision, CALQ also achieves the best results,

yielding a performance marginally above the lossless case. This

improvement with respect to the lossless case is also observed for 7

out of the other 13 compressors. However, all incur in more bits per

quality value. In this regard, CALQ achieves a compressed size of

less than 0.2 bits per quality value which is an order of magnitude

less than the state-of-the-art lossless compressors.

Next, we show the results for the SRR1238539 run on the

NA12878 individual for which an Ion Torrent sequencing machine

was used. The coverage of this dataset is 10�. As before, chromosomes

3, 11 and 20 were considered. Again, the results shown are the results

of averaging over the same four filter values and both chromosomes.

Figure 5 shows the results for the Ion Torrent dataset. As before,

we run the analysis using 14 different compressors (including the

different modes for some lossy compressors) and computed the

Recall and Precision.

As seen in the figure, for the case of Recall, Quartz is the best-

performing algorithm. However, it performs among the worst in

terms of Precision. This is probably due to the fact that, on average,

more calls are made on Quartz compressed data than on the original

data. However, these extra calls are also filled with false positives,

as shown by the performance drop on Precision incurred by the

Quartz compressed data.

Regarding the proposed algorithm CALQ, the Recall perform-

ance is comparable to the best modes of the different compressors.

However, in terms of Precision, CALQ yields a significant improve-

ment over the rest of the algorithms, including the original dataset.

Finally, note that the Illumina binning as implemented by DSRC

performs very poorly in both Recall and Precision.

Next, Supplementary Figure S9 shows the results for the sample

dataset generated by the Garvan Institute from the Coriell Cell

Repository NA12878 reference cell line. These data were sequenced

on a single lane of an Illumina HiSeq X machine. The coverage of

this dataset is 49�.

In this case, all compression modes except P-Block with p¼4

achieve better Recall than the original. In terms of Precision, the

proposed algorithm lies in the Precision-size trade-off curve. For

more data on the results for the individual filter values and chromo-

somes, we refer to the Supplementary Material.

To conclude this assessment, Figures 6 and 7 show the Precision

and Recall difference between using the original data and the lossy-

compressed data for the three pipelines considered in this paper. We

depict 54 ¼ 6� 3� 3 points per lossy compressor, which are the

results of running 6 different pipelines (GATKþhard filtration,

Platypus and 4 different filter values for GATKþVQSR), using the

Fig. 4. Recall and Precision results for the Illumina HiSeq 2000 dataset

ERR174324 with a coverage of 14�. The Recall and Precision metrics were

averaged over the four VQSR filtering values as well as over all chromo-

somes 3, 11 and 20

Fig. 5. Recall and Precision results for the Ion Torrent dataset SRR1238539

with a coverage of 10�. The Recall and Precision metrics were averaged

over the four VQSR filtering values as well as over all chromosomes 3, 11

and 20

CALQ: compression of quality values of aligned sequencing data 1655

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1650/4653693 by guest on 23 April 2024

Deleted Text:
https://github.com/jkbonfield/crumble
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data
Deleted Text:
Deleted Text:
Deleted Text:
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data
Deleted Text:
Deleted Text:
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data
Deleted Text: ,

above mentioned 3 datasets and 3 chromosomes (3, 11 and 20) for

each dataset. The x-axes show the average compression ratio of

each of the analyzed methods with respect to the losslessly com-

pressed quality values sizes in the BAM files. The individual points

were jittered along the x-axes for clarity. For example, a compres-

sion ratio of 10% means that the lossy compressed quality values

consume 10% of the quality value sizes in the BAM files. The figures

also show the aggregated results in form of a box plot showing the

mean (red line), the 95% standard error of the mean (red box) and

the standard deviation (blue whiskers). Note, that we excluded the

results for P-Block p¼1 and R-Block r¼5 from both figures, since

their compression ratios are at 76 and 80% with respect to BAM,

hampering a clear presentation of the results. We therefore refer the

reader to the Supplementary Material for these results.

Fig. 6. Precision results for all considered pipelines, datasets and chromosomes. A total of 54 individual points are shown for each of the lossy compression meth-

ods. The data is aggregated in form of a box plot showing the mean (red line), the 95% standard error of the mean (red box) and the standard deviation (blue

whiskers) (Color version of this figure is available at Bioinformatics online.)

Fig. 7. Recall results for all considered pipelines, datasets and chromosomes. A total of 54 individual points are shown for each of the lossy compression meth-

ods. The data is aggregated in form of a box plot showing the the mean (red line), the 95% standard error of the mean (red box) and the standard deviation (blue

whiskers) (Color version of this figure is available at Bioinformatics online.)

1656 J.Voges et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1650/4653693 by guest on 23 April 2024

Deleted Text: &hx0025;
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data

We first focus our attention on the Precision results shown in

Figure 6. For QVZ 2, a high variance can be observed for the high-

compression modes T8 and T16. In these cases, there are few instan-

ces in which the lossy compressed data achieve better or similar per-

formance to that of the original data, whereas in most instances

there is a clear deterioration in performance. A similar behavior can

be observed for Quartz, although with less variance and slightly bet-

ter results than those of QVZ 2 T8 and T16. However, with 22.5%

on average, the compression ratio achieved by Quartz is significantly

larger.

For the low-compression modes of QVZ 2 (i.e. T1, T2 and T4),

for P-block, R-Block and for Crumble (both modes) the results are

quite consistent (low variance) and very similar to those of the origi-

nal data. In these cases, the compression ratios vary from 23.2%

(QVZ 2 T2) to 35.0% (Crumble -1).

The proposed algorithm CALQ achieves a variance similar to that

of Quartz, but in almost all instances the performance of CALQ-

compressed data outperforms that of the original data, being the only

method to boost performance. In terms of compression ratio, CALQ

achieves an average of about one order of magnitude (10.6%) reduc-

tion in size with respect to BAM compressed data. Furthermore, its

performance is considerably better than that of the two other methods

(QVZ 2 T8 and T16) that achieve better compression ratios.

The Illumina binning is the worst performing method of all. It

achieves the worst compression rate while yielding a high variance

and overall poor results.

Interestingly, the results for Recall, which are shown in Figure 7,

are quite different in terms of results variance and performance.

Here, all compressors yield similar variances with Quartz being the

one with the highest variance, and the high-compression modes of

QVZ 2 and P-Block and R-Block being the ones with the lowest var-

iance. Regarding the variant calling performance, almost all meth-

ods in nearly all cases outperform the original data, with Quartz

being the one achieving an overall best Recall. The proposed method

performs very similarly to the other methods while achieving higher

compression gains. Again, the Illumina binning is the worst per-

forming method of all, achieving an overall poor performance.

Finally, due to the heuristic nature of the variant calling pipe-

lines, it is hard to separate the effect that the different confounding

factors have on the final results. This hampers considerably the abil-

ity for a deeper analysis on which particular conditions yield an

improvement on variant calling. However, as hypothesized by

Ochoa et al. (2016), we believe that the proposed lossy compressor

produces partially denoised quality values that, under most condi-

tions, improve the accuracy of the variant calling pipeline.

3.2 Compression performance on non-human datasets
Finally, in addition to the three human datasets, we tested the com-

pression performance of CALQ on an E.coli DH10B strain dataset,

sequenced with Illumina (i.e. short-read paired-end) technology.

This dataset was sequenced at a coverage of 422�. Furthermore, we

tested CALQ on a fifth dataset, which is a D. melanogaster genome

sequenced with Pacific Biosciences (i.e. long-read) technology at a

coverage of 100�. The complete compression results in bits per

quality value for all five datasets are shown in Table 1.

We can observe from the table that the coverage is correlated

with the compression ratio. This is to be expected since generally a

higher sequencing depth at a given locus yields a higher genotype

certainty for that locus. CALQ exploits this effect by quantizing the

quality values at these loci using quantizers with very few levels.

Furthermore, the outputs of these quantizers are highly compressible

yielding superior compression ratios. For example, the best compres-

sion ratio from Table 1 is 0.15 bits per quality value for the dataset

ERR174324. This result suggests that this particular dataset con-

tains few errors since high genotyping certainty values are computed

by CALQ for almost all loci.

3.3 Computational performance
Regarding the computational performance of each of the methods,

CALQ uses the least memory of all of them while maintaining a rea-

sonable processing time, operating on average at 0.5 MB/s during

encoding and 3.3 MB/s during decoding, respectively. The CALQ

encoder yields an average peak memory usage of approximately 90

MB and the CALQ decoder even uses only about 20 MB of RAM.

QVZ 2 and Crumble (in all their modes) exhibit average peak mem-

ory usages of approximately 3.7 GB and 54 MB, respectively. P- and

R-Block use around 700 MB of RAM. However, due to its memory-

expensive algorithm, Quartz (run in its low-memory mode) yields

an average peak memory usage of 26 GB which hampers its applica-

tion on most personal computers and embedded devices. We refer to

Section 3 of the Supplementary Material for a deeper analysis of the

performances of the used compressors, including CALQ.

4 Conclusion

In this paper, we propose the first lossy compressor for quality val-

ues that exploits the alignment information contained in the SAM/

BAM files. Specifically, CALQ computes a genotype certainty level

per genomic locus to determine the acceptable coarseness of quality

value quantization for all the quality values associated to that locus.

We analyze the performance of several lossy compressors for qual-

ity values in terms of trade-off between the achieved compressed size

(in bits per quality value) and the Precision and Recall achieved after

running three different variant calling pipelines over sequencing data

of the well-known individual NA12878. By compressing and recon-

structing quality values with CALQ, we observe a better average var-

iant calling performance than with the original data. At the same

time, with respect to the state-of-the-art lossless compressors, CALQ

achieves a size reduction of about one order of magnitude, yielding

only 0.37 bits per quality value on average. This is approximately a

10-fold improvement of the compression factor with respect to BAM.

The better variant calling performance is not a surprising fact as it has

been previously validated for other lossy compressors in the past.

However, previously proposed lossy compressors fail to achieve an

order of magnitude improvement in compression.

Furthermore, we show that CALQ performs as good as or better

than the state-of-the-art lossy compressors in terms of Recall and

Precision for most of the analyzed datasets.

Finally, we further validate previous work that showed that the

binning performed by Illumina is far from being the best approach

for reducing the burden that the quality values have on the size of

SAM/BAM files.

Table 1. CALQ compression ratios in bits per quality value (bits/QV)

for the five considered datasets

Dataset Species Coverage Compression ratio

ERR174324 H.sapiens 14� 0.15 bits/QV

SRR1238539 H.sapiens 10� 0.56 bits/QV

Garvan replicate H.sapiens 49� 0.46 bits/QV

DH10B E.coli 422� 0.30 bits/QV

dm3 D.melanogaster 100� 0.16 bits/QV

CALQ: compression of quality values of aligned sequencing data 1657

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1650/4653693 by guest on 23 April 2024

Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text: ,
Deleted Text:
Deleted Text:
Deleted Text: ,
Deleted Text: 5
Deleted Text:
Deleted Text:
Deleted Text:
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx737#supplementary-data
Deleted Text:

Funding

This work has been partially supported by the Leibniz Universität Hannover

eNIFE grant, the Stanford Data Science Initiative (SDSI), the National Science

Foundations grant NSF 1184146-3-PCEIC and the National Institute of

Health grant with number NIH 1 U01 CA198943-01.

Conflict of Interest: none declared.

References

Alberti,C. et al. (2016) An evaluation framework for lossy compression of

genome sequencing quality values. In: Proceedings 2016 Data Compression

Conference (DCC 2016), pp. 221–230.

Bonfield,J.K. (2014) The Scramble conversion tool. Bioinformatics, 30,

2818–2819.

Cánovas,R. et al. (2014) Lossy compression of quality scores in genomic data.

Bioinformatics, 30, 2130–2136.

Cánovas,R. et al. (2016) CSAM: Compressed SAM format. Bioinformatics,

32, 3709–3716.

Cock,P.J.A. et al. (2010) The Sanger FASTQ file format for sequences with

quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res.,

38, 1767–1771.

Deorowicz,S. and Grabowski,S. (2011) Compression of DNA sequence reads

in FASTQ format. Bioinformatics, 27, 860–862.

DePristo,M.A. et al. (2011) A framework for variation discovery and genotyp-

ing using next-generation DNA sequencing data. Nat. Genet., 43, 491–498.

Ewing,B. and Green,P. (1998) Base-calling of automated sequencer traces

using phred. II. Error probabilities. Genome Res., 8, 186–194.

Hach,F. et al. (2014) DeeZ: reference-based compression by local assembly.

Nat. Methods, 11, 1082–1084.

Hernaez,M. et al. (2016) A cluster-based approach to compression of quality

scores. In: 2016 Data Compression Conference (DCC), pp. 261–270.

Hsi-Yang Fritz,M. et al. (2011) Efficient storage of high throughput DNA sequenc-

ing data using reference-based compression. Genome Res., 21, 734–740.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with

Bowtie 2. Nat. Methods, 9, 357–359.

Langmead,B. et al. (2009) Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome. Genome Biol., 10, R25.

Li,H. et al. (2009) The Sequence Alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Malysa,G. et al. (2015) QVZ: lossy compression of quality values.

Bioinformatics, 31, 3122–3129.

Marco-Sola,S. et al. (2012) The GEM mapper: fast, accurate and versatile

alignment by filtration. Nat. Methods, 9, 1185–1188.

Mardis,E.R. (2011) A decade’s perspective on DNA sequencing technology.

Nature, 470, 198–203.

McKenna,A. et al. (2010) The Genome Analysis Toolkit: a MapReduce frame-

work for analyzing next-generation DNA sequencing data. Genome Res.,

20, 1297–1303.

Numanagi�c,I. et al. (2016) Comparison of high-throughput sequencing data

compression tools. Nat. Methods, 13, 1005–1008.

Ochoa,I. et al. (2014) Aligned genomic data compression via improved model-

ing. J. Bioinf. Comput. Biol., 12, 1442002.

Ochoa,I. et al. (2016) Effect of lossy compression of quality scores on variant

calling. Brief. Bioinf., 18, 183–194.

Rimmer,A. et al. (2014) Integrating mapping-, assembly- and haplotype-based

approaches for calling variants in clinical sequencing applications. Nat.

Genet., 46, 912–918.

Roguski,L. and Ribeca,P. (2016) CARGO: effective format-free compressed

storage of genomic information. Nucleic Acids Res., 44, e114.

Stephens,Z.D. et al. (2015) Big data: astronomical or genomical? PLOS Biol.,

13, e1002195.

Voges,J. et al. (2016). Predictive coding of aligned next-generation sequencing

data. In: Proceedings 2016 Data Compression Conference (DCC 2016), pp.

241–250.

Witten,I.H. et al. (1987) Arithmetic coding for data compression. Commun.

ACM, 30, 520–540.

Yu,Y.W. et al. (2015) Quality score compression improves genotyping accu-

racy. Nat. Biotechnol., 33, 240–243.

Zook,J.M. et al. (2014) Integrating human sequence data sets provides a

resource of benchmark snp and indel genotype calls. Nat. Biotechnol., 32,

246–251.

1658 J.Voges et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1650/4653693 by guest on 23 April 2024

