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Abstract

Motivation: The aim of precision medicine is to harness new knowledge and technology to opti-

mize the timing and targeting of interventions for maximal therapeutic benefit. This study explores

the possibility of building AI models without precise pixel-level annotation in prediction of the

tumor size, extrathyroidal extension, lymph node metastasis, cancer stage and BRAF mutation in

thyroid cancer diagnosis, providing the patients’ background information, histopathological and

immunohistochemical tissue images.

Results: A novel framework for objective evaluation of automatic patient diagnosis algorithms has

been established under the auspices of the IEEE International Symposium on Biomedical Imaging

2017— A Grand Challenge for Tissue Microarray Analysis in Thyroid Cancer Diagnosis. Here, we

present the datasets, methods and results of the challenge and lay down the principles for future

uses of this benchmark. The main contributions of the challenge include the creation of the data

repository of tissue microarrays; the creation of the clinical diagnosis classification data repository

of thyroid cancer; and the definition of objective quantitative evaluation for comparison and rank-

ing of the algorithms. With this benchmark, three automatic methods for predictions of the five clin-

ical outcomes have been compared, and detailed quantitative evaluation results are presented in

this paper. Based on the quantitative evaluation results, we believe automatic patient diagnosis is

still a challenging and unsolved problem.

Availability and implementation: The datasets and the evaluation software will be made available

to the research community, further encouraging future developments in this field. (http://www-o.

ntust.edu.tw/cvmi/ISBI2017/).

Contact: cweiwang@mail.ntust.edu.tw
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1 Introduction

With the recent advent of automated microscopy scanners, dramatic

increases in computational power and improvements in image anal-

ysis algorithms, digitized tissue histopathology has now become

amenable to the application of computerized image analysis and

machine learning techniques. The ability to extract pathological fea-

tures from a patient’s tissue sample objectively and consistently can

be driven by AI and machine learning. The goal of this study is to

investigate the possibility of building automated methods for predic-

tion of clinical diagnosis parameters based on the patients’ back-

ground information, histopathological and immunohistochemical

tissue images. In this study, the thyroid cancer samples are used,

which is the most common malignancy of the endocrine system, and

the incidence of thyroid cancer is around 12/100 000 people per

year in the United states (Kasper et al., 2015).

Tissue microarray (TMA) is an effective tool for high throughput

molecular analysis to help identify new diagnostic and prognostic

markers and targets in human cancers (Avninder et al., 2008; Chen

and Foran, 2016; Jawhar, 2009; Simon et al., 2010; Voduc et al, 2008;

Wang et al., 2011; Zhang et al., 2009). The technique allows rapid

visualization of molecular targets in thousands of tissue specimens at a

time and facilitates rapid translation of molecular discoveries to clini-

cal applications. TMAs have applied immunohistochemistry (IHC)

for in-situ protein expression analysis in tissue samples. IHC is a typi-

cal method for studying archived tissues by staining the protein of

interest and scoring the staining intensity using visual examination.

Quantitative IHC techniques have often yielded clinically important

information regarding patient diagnosis, prognosis or both; the scores

are used to quantify protein expression, stratifying patients and further

identifying effective biomarkers, which may be important for therapeu-

tic purposes.

The aim of this study is to explore the possibility of building

automated methods for prediction of clinical diagnosis results,

including the tumor sizes, the extrathyroidal extension status, the

lymph node metastasis status, TNM stage and BRAF mutation pres-

ence, based on the patients’ background information, histopatholog-

ical and immunohistochemical tissue images. Studies have shown

that thyroid cancer with BRAF mutation may be associated with the

resistance to radioactive iodine treatment, a higher risk of recurrence

and possibly increased cancer-related mortality (Wang et al.,

2014 b). The BRAF gene belongs to a class of genes known as onco-

genes, and when mutated, oncogenes have the potential to cause

normal cells to become cancerous. As BRAF mutation is the most

common genetic alterations found in the thyroid cancer, the BRAF

IHC images are utilized in this study in addition to the hematoxylin-

eosin (H&E) tissue images and patients’ background information.

Although in recent years, there have been various medical image

analysis benchmark frameworks (https://grand-challenge.org/All_

Challenges/), most of the benchmarks focus on image segmentation,

and only a few deal with classification of cancer metastasesor sub-

types, such as CAMELYON17 https://camelyon17.grand-challenge.

org/and MICCAI 2017 Computational Precision Medicine http://

miccai.cloudapp.net/competitions/56. To the authors’ best knowl-

edge, this is the first benchmark for investigation of AI with respect

to precision medicine directly linked to the five clinically diagnosis

parameters, including tumor size, extrathyroidal extension status,

metastasis status, cancer stage and BRAF mutation.

This paper presents the evaluation and comparison of a

representative selection of current methods presented during the

Grand Challenge for Tissue Microarray Analysis in Thyroid

Cancer Diagnosis held in conjunction and with the support by

IEEE ISBI (2017). The outline of the paper is organized as follows.

In Section 2, the challenge aims, participants, datasets and evalua-

tion approaches are described. Quantitative evaluation results are

presented in Section 4. Discussions on the advantages and draw-

backs of individual methods are given in Section 5. Finally, conclu-

sions are given in Section 6.

2 Materials and Evaluation Methods: A grand
challenge for tissue microarray analysis in
thyroid cancer diagnosis

2.1 Organization
The challenge was open to teams from academia and industries and

held in conjunction and with the support of IEEE ISBI 2017. The

definitions of the five clinical outcomes to predict are described as

follows:

i. Size: the greatest dimension in cm of the primary tumor.

ii. Extrathyroidal extension E: the extent of the primary tumor.

E ¼ 0: thyroid cancer may be confined to the thyroid gland;

E ¼ 1: the patient has minimal extra-thyroid extension (e.g.

extension to sternothyroid muscle or perithyroid soft tissues);

E ¼ 2: the cancer presents as an advanced disease, extending

beyond the thyroid capsule to invade subcutaneous soft

tissues, larynx, trachea, esophagus, or recurrent laryngeal nerve.

A higher value implies more aggressive disease with local

invasion.

iii. Lymph node metastasis N: the regional lymph node status.

N ¼ 0: there is no regional lymph node involvement (no cancer

found in the lymph nodes); N ¼ 1.1: when cancer is found in

the lymph nodes taken from the level VI central compartment

(pretracheal, paratracheal, and prelaryngeal/Delphian lymph

nodes) of the neck, it is regarded as an N1a disease; N ¼ 1.2:

when cancer is found in the lymph nodes within the lateral cer-

vical basins (levels I, II, III, IV or V) or retropharyngeal or supe-

rior mediastinal lymph nodes (level VII), it is regarded as an

N1b disease. It is more difficult to control cancer which has

spread from the primary tumor to the nearby lymph nodes.

A higher value suggests the tumor spreads farther.

iv. TNM stage S: the tumor-node-metastasis (TNM) cancer staging

developed and maintained by the American Joint Committee on

Cancer (AJCC) and the Union for International Cancer Control

(Edge et al., 2010). The TNM stage plays an important role

both in treatment planning and prognosis implications. S ¼ 1;2

; 3;4 where a higher number denotes more advanced disease.

Specifically, patients with a more advanced disease have a

higher possibility of disease recurrence after treatment and have

a higher risk of mortality (died of the disease).

v. BRAF: the presence or absence of BRAF mutation. In this study,

the BRAF mutation status is determined by the genome

sequencing.

2.2 Participants in the challenge
A total of 54 teams from 18 countries registered for the 2017 IEEE

ISBI grand challenge. Participating teams are from the academia and

industry, and many groups are from deep learning communities.

In evaluation, the test data are available to the participants, but each

team is limited to one test run. However, as these are challenging

tasks, involving tissue image pattern analysis, quantitative bio-

marker analysis, big data analysis and machine learning, only

four teams successfully provided prediction results on all five
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parameters, and one team decided not to publish their results. It is

understandable that this challenge contains five difficult prediction

tasks, and teams with lower performance are reluctant to provide

full submission results or be included in the challenge paper.

Detailed information of the three remaining approaches is described

in the Supplementary Material . The first two are deep learning tech-

niques, and the third one is based on ensemble machine learning

approaches. It is interested that three methods are all in a format of

committees of machine learning models.

• Zhou and Zhu, TMA-D2LM: Tissue Microarray Analysis via A

Deep Dictionary Learning Method (USA).
• Suzuki et al., Hybrid Prediction Model for Thyroid Cancer

Diagnosis (Japan).
• Wang et al. Ensemble Machine Learning Based Approaches for

Thyroid Cancer Diagnosis (Taiwan).

2.3 Description of datasets
Patients who had surgery for thyroid cancer at Mackay Memorial

Hospital between January 2001 and May 2012 were de-identified

and randomly selected for TMA construction. The following

patients were excluded: those with medullary thyroid cancer, those

aged<20 years, those with a tumor size of<8 mm, and those with

fewer than three tumor-containing paraffin blocks available. The

construction of thyroid cancer TMAs was approved by the institu-

tional review board of Mackay Memorial Hospital (12MMHIS149)

and has been described in our previous study (Wang et al., 2014b).

The diagnosis of thyroid cancer was reviewed and confirmed by an

experienced endocrine pathologist. Thyroid carcinomas were classi-

fied according to the last World Health Organization classification

of endocrine tumors (DeLellis et al., 2004). The primary tumor was

staged according to the seventh edition of the AJCC staging system

(Edge et al., 2010). A total of 154 lesions consisting of 128 papillary

carcinomas, 17 follicular carcinomas and 9 poorly differentiated or

anaplastic carcinomas were initially included.

For each patient, three separate cores were obtained from the via-

ble tumor region and additional one control core from the adjacent

normal thyroid tissue. One set of TMA slides were subjected to stand-

ard H&E staining. The other set of TMA slides were submitted to

immunohistochemical analysis of BRAF V600E mutation. For IHC

staining, 5-lm sections were subject to deparaffinization, rehydration

and antigen retrieval. The slides were incubated with BRAF V600E-

specific clone VE1 antibody (Spring Bioscience, Pleasanton, CA) at

4�C overnight. Positive and negative control slides (without primary

or secondary antibodies) were included in each procedure. Molecular

validation of BRAF c.1799T>A mutation was performed, and DNA

was isolated from formalin-fixed paraffin embedded sections and ana-

lyzed using Sanger sequencing. Initially, there were 14 H&E TMAs

and 14 BRAF V600E IHC TMAs collected from 154 patients.

Figure 1 shows a H&E TMA and a IHC TMA constructed in this

study. Due to poor image quality caused by the production of TMAs,

data of some patients were excluded. In total, 14 H&E TMAs with

550 H&E tissue cores from 153 patients and 13 BRAF IHC TMAs

with 480 IHC tissue cores from 140 patients were utilized.

As the super high resolution TMA image is very large with the

resolution 25412�69180 pixels and file size 1.68 GB per TMA

image to simpllify the challenge task, instead of processing

gigapixel/terapixel TMA images directly, high resolution images of

individual tissue cores were extracted from the gigapixel/

terapixel TMA slide for analysis using TissueFAXS Viewer 4.2

(TissueGnosticsVR Gmbh, 2014); the image resolution of individual

tissue core ranges from 9755�7808 pixels to 11730�11712 pixels

(around 70 MB to 100 MB per image) and prepared the clinical data

information for each patient. In data production process, some data

artifacts such as image stitching artifacts and imaging focus artifacts

produced by the digital scanner and software as shown in Figure 2

may occur. Although these artifacts do not influence human diagno-

sis, the methods will need to deal with these artifacts either by man-

ually produced masks or by automated segmentation approaches.

The patients’ background information are provided for training

and testing purposes, including the age, sex, hashimoto, body

weight, body height, body mass index and the cancer type (see

Table 1). The information about the data distributions in training

Fig. 1. H&E and IHC TMA images

Fig. 2. Image Artifacts. (a) Imaging focus artifacts and image stitching artifacts

generated by the digital scanner and the associated software; (b) blue mark-

ing produced by the pathologists. In Zhou and Zhu’s method, they manually

remove the imaging artifacts in the data preprocessing step; (c) Staining arti-

facts also often occur in data production. In Suzuki et al.’s method, artifacts

are also removed by manually produced masks. (d) In wang et al.’s method,

an automated segmentation method is built to locate tissues of interests for

further processing. The tissues of interests are highlighted in green (Color

version of this figure is available at Bioinformatics online.)
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and testing with respect to the number of TMAS, patients and tissue

cores and the data distributions with respect to the cancer type, sex

and hashimoto status are presented in the Supplementary Material.

2.4 Quantitative evaluation approaches
For quantitative evaluation, the tumor size is regarded as numerical

data, and the others, including the extension, the lymph node meta-

stasis, TNM stage and BRAF mutation status are treated as categori-

cal data. Both types of data are evaluated using the mean absolute

error (MAE), root mean squared error (RMSE), relative absolute

error (RAE) and root relative-squared error (RRSE). Given N pairs

of two variables yi and byi where i ¼ 1 . . .N, yi represents the actual

value from the referenced standard, and byi represents the prediction

outcomes, the four measurements are formulated as follows

MAE ¼ 1

N

XN
i¼1

jyi � byi j (1)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

yi � byið Þ2
vuut (2)

RAE ¼

PN
i¼1

jyi � byi j

PN
i¼1

jyi � �yi j
(3)

where �yi ¼ 1
N

PN
i¼1 yi.

RRSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

yi � byið Þ2

PN
i¼1

yi � �yið Þ2

vuuuuuut (4)

In addition, for prediction of the numerical data, i.e. tumor size, all pre-

sented methods are evaluated using the correlation coefficient (CC)

CC ¼

PN
i¼1

yi � �yið Þ byi � �byi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

yi � �yið Þ2
PN
i¼1

byi � �byi

� �2

s (5)

where �byi ¼ 1
N

PN
i¼1 byi .

On the other hand, for prediction of the categorical data, four

additional measurements are utilized, including Kappa (j ), recall

(R), precision (P) and F-measure (F)

j ¼ po � pe

1� pe
¼ 1� 1� po

1� pe
(6)

where po is the relative observed agreement among raters (identical

to accuracy), and pe is the hypothetical probability of chance agree-

ment, using the observed data to calculate the probabilities of each

observer randomly seeing each category

R ¼ TP

TPþ FN
(7)

where TP and FN represent the number of true positive and false

negative cases.

P ¼ TP

TPþ FP
(8)

where FP stands for the number of the false positive cases.

For multiple classification problems, we adopt the weighted

average f-measure using WEKA’s definition (Frank et al., 2016)

F ¼
P

Fa � #að ÞP
#a

(9)

where Fa represents the F-score for the class a; #a represents the

number of instances of class a;
P

#a represents the total number of

instances.

3 AI methods

This section summarizes the methods that were successfully submit-

ted full prediction results to the challenge. Due to limited number of

paper length, detailed information of the methods are described in

the Supplementary Material.

3.1 Zhou and Zhu (TMA-D2LM): tissue microarray

analysis via a deep dictionary learning method
An TMA analysis model (TMA-D2LM) is built, consisting of three

steps: (i) pre-processing and segmentation, (ii) feature extraction

and (iii) predictive model building. The pre-processing step is used

to remove the outlying tissues with staining ingredient, dust or

cracked glass. Next, a deep dictionary learning model consisting of

five projection layers, which will deeply train the dictionary learning

model and learn internal factorization compared to the single-layer

model, is built to perform the feature extraction. The deep diction-

ary learning model is based on a multi-layer operation framework

(Trigeorgis et al., 2017) to generate a low dimensional representa-

tion of each individual image. The purpose of this framework is to

find the most discriminative patch from each image and build a low

dimensional representation of the selected patch to denote the fea-

tures of the ’mother’ images. For prediction, Zhou and Zhu use

XGBoost (Chen and Guestrin, 2016), in which the Gradient

Boosting produces a prediction model in the form of an ensemble of

weak prediction models. The extracted image features along with

the seven demographic covariates are used as predictors to predict

the five clinical parameters of interest. The prediction framework is

built with four layers. Specifically, the bottom layer contains the

image features extracted from BRAF and H&E TMA, and then they

are combined with the demographic covariates to predict BRAF and

Extension, respectively. Then, they use the demographic covariates,

BRAF and extension to predict size and N, respectively. Finally,

size, N, BRAF and extension are combined to predict the cancer

stage. The reason to do the ‘indirect prediction’ is that after comput-

ing the partial correlation between all these five clinical parameters,

Table 1. Patient background information

Age Age

Sex 1 ¼Male; 2 ¼ Female

Hashimoto 0 ¼ The patient does not have Hashimoto’s thyroiditis

1 ¼ The patient has Hashimoto’s thyroiditis

BW Body weight (kg)

BH Body height (m)

BMI BWðkgÞ
BH2ðm2Þ

Cancer subtype 11 ¼ Papillary cancer, classical

12 ¼ Papillary cancer, follicular variant

13 ¼ Papillary cancer, solid variant

25 ¼ Follicular cancer

26 ¼ Follicular cancer, minimally invasive

30 ¼ Poorly differentiated cancer

40 ¼ Anaplastic cancer
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it is found that BRAF mutation and extension is highly correlated to

N, S and tumor size. On the other hand, BRAF mutation and exten-

sion are proved to be key factors indicating the cancer level. Even

though BRAF mutation and extension are not perfectly predicted,

according to the experiment, they generally have a linear relation-

ship with the true annotations. Therefore, including them as predic-

tors may still help increase the prediction accuracy of tumor size, N

and especially cancer stage.

3.2 Suzuki et al.: hybrid prediction model for thyroid

cancer diagnosis
Suzuki et al. built a hybrid prediction model for thyroid cancer diag-

nosis. They separate the prediction model into two sub-modules.

The first module is dedicated to predict BRAF mutation status using

only IHC slide as input, and the second module predicts all the other

clinical diagnoses using the rest of input data, namely H&E slide

image, clinical features such as age and sex, as well as the BRAF

mutation prediction from the first module. The two modules employ

different machine learning approaches for building the individual

prediction models reflecting the nature of tasks. Suzuki et al. use a

deep convolutional network (convnet)-based approach for building

the mini patch-level discriminative model for BRAF mutation status,

respecting the promising performance of convnets in the recent liter-

ature in image recognition and competitions in the field of medical

imaging (Szegedy et al., 2015; Ronneberger et al., 2015; Wang

et al., 2016). A novel network architecture is built to take a set of

overlapping image patches with different magnification levels as the

input for capturing the image features of cancer slides in diverse bio-

logical scales from individual cells to tissue structures. In addition,

they employ additional ad-hoc techniques reflecting pathologists’

observations for preparing training datasets and deriving the final

decision. Moreover, Suzuki et al. hypothesized that the nuclear fea-

tures including size, shape and texture of HE stained slides of thy-

roid cancer could be useful for the prediction, as some studies

demonstrated that aneuploidy correlates to aggressiveness in papil-

lary thyroid carcinoma (Sturgis et al., 1999) and aneuploidy could

affect size and texture of nuclei where abnormal quantities of DNA

are contained. In order to build predictive models for other clinical

diagnoses, Suzuki et al. use the image features of nucleus in HE

TMA image, clinical features and BRAF mutation. Since these fea-

tures include categorical, discrete and continuous variables, Suzuki

et al. use gradient boosting trees (Chen and Guestrin, 2016) for the

prediction, which are known to be effective and powerful in such sit-

uation. Hyperparameter optimization of the prediction model was

efficiently performed using Bayesian optimization technique.

3.3 Wang et al.: ensemble machine learning based

approaches for thyroid cancer diagnosis
Using IHC, proteins can be directly visualized by antibodies in their

natural cellular localization, and the ability of IHC to quantify a

potential biomarker provides the opportunity to study the relation-

ship between the biomarker and chemosensitivity in tumour sub-

groups, enabling hypothesis generation for additional translational

research (Wang, 2013). As BRAF mutation is the most common

genetic alterations found in the thyroid cancer, and in the previous

study, validation using Sanger sequencing supports the use of IHC

for the detection of BRAF V600E protein with reliable accuracy,

sensitivity, and specificity as compared with the PCR-based methods

(Cheng et al., 2014), therefore in Wang et al.’s method, BRAF

expression patterns are extracted from IHC images both for segmen-

tation of tissue of interests (as potential tumor regions) and for

building machine learning models in prediction of clinical diagnosis

parameters. An automated segmentation and quantification method

is built and applied to the IHC images not only for measuring the

BRAF expression levels but also for localization of tissues of inter-

ests. Next, various ensemble machine learning models are trained

based on the IHC quantification scores and patient’s background

information. For segmentation of tissue of interests for further

machine learning, color deconvolution (Ruifrok and Johnston,

2001) is first applied to extract independent haematoxylin and

DAB/BRAF stain contributions, which has been demonstrated to be

effective in tissue image analysis in various studies (Wang, 2013;

Wang and Chen, 2013; Wang et al., 2014a). Next, tissue of interests

(ROI) are obtained by a clustering process using Otsu’s thresholding

method (Otsu, 1979), and the background cluster and foreground

stain cluster are automatically separated by selecting an optimal

local threshold t with the overlap of the background distribution

and foreground stain distribution minimized.

4 Experimental results

All the proposed methods are evaluated against the ground truth on

the 47 separate testing patients’ samples, which have both H&E and

IHC images. The quantitative evaluation results for BRAF, stage,

extension, N and size are presented in Table 2, and box-whisker

plots of error distributions are displayed in Figure 3. Information

about the computation time and hardware/software specifications

are provided in the Supplementary Material. For BRAF prediction,

Table 2. Evaluation on predictions of BRAF, stage, extension, N

and size

BRAF Zhou and Zhu Suzuki et al. Wang et al.

j statistic 0.26 0.56 0.86

Precision 0.65 0.80 0.93

Recall 0.66 0.80 0.93

F-measure 0.65 0.79 0.93

Stage Zhou and Zhu Suzuki et al. Wang et al.

j statistic 0.56 0.41 0.44

Precision 0.83 0.69 0.76

Recall 0.76 0.69 0.71

F-measure 0.78 0.67 0.72

Extension Zhou and Zhu Suzuki et al. Wang et al.

j statistic 0.13 0.13 0

Precision 0.53 0.57 0.35

Recall 0.5 0.62 0.60

F-measure 0.51 0.55 0.44

N Zhou and Zhu Suzuki et al. Wang et al.

j statistic 0.35 0.19 0.23

Precision 0.69 0.48 0.53

Recall 0.64 0.57 0.60

F-measure 0.62 0.52 0.55

Size Zhou and Zhu Suzuki et al. Wang et al.

Correlation coefficient �0.01 0.13 0.58

Mean absolute error 1.16 0.98 0.89

Root mean square error 1.55 1.25 1.06

Relative absolute error 1.16 0.99 0.90

Root relative squared error 1.18 0.99 0.86

The bold values represents the results of the best performed method among

the three approaches in comparison for individual prediction tasks.
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it is observed that the best results by Wang et al.’s method with the

highest Kappa, precision, recall and F-Measure (0.86, 0.93, 0.93,

0.93). The high precision and recall results indicate that the auto-

mated method is demonstrated to be promising in prediction of the

BRAF mutation status based on the tissue images and patients’ back-

ground information. In testing the significance of the patient back-

ground information in Wang et al.’s model, which builds machine

learning models based on five automated quantification scores

Qsjs¼1...5 (see details in the Supplementary Material) and seven

patient background features (see Table 1), we test the model using

all five automated quantification scores and patient background

information and gradually remove the patient background features

one by one to evaluate the model performance. The results show

deteriorated performance of Wang et al.’s method without patients’

information (see Table 3).

In cancer stage prediction, Zhou and Zhu’s method obtains the

best results with the highest Kappa, precision, recall and F-measure

(0.56, 0.83, 0.76, 0.78). In prediction of the extension and N, the

best results on Kappa, precision, recall and F-measure are by

Suzuki’s method (0.13, 0.57, 0.62, 0.55) and by Zhou and Zhu’s

method (0.35, 0.69, 0.64, 0.62), respectively. For the size parameter

results, Wang et al.’s method obtains the highest correlation coeffi-

cient and the lowest MSE, RMSE, RAE, RRSE (0.58, 0.89, 1.06,

0.90, 0.86), which is an interested finding as to the authors’ best

knowledge, this is the first study, which indicates the tumor size of

thyroid cancer can be predicted using the patient background infor-

mation (see Table 1) without directly measuring the tumor size.

5 Discussion

This section discusses possible future improvements of the three

automated methods. Due to limited length of the paper, more analy-

sis and discussion can be found in the Supplementary Material.

5.1 Zhou and Zhu: TMA-D2LM
There are many potential improvements in the future. First, we will

add convolutional layers before running the deep dictionary learning

model in order to avoid losing some importance shape features.

Second, we will explore other methods to find the center of the ’nor-

mal’ space, which may give more accurate results. Third, for the

continuous responses like ‘size’, we will develop better regression

methods for predicting ‘tumor size’.

5.2 Suzuki et al.: hybrid prediction
Nuclei segmentation and feature extraction from HE stained slides

of tumor were performed using CellProfiler version 2.2.0 (Carpenter

et al., 2006) onto randomly sampled image patches. The quantita-

tive features include the size, Zernike shape features and pixel inten-

sities. The reasons that Suzuki et al.’s approach does not perform

well may be that the nuclear image features that Suzuki et al.’s

method adopts are not enough for pattern analysis, and the image

features other than nucleus such as cytoplasm are useful. In addi-

tion, inclusion of nuclei of non-tumor cells would affect the per-

formance of the AI model. More sophisticated algorithms for stain

normalization (Khan et al., 2014), nuclear segmentation (Irshad

et al., 2014), or feature representations using deep learning could

lead to more accurate results.

5.3 Wang et al.: ensemble
Wang et al.’s method is demonstrated to be promising in prediction of

BRAF mutation and provide acceptable prediction accuracy in stage

and relative high correlation score in estimating tumor size. However,

as the method does not utilize the morphological patterns in H&E,

the method has limitations in prediction of the clinical outcomes,

which relate to tissue morphology, such as the extension, N and size.

For future improvements, it is expected that the model may produce

better and more reliable predictions outcomes for all five parameters

by integration of morphological features extracted from H&E images.

6 Conclusion

Precision medicine is the future, and precision medicine demands

personalized pathology. The ability to extract pathological features

from a patient’s tissue sample objectively and consistently can be

driven by AI and machine learning. In this article, we have presented

a benchmark for a number of challenging tasks in thyroid cancer

diagnosis, including algorithms for prediction of the BRAF mutation

status, extrathyroidal extension, lymph node metastastasis, TNM

stage and the tumor size, using the patients’ background informa-

tion and H&E and IHC TMA images. The presented results will

allow the objective comparison of existing and new developments in

the field. All methods were evaluated using a common thyroid can-

cer dataset repository, ground truth and unified measurements for

assessment of the prediction accuracy. Based on the presented

results, we can conclude that recent methods achieved acceptable

performance in prediction of BRAF mutation and TNM stage even

Table 3. Evaluation on Wang et al.’s method by gradually removing

the background information

F-measure Correlation coefficient

BRAF Stage Extension N Size

S1 ¼ Q [ B 0.93 0.75 0.44 0.55 0.58

S2 ¼ S1\ � b1 0.89 0.44 0.44 0.45 0.58

S3 ¼ S2\ � b2 0.86 0.52 0.44 0.45 0.58

S4 ¼ S3\ � b3 0.86 0.50 0.44 0.47 0.58

S5 ¼ S4\ � b4 0.86 0.54 0.44 0.44 0.58

S6 ¼ S5\ � b5 0.91 0.59 0.44 0.48 0.58

S7 ¼ S6\ � b6 0.84 0.54 0.43 0.49 0.58

S8 ¼ Q 0.80 0.59 0.39 0.48 �0.29

S9 ¼ B 0.56 0.70 0.44 0.57 0.58

Note: Q ¼ fq1; . . . ; q5g.
B ¼ fb1; . . . ; b7g ¼ f Age, Sex, Hashimoto, BW, BH, BMI, CancerSubtype g.

Fig. 3. The box-whisker plots of error distributions for size
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without precise pixel-level annotation. However, the presented

results also demonstrate that accurately predicting extrathyroidal

extension, lymph node metastastasis and the tumor size remain chal-

lenging problems, which are still far from being solved. It is expected

that this benchmark will help algorithmic developments, and that

more advanced approaches will be built and tested using the pro-

vided data repositories and benchmarks.
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