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Abstract

Motivation: Alignment-free sequence comparison methods can compute the pairwise similarity

between a huge number of sequences much faster than sequence-alignment based methods.

Results: We propose a new non-parametric alignment-free sequence comparison method, called K2,

based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison

methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluat-

ing functionally related regulatory sequences, and in computing the edit distance (similarity/dissimi-

larity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An

improved method, K �2 , is also proposed, which is able to determine the appropriate algorithmic par-

ameter (length) automatically, without first considering different values. Comparative analysis with

the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the

proposed approaches, especially with increasing sequence length, or increasing dataset sizes.

Availability and implementation: The K2 and K �2 approaches are implemented in the R language as

a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/

K2/K2_1.0.tar.gz).

Contact: yueljiang@163.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Evaluating the similarity between two sequences is a classical prob-

lem that has long been studied in computer science, primarily from

the view point of string pattern matching (Adjeroh et al., 2008;

Gusfield, 1997). Such similarity measurement has applications in

various areas in computational biology, e.g. sequence alignment

(Smith and Waterman, 1981), in comparative genomics (Aach et al.,

2001), genomic evolution and phylogenetic tree construction and

analysis (Cao et al., 1998; Reyes et al., 2000), analysis of regulatory

functions (Kantorovitz et al., 2007), rapid search in huge biological

sequences (Wandelt and Leser, 2013). Other recent applications

include compression and efficient storage of the rapidly expanding

genomic datasets (Beal et al., 2016a, b; Deorowicz and Grabowski,

2013; Giancarlo et al., 2012), and resequencing a set of strings given

a target string (Kuo et al., 2015), an important step in efficient gen-

ome assembly.

Alignment-free sequence comparison methods can compute the

similarity between a large number of sequences much faster than

alignment-based methods (Vinga and Almeida, 2003; Vinga, 2014).

Word analysis of k-length substrings (also called k-mers, k-grams,

or k-tuple) from sequences is one approach to improved sequence

comparision (Bonham-Carter et al., 2014). Words can be extracted

VC The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1682

Bioinformatics, 34(10), 2018, 1682–1689

doi: 10.1093/bioinformatics/btx809

Advance Access Publication Date: 15 December 2017

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/10/1682/4747886 by guest on 20 April 2024

http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz
http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx809#supplementary-data
Deleted Text: ; Adjeroh <italic>et<?A3B2 show $146#?>al.</italic>, 2008
Deleted Text: ,
Deleted Text: ; Cao <italic>et<?A3B2 show $146#?>al.</italic>, 1998
Deleted Text:  
Deleted Text: Giancarlo <italic>et<?A3B2 show $146#?>al.</italic>, 2012
Deleted Text: Beal <italic>et<?A3B2 show $146#?>al.</italic>, 2016&hx2009;b, a
https://academic.oup.com/


in different ways, and with varying lengths. The most common is to

use sliding windows from length 2 to n – 1, where n is the length of

sequence (Bauer et al., 2008; Dai et al., 2011; Liu et al., 2006; Qi

et al., 2004). Some methods divide a sequence into several even parts

(Zhao et al., 2011), while some others have used fixed length sub-

strings, e.g. k¼2 (2-mer) (Shi and Huang, 2012). After extracting

the words, different statistical methods can be applied to analyze

two sequences for similarity (Li and Wang, 2005; Wang and Zheng,

2008). DMk (Wei et al., 2012) and Category-Position-Frequency

(CPF) (Bao et al., 2014) incorporate positions and frequencies of

k-mers into feature vectors. DV (Zhao et al., 2011) utilizes distribu-

tion vectors from k-mers. Shi (Shi and Huang, 2012) maps a DNA

primary sequence into three symbolic sequences and groups these se-

quences into a twelve-component vector. Wavelet Feature Vector

(WFV) converts a sequence into a L-length feature vector by wavelet

transform (Bao and Yuan, 2015).

Our approach is more closely related to the D2 statistic, another

popular approach for measuring the similarity (or dissimilarity) be-

tween two sequences (Bonham-Carter et al., 2014; Song et al., 2014).

It was first proposed by Blaisdell (1986). Since then, many variants

and improvements have been proposed, such as Dz
2 (Kantorovitz

et al., 2007), D�2 (Reinert et al., 2009) and Dsh
2 (Wan et al., 2010). Dz

2

(Kantorovitz et al., 2007) normalizes the D2 statistic using its mean

and standard deviation to improve its detection power (Song et al.,

2014). D�2 and Dsh
2 are two other normalization improvement meth-

ods which were proposed in Reinert et al. (2009) and Wan et al.

(2010). Dsh
2 [also denoted DS

2 in the literature (Reinert et al., 2009;

Song et al., 2014)] uses an approach based on Shepp (1964).

According to a recent review (Song et al., 2014), Dsh
2 and its variant

are generally the best D2 statistical methods for alignment-free com-

parison of genomic sequences, especially with increasing sequence

length. More detailed discussion of the D2-statistic family of algo-

rithms can be founded in Section 6 of the Supplementary Material.

In general, the D2-statistic family of algorithms have a general

problem of requiring a quadratic or cubic time complexity, with re-

spect to n or m, the length of the sequences, and k, the size of the sub-

strings being considered. Also, the D2 family of statistics generally

makes some assumptions on the distribution of the sequences, for in-

stance, most assumed either a uniform distribution, or a normal distri-

bution, for the symbols in the sequences. This parametric nature of the

statistics obviously limits their practical applicability, since practical

data, especially for biological sequences (e.g. complete genomes for in-

dividuals of the same species, or for related organisms) rarely follow

these theoretical distributions. A non-parametric approach to the meas-

urement of sequence similarity is required, one that does not make any

assumption on the distribution of the sequences under consideration,

and one that is efficient enough to handle the rapidly increasing com-

plexity and data sizes of available biological sequence data.

In this work, we propose a nonparametric approach, K2, which

uses the Kendall correlation statistic to estimate the similarity be-

tween sequences. The Kendall correlation is a non-parametric

method to calculate the correlation between two sets of random

variables. We adopt this to measure the similarity among sequences.

When compared to the other state-of-the-art alignment-free se-

quence similarity methods, (e.g. D2, D�2; Dsh
2 ; Dz

2, DMk, DV, CPF,

Shi and WFV), K2 demonstrates an improved power in detecting re-

latedness between sequences, as measured by its ability to generate

the correct phylogenetic tree, and to identify functionally related

regulatory sequences. The K2 also showed significant correlation

with the edit distance, the standard, though time consuming, meas-

ure of (similarity/dissimilarity) between sequences. Further, the K2

approach is faster than most of the other methods when k is large,

(typically, with k � 7). This places the proposed K2 statistic among

the best non-alignment based similarity measures, especially with

increasing sequence lengths (n, m), or increasing size of the k-mer.

Based on K2, we further propose an improved method, named K�2,

which is able to determine a suitable value for k, the k-gram param-

eter automatically with competitive performance. We have imple-

mented K2 and K�2 in the R statistical and graphics environment, and

the codes are freely available for open access.

2 Materials and methods

2.1 Kendall statistic
The Kendall statistic is a nonparametric method which makes no as-

sumption about the probability distribution of the variables being

assessed. The Kendall statistic estimates the correlation between two

sets of random variables X and Y, represented using the pairs

X1;Y1ð Þ X2;Y2ð Þ . . . Xn;Ynð Þ. The Kendall correlation, s, is then

defined as follows (Kendall, 1938).

s X;Yð Þ ¼ Pf Xj �Xi

� �
Yj � Yi

� �
> 0g � Pf Xj �Xi

� �
Yj � Yi

� �
< 0g

(1)

In this study, we compute the Kendall correlation by using the fol-

lowing formula to approximate s (Kendall, 1938; Marden et al.,

1992):

bs ¼ nc � nd

n� n�1ð Þ
2

(2)

where n is the number of distinct k-grams for the concatenated se-

quence S¼T$P$, nc is the number of concordant k-gram pairs

Xj �Xi

� �
Yj � Yi

� �
> 0, with 0 < i < j � n; and nd is the number

of discordant k-gram pairs Xj �Xi

� �
Yj � Yi

� �
< 0, with

0 < i < j � n.

2.2 Optimized computation of Kendall statistics
The time cost to compute bs, the approximation to the Kendall cor-

relation statistic is O n2
� �

, including time to compare each pair be-

tween (Xi;Xj) and (Yi;Yj), i 6¼ j, where n is the number of pairs in

X and Y. Christensen (2005) showed an algorithm to calculate bs in

O n log nð Þ time complexity. It was implemented in Pascal. Lin et al.

(2017) recently introduced an algorithm for the related problem of

weighted Kendall correlation. In this work, we propose data

structures and a new algorithm to compute bs. Our algorithm also

runs in O n log nð Þ time, but uses a different approach to compute

the Kendall statistics. We then apply the algorithm to analyze simi-

larity between a given pair of sequences. More detailed discussion

on the improved algorithm for the Kendall Statistics can be found in

Section 3.1 of the Supplementary Material.

2.3 The K2 approach
Here, we propose the K2 statistic as a new method for rapid and ef-

ficient measurement of biological sequence similarity, without

requiring an initial sequence alignment step. The K2 statistic makes

use of the above optimized method for computing the Kendall’s s
correlation between two sequences. Here, the correlation is com-

puted based on the k-mer count statistics Xwð and YwÞ between the

two sequences. The counts are obtained in O jSjð Þ time using the

suffix array data structure (Adjeroh et al., 2008; Gusfield, 1997;

Manber and Myers, 1993), where jSj is the length of input se-

quence S ¼ T$P$. We describe the steps of the algorithm in the

following.
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1. Given two sequences T and P, combine them into one sequence,

S ¼ T$P$, after appending an ‘$’ at the end of each sequence.

The concatenated sequence S is of length jSj.
2. Build the suffix array (SA) from the combined sequence S ¼ T$P$.

And for a given parameter k, read all k-grams from SA.

3. Compute the frequency for each k-gram using the SA. Here, we

use Xw, and Yw to denote the frequency of the k-gram w in se-

quences T and P, respectively. Notice that, both Xw and Yw will

be found at essentially the same time, using the SA of the con-

catenated sequence, S.

4. Order all the (Xw; Yw) frequencies of k-gram pairs by grouping

them according to Yw, and then Xw. We get pairs

{ X1;Y1ð Þ; X2;Y2ð Þ; . . . Xi;Yið Þ; . . . Xn;Ynð Þ}, where n is the num-

ber of distinct k-grams from the concatenated sequence

S ¼ T$P$, and (Xi, Yi) is the frequency pair of ith ranked

k-gram from sequences T and P. Thus, (1) Yi � Yiþ1 and i < n

and (2) Xi � Xiþ1 when Yi ¼ Yiþ1 and i < n.

5. Compute nc, the number of concordant pairs, and nd the number

of discordant pairs, for the ranked frequency pairs from se-

quences T and P. The number of concordant pairs nc is the sum

of the number pairs in one of these two conditions: (1) xi < xj

and yi < yj; (2) xi > xj and yi > yj, where 0 � i < j < n.

Similarly, the number of disconcordant pairs nd, is the sum of

the number of pairs in one of the following two conditions: (1)

xi < xj and yi > yj; (2) xi > xj and yi < yj, where 0 � i < j < n.

6. Calculate the Kendall correlation using the formula:

bs ¼ nc � nd

n� n�1ð Þ
2

:

7. Return bs which is the K2 similarity between sequences T and P.

The last three steps are based on the optimized Kendall algorithm

introduced previously (Section 2.2).

2.4 K �2 : improved K2 with automated k value
Similar to the alignment-free methods from the D2 family, the pro-

posed K2 approach depends critically on the length parameter, k.

Here, we propose a method to determine the k parameter automatic-

ally, without needing to test with all possible values.

Given the alphabet jRj and the length parameter k, there are at

most jRjk possible k-grams, independent of the sequence lengths n

and m. These are the unique k-grams, given the alphabet. Given the

concatenated sequence S ¼ T$P$ with length of jSj, the k-grams are

simply k-length substrings of S. Thus, we can have at most jSj � k

þ1 number of k-grams from S. These may not be unique, since they

may include repeated k-grams, depending on the nature of the se-

quences T and P. At the same time, we need the k-grams to capture

most of the variations in the input sequences (now contained in S),

while avoiding k-grams that are repeated inside other k-grams. That

is, we want the maximal length k-grams that capture the variations

in S, without missing out on the smaller k-grams, especially those

that did not occur inside the longer k-grams. These shorter k-grams

are likely to be more numerous, and can also provide important in-

formation about the sequences. To satisfy the above competing con-

ditions, the choice of k should meet the following criterion:

jRjk � jSj � kþ 1 > jRjk�1 (3)

where jSj ¼ mþ nþ 2 is the length of the concatenated sequences S.

Following the above, the value of k can be approximated as:

k ¼ d logjRj jSjð Þe (4)

We can observe the connection between the above relation for k and

the longest common prefix (LCP) between suffixes in S. For an arbi-

trary sequence Q with symbols from the alphabet R, it is known

that, on average, the length of the longest common prefix between

suffixes in Q is in O logjRj jQjð Þ
� �

. See Karlin et al. (1983) and

Léonard et al. (2012). Thus, for an arbitrary sequence, our suggested

value for k is essentially in the same order as this expected maximal

LCP value. This makes sense, in that, the maximal length k-gram

should be close to the expected maximal LCP length, since if we

have k values much larger than the average maximal LCP length, we

may not be able to observe some repeated k-grams. On the other

hand, if we use k values much smaller than the average maximal

LCP length, we will be double-counting some smaller repeated sub-

strings. Thus, operating with k values far from the expected max-

imal LCP length could lead to either underestimating or

overestimating the frequency for the k-grams that capture the major

variations in the sequence.

2.5 Comparative complexity analysis
The proposed K2 algorithm runs in O jSj log jSjð Þ time, which is a

significant improvement in complexity, when compared with the

O kjSjjRjk
� �

required for computing D2 and other related statistics,

or even with the observed improvement that reduces the time

to O kjSj2
� �

. K�2 requires just a one-time run of K2, using the auto-

matically computed k-parameter. This will be practically faster than

using K2, however, the time complexity of K�2 still remains the same

O jSj log jSjð Þ as in K2. More detailed discussion can be found in

Section 3.2 of the Supplementary Material.

2.6 Experimental design
To test the proposed methods, we performed some experiments

using three different datasets. We also compared our experimental

results with those from state-of-the-art alignment-free sequence

similarity measurement algorithms.

2.6.1 Datasets and environment

We use three sets of biological sequence data for the experiments in

this study. The first dataset used is the complete mtDNA sequences

from Cao et al. (1998) and Reyes et al. (2000) containing data on 12

proteins encoded in the H strand of mtDNA in 20 eutherian species.

The sequence lengths ranged from 16 300 to 17 080 symbols. This

dataset is often used to evaluate the similarity of different species, espe-

cially using phylogenetic trees. We call this the ‘mtDNA20’ dataset.

The second dataset is 23 whole mitochondrial DNA genomes

from different Eukaryotic fish species of the suborder Labroidei, taken

from Fischer et al. (2013). We could not locate the sequences for two

of the species, namely, P.trewavasae and T.moorii. Thus, though the

original work in Fischer et al. (2013) used 25 species, our dataset con-

tained only 23 of the 25 species. The sequence lengths ranged from

16 440 to 17 040 symbols. We call this dataset the ‘Fish23’ dataset.

The third dataset used is the set containing cis-regulatory modules

(CRMs) used by Kantorovitz et al. (2007) in their work on identifica-

tion of functional relationships between cis-regulatory sequences.

There are seven sets including 185 CRM sequences, taken from

Drosophila melanogaster and Homo sapiens. We call this the

‘CRM185’ dataset. This dataset is available for download at http://

veda.cs.uiuc.edu/d2z/publicdata.tar.gz.

The experiments were performed in a PC environment, running

Intel i5, 4 cores, with 16 GB RAM and 1 TB HD. K2 and K�2 were
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written using the R Language. For comparison purposes, we also

tested several other state-of-the-art alignment-free methods using

the same datasets. The algorithm for D2 was from Song et al.

(2014), Dsh
2 was from Wan et al. (2010), and D�2 was from Reinert

et al. (2009). They all were implemented using the C language. The

method Dz
2 was developed in Perl in the original work of

Kantorovitz et al. (2007). We implemented the methods for DMk

(Wei et al., 2012), CPF (Bao et al., 2014), DV (Zhao et al., 2011)

and Shi (Shi and Huang, 2012) in R, according to descriptions pro-

vided in the respective papers. The codes for WFV, developed in

Python in their original work (Bao and Yuan, 2015), were kindly

provided by the authors. In our experiments, the parameter k corres-

ponds to the length L ¼ 4k in their work.

2.6.2 Experiment 1

The first experiment aimed at analyzing the general performance

of each alignment-free method studied. The experiment

compared eleven alignment-free methods, namely, D2;D
�
2;D

z
2; Dsh

2 ,

DMk; DV; CPF; Shi and WFV and our two proposed methods, K2

and K�2. The experiment was performed on mtDNA20 and Fish23

two datasets.

To evaluate the performance of the algorithms, we consider three

performance measures: (i) the Robinson-Foulds (RF) distance

(Robinson and Foulds, 1981) which measures the topological dis-

tance between the golden reference phylogenetic tree and the phylo-

genetic tree constructed using a given alignment-free method; (ii) the

correlation of the similarity/distance values as determined by the

alignment-free method with the standard edit distance; (iii) the com-

putation time required. These performance measures need to be con-

sidered both individually and jointly in evaluating algorithms for

sequence similarity measurement.

2.6.3 Experiment 2

The second experiment investigated how well the results from the

proposed alignment-free methods can capture the similarity between

sequences with similar functional roles. For this experiment, we

used the related regulatory sequences in the CRM185 dataset, our

third dataset. The ‘positive’ set is the set of CRMs that are in the

same tissue and/or same developmental stage. The ‘negative’ set is

the set chosen from non-coding sequences, which are expected to be

unrelated with respect to function. This experiment is designed to

predict whether or not any two given sequences are in the ‘positive’

set, using alignment-free methods. First, we compute the similarity

between pairwise sequences using alignment-free methods. Next, we

rank these pairs based on their similarity, and determine the number

of positive pairs and return the accuracy ratio.

3 Results and discussion

3.1 Phylogenetic tree analysis
One way to evaluate the performance of the alignment-free methods

is to compare the phylogenetic trees generated using the distance

matrix against the known correct (reference) phylogenetic tree for

the species in the dataset. In this case, methods that generate trees

that have more similarity in structure with the reference tree will be

taken to be of better performance.

To compare the similarity/dissimilarity between two trees, we

use the Robinson-Foulds(RF) distance (Robinson and Foulds, 1981).

The Robinson-Foulds distance (also called the symmetric difference

metric) is a well-known approach for measuring the similarity be-

tween two trees. [See for example Bansal et al., (2010) and Lu et al.,

(2017)]. The Robinson-Foulds distance measures the topological

distance between two labeled trees essentially by counting the min-

imum number of elementary operations needed to transform one

tree to the other.

For the experiments on the mtDNA20 dataset, and we used the

tree published by Cao et al. (1998) as the reference. See also Otu and

Sayood (2003). For phylogenetic analysis using the Fish23 dataset, we

used the tree published by Fischer et al. (2013) as the reference tree.

3.1.1 mtDNA20 dataset

Table 1 shows the Robinson-Foulds distance between each tree and

the reference tree. Each column contains distances of a given

alignment-free method with parameter k varied from 2–9. The re-

sults of three methods without parameter k are shown in the last

row. The minimum distance in this table is 12. This minimum was

obtained with the K�2 method, and it is also present in the column

for K2 with parameter k¼8, 9, and for Dsh
2 with parameter k¼7, 8.

The remaining 8 methods are unable to achieve the minimum (best)

distance. However, D�2 and CPF are able to take the second place

with minimum RF distance of 14. D2 and DMk can obtain the min-

imum RF distance of 16. The distances reported by the other meth-

ods, Dz
2; DV; Shi and WFV were far from the minimum distance,

hence, were ranked lower. On this dataset, the methods K�2; K2 and

Dsh
2 performed generally better than the others. However, the fact

that K�2 does not need to try all the possible k values from 2–9, gives

it an advantage over the others.

Figure 1 shows the reference phylogenetic tree from Cao et al.

(1998), and the corresponding tree generated by the proposed K�2 ap-

proach. Detailed figures for the other methods are presented in the

Supplementary Material. To compare different methods, we show the

phylogenetic trees constructed using each of the methods. Methods

D2; D�2; Dsh
2 , DMk; CPF and K2 depend on the input parameter k.

For each of these methods, the Supplementary Figure S1 shows the

corresponding phylogenetic tree that resulted in the minimum

Robinson-Foulds distance with the reference tree. For the K�2 method,

the k value is automatically computed, so, only one tree is generated.

The phylogenetic trees from Dz
2; Shi; WFV and DV are not shown in

the Supplementary Figure S1 because these trees are far away from

the reference tree. See also the RF distances shown in Table 1.

Looking at these figures, we can see that the trees are generally

similar to the reference tree, though with some variations. We can

Table 1. The Robinson-Foulds distance between the reference

phylogenetic tree and phylogenetic trees generated using different

alignment-free statistical methods (with k ¼ 2; 3; . . . ;9)

k D2 D�2 Dsh
2 Dz

2 K2 DMk CPF WFV

2 22 26 26 36 26 18 24 26

3 24 26 28 34 22 20 22 24

4 22 20 22 26 22 16 18 24

5 22 20 16 26 20 16 16 22

6 24 16 16 24 18 18 16 24

7 18 14 12 20 14 16 14 24

8 18 16 12 20 12 16 14 24

9 16 14 14 — 12 18 16 24

K�2 12 DV 20 Shi 22

Note: Results are based on the mtDNA20 dataset (Cao et al., 1998). K�2
having automatically determined k values, DV and Shi without varied k par-

ameter, they are all reported in the last row for brevity. Dz
2 generated an error

at k ¼ 9. The bold value 12 here indicates the minimal RF distance. The

smaller the RF distance is, the better a method performs.

K2 and K2
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observe that D2 and D�2 placed horse and white rhinoceros close to

each other as expected, however, their parent nodes were wrongly

placed, making them much further from say cow than in the reference

tree. Also, D2 wrongly placed wallaroo very close to mouse and rat,

while D�2 had cow much closer to rat and mouse than the reference

tree. Dsh
2 provided a better result than D2 and D�2, but it also incor-

rectly placed platypus much closer to rat and mouse. Methods K2 and

K�2 seem to avoid these problems. One quick way to access the per-

formance of the methods is to compare the minimum number of hops

needed to go from one given leaf node (representing a species) to an-

other leaf node on a given tree. The Supplementary Table S3 shows

the number of hops for two pairs of species. The Supplementary

Figure S1 and Table S3 suggest that the proposed methods K2 and K�2
work better than the other methods on the mtDNA20 dataset.

3.1.2 Fish23 dataset

Table 2 shows the Robinson-Foulds distances for the Fish23 dataset.

Each column shows distances of one alignment-free method with

parameter k varied from 2 to 9. The last row shows the results for

three methods that did not use varying k parameters. The minimum

distance in this table is 8 (shown in boldface in the table). Methods

K�2; K2; D2; D�2 and Dsh
2 are able to achieve the minimum distance.

As with the previous experiment on ‘mtDNA20’, Dz
2; WFV; Shi and

DV are worse than the others. Among these methods, only K�2 is

able to automatically determine an appropriate k value. From these

results, we conclude that with respect to phylogenetic trees, the K�2 is

the best amongst all the tested alignment-free methods.

The Supplementary Figure S2a shows the phylogenetic tree re-

ported by Fischer et al. (2013) in their original paper using the

Fish23 dataset. Similar to the ‘mtDNA20’ experiment, we show the

phylogenetic trees generated by the alignment-free methods:

D2; D�2; Dsh
2 , DMk; CPF, K2 and K�2. The Supplementary Figure

S2(b–h) show the phylogenetic trees with the minimum Robinson-

Foulds distance for each method. Supplementary Figure S2a is the

reference tree. For our experiments, since we did not have the se-

quences for P.trewavasae and T.moorii, the pairs N.brichardi,

T.duboisi will become neighbors, with parent at node 16 in the ori-

ginal reference tree.

Fish Dataset demonstrates similar trends to the mtDNA20 data-

set, see more details in Supplementary Material, Section 4.3.

3.2 Correlation with the edit distance
3.2.1 mtDNA20 dataset

Table 3 shows the Pearson correlation coefficients between the simi-

larity measurements from the different alignment-free methods and

the edit distance, using the mtDNA20 dataset. From the table, one

can observe that Dsh
2 achieved the best result �0:92 when k ¼ 6 or

k ¼ 7:K2 achieve the best result (q ¼ �0:95) when k ¼ 9:K�2 can

reach q ¼ �0:94 which is close to the best of K2. In a word, the K2

method can reach the best accuracy, and K�2 is quite competitive. A

key advantage of the K�2 method is that it is able to select parameter k

automatically and quickly. However, considering the K2 may need to

try all possible k values to determine the best k (9 in this case), the

slight performance disadvantage (q ¼ 0:94 versus q ¼ 0:95) of K�2 be-

comes even less significant, especially when data volume is huge. See

more detailed analysis in Supplementary Material, Section 4.1.1.

Similar results were observed using the Fish23 dataset. These

have been included in Section 4.1.2 of Supplementary Material.

3.3 Practical running time
We compare the running time of eleven methods, [9 earlier

approaches (D2; D�2; Dsh
2 ; Dz

2; DMk; CPF; WFV; DV and Shi) and

the two proposed methods (K2 and K�2)].

Fig. 1. Reference phylogenetic tree from Cao et al. (1998), and the corres-

ponding tree generated using the proposed K �2 alignment-free sequence com-

parison method, using the mtDNA20 dataset

Table 2. The Robinson-Foulds distance between the reference

phylogenetic tree and phylogenetic trees generated using different

alignment-free statistical methods (with k ¼ 2; 3; . . . 9)

k D2 D�2 Dsh
2 Dz

2 K2 DMk CPF WFV

2 32 34 36 40 36 30 32 36

3 30 30 28 40 26 28 30 30

4 26 26 30 36 24 22 24 26

5 24 20 22 38 20 20 20 26

6 14 10 20 36 12 10 12 32

7 14 8 14 34 8 12 12 34

8 8 8 8 34 8 12 14 34

9 8 10 14 — 10 14 16 34

K�2 8 DV 32 Shi 34

Note: Results are based on the Fish23 dataset (Fischer et al., 2013). For

brevity, the results for K�2 (with automatically determined k value), and DV

and Shi (both with fixed k parameters), are reported in the last row. Dz
2 gener-

ated an error at k ¼ 9. The bold value 8 here indicates the minimal RF dis-

tance. The smaller the RF distance is, the better a method performs.
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3.3.1 mtDNA20 dataset

Table 4 shows a comparison of the running time for eleven methods

using the first dataset (mtDNA20 dataset) from Cao et al. (1998).

Figure 2 plots the corresponding running times. The time for K�2 is

3.07 s, time for DV¼2.33 s and time for Shi¼1.37 s which are not

plotted in the figure. When k ¼ 9; Dz
2 generates a runtime error,

thus, we could not obtain a result for this case.

First, consider the methods that use varied k values. When k < 6,

the WFV approach is the fastest among all methods. When the par-

ameter k increases, the running time of WFV increases rapidly, much

quicker than all the others. When k ¼ 7;8; 9; WFV requires approxi-

mately 2.45, 10.55 and 109.5-fold time increases, respectively, when

compared with K2. Therefore, in terms of running time, K2 is the bet-

ter choice than the other methods, with less running time and higher

accuracy when k > 6. The WFV method with RF distances (26, 24

and 22) shown in Table 1 did not perform well.

Consider Dsh
2 and K2, the two methods that achieved the best results

with RF distance¼12 in Table 1. Dsh
2 reaches its best performance

when k ¼ 7; 8:K2 reaches its best performance when k ¼ 8; 9. When k

¼ 7; 8; 9; Dsh
2 requires approximately 2, 8 and 25 fold time increases,

respectively, when compared with K2. Therefore, in terms of combining

with running time and accuracy, K2 is the better choice than Dsh
2 .

Now consider K�2; DV and Shi which do not use varying k val-

ues. K�2 requires 3.07 s to execute. DV and Shi are relatively faster

with 2.33 and 1.37 s respectively. However, K�2 generated a much

lower RF distance—see Table 1. K�2 is slower than the other methods

(i.e. D2; D�2; Dsh
2 ) with k ¼ 2;3;4; 5; 6, and faster than the other

methods with k ¼ 7; 8;9. We can also observe from the results dis-

cussed earlier that, for this dataset, the best performance for the

other methods were recorded at k � 6. See Supplementary Figure S1

and Table 1. Clearly, since K�2 does not need to search for the best k

value (i.e. it is executed for just one k value), it is overall faster than

the other methods, without degrading the accuracy. This is import-

ant, considering the increasingly huge volumes of data involved in

most applications of these techniques. In fact, the primary motiv-

ation for the alignment-free methods is their rapid processing speed,

when compared with alignment-based methods.

Results on running time using the Fish23 dataset is provided in

the Supplementary Material.

With respect to running time, we can identify two key points from

our experiments: (i) the running time for Dsh
2 ; Dz

2, DMk and WFV in-

creases rapidly with increasing k. The running time for K2 is approxi-

mately linear with respect to the sequence length. (ii) Comparing K2

and K�2; K�2 is more practical, since it can determine the k value auto-

matically, and has a competitive performance.

3.4 Evaluation on functionally related regulatory

sequences
While the alignment-free methods could be generally fast, an im-

portant consideration is whether they can identify similarities be-

tween sequences that are functionally related. Of course, this can

only be possible if the sequences share some similar patterns. To

evaluate this aspect of performance, we consider to what extent the

alignment-free similarity measures are able to capture the similar-

ities between sequences from the same anatomic regions of the same

species. For this experiment, we used the third dataset—CRM185

dataset, the regulatory sequences from Kantorovitz et al. (2007). We

compare our proposed methods K2 and K�2 against Dz
2; D2; Dsh

2 and

D�2, DMk; DV; CPF; Shi and WFV. Table 5 shows the results. In

the table, the result for Dz
2 is taken from the original work of

Kantorovitz et al. (2007). For Dz
2; D2; Dsh

2 and D�2, the table shows

the best results with k values in the range 2 � k � 7. For K2

method, we also tested with 2 � k � 7.

Table 3. Pearson correlation coefficient between the similarity/dis-

tance measure from different alignment-free statistical methods

and the edit distance

k D2 D�2 Dsh
2 Dz

2 K2 DMk CPF WFV

2 �0.45 �0.51 �0.55 0.02 �0.56 0.67 0.62 0.57

3 �0.48 �0.60 �0.74 0.10 �0.73 0.68 0.66 0.62

4 �0.53 �0.71 �0.86 �0.74 �0.82 0.70 0.71 0.63

5 �0.61 �0.79 �0.91 �0.81 �0.89 0.78 0.77 0.72

6 �0.77 �0.87 �0.92 �0.83 �0.92 0.84 0.86 0.68

7 �0.87 �0.91 �0.92 �0.84 �0.92 0.87 0.89 0.68

8 �0.90 �0.92 �0.91 �0.84 �0.93 0.85 0.89 0.66

9 �0.91 �0.91 �0.91 — �0.95 0.85 0.87 0.67

K�2 �0.94 DV 0.70 Shi 0.68

Note: Reports are for the mtDNA20 dataset. K�2 having automatically deter-

mined k values, DV and Shi without varied k parameter, they are all reported

in the last row for brevity. Dz
2 generated an error at k ¼ 9. The bold values

indicate the biggest absolute value of Pearson correlation coefficient for differ-

ent k values. The bigger an absolute value, the better a method performs.
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Fig. 2. Time cost comparison for D2; D�2 ; Dsh
2 ; Dz

2 ; DMk ; CPF ; WFV and K2

with parameter k varying from 2 to 9, using the mtDNA20 dataset. Results for

K �2¼3.07 s, DV¼2.33 s and Shi¼1.37 s are not shown in the figure for clarityTable 4. Practical running time (in seconds) using alignment-free

methods on the mtDNA20 dataset

k D2 D�2 Dsh
2 Dz

2 K2 DMk CPF WFV

2 0.02 0.05 0.05 1.55 0.41 3.64 13.23 0.004

3 0.03 0.05 0.07 1.56 0.45 4.90 14.02 0.008

4 0.08 0.11 0.15 1.61 0.57 5.91 15.63 0.020

5 0.20 0.34 0.5 1.76 1.94 7.06 16.82 0.088

6 0.56 1.29 2 2.35 2.22 9.78 16.58 0.884

7 1.26 4.91 7 5.38 3.17 18.09 16.43 7.768

8 2.40 18.18 25 19.19 3.63 40.13 16.82 38.3

9 4.58 70.28 99 — 4.34 92.10 17.05 347.1

K�2 3.07 DV 2.33 Shi 1.37

Note: Results for K�2 with automatically determined k values, DV and Shi with

fixed k values, are reported in the last row. Dz
2 generated an error at k ¼ 9. The bold

values shown the smallest running time (the fastest method) for different k values.
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The bold items are the best results on the dataset comparing differ-

ent methods, while excluding K�2. From Table 5, K2 reported five best

results out of seven using the CRM185 dataset. Dz
2; D2; Dsh

2 and D�2
reported one best result each. K2 demonstrates competitive perform-

ance with the other methods. When we take K�2 into consideration, we

can observe that it gets three best results out of seven datasets. Dz
2 and

Dsh
2 get one best result of seven cases, D�2 and D2 are best on two

cases, and K2 was best on four cases. In general, the proposed K2 and

K�2 methods provide the overall best performance on this problem.

4 Conclusion

The problem of sequence similarity measurement is critical to sev-

eral important applications in huge volume genomic sequence ana-

lysis. We proposed a novel non-parametric algorithm K2 for

alignment-free measurement of relatedness between sequences, using

the statistics of k-grams in the sequences. K2 is a non-parametric ap-

proach based on the Kendall correlation statistic to estimate the dis-

similarity(/similarity) of sequences.

Compared with other state-of-the-art alignment-free comparison

methods (D2; D�2; Dsh
2 ; Dz

2; DMk; CPF; WFV; DV and Shi), K2

demonstrates comparable or better performance, in phylogenetic

analysis, in generating (similarity/dissimilarity) measures that correl-

ate with the edit distance among a large number of sequences, and

in capturing functional relatedness between sequences. Further, the

K2 approach is faster than the other methods when k � 7:

We also introduced K�2, an improved version of K2 that is able to

automatically determine the suitable k value, thus eliminating the

need to search for all possible k values (for the k-grams), potentially

from k ¼ 2 to k ¼ n :K�2 produced the best overall results, with re-

spect to both efficiency and accuracy. Along with K�2 competitive per-

formance in measuring the similarity between sequences, its speed

makes it practical, an important consideration given the increasingly

huge datasets in various applications of alignment-free methods.
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