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Abstract

Motivation: Network alignment (NA) aims to find similar (conserved) regions between networks,

such as cellular networks of different species. Until recently, existing methods were limited to

aligning static networks. However, real-world systems, including cellular functioning, are dynamic.

Hence, in our previous work, we introduced the first ever dynamic NA method, DynaMAGNAþþ,

which improved upon the traditional static NA. However, DynaMAGNAþþdoes not necessarily

scale well to larger networks in terms of alignment quality or runtime.

Results: To address this, we introduce a new dynamic NA approach, DynaWAVE. We show that

DynaWAVE complements DynaMAGNAþþ: while DynaMAGNAþþ is more accurate yet slower

than DynaWAVE for smaller networks, DynaWAVE is both more accurate and faster than

DynaMAGNAþþ for larger networks. We provide a friendly user interface and source code for

DynaWAVE.

Availability and implementation: https://www.nd.edu/�cone/DynaWAVE/.

Contact: tmilenko@nd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Network alignment (NA) aims to find a node mapping that con-

serves topologically or functionally similar regions between the net-

works, i.e. that yields high node and/or edge conservation (Vijayan

et al., 2017). In computational biology, NA can predict protein

function by transferring functional knowledge from well-studied to

poorly-studied species between the species’ aligned cellular network

regions (Faisal et al., 2015).

Until recently, existing NA methods were limited to aligning static

networks. However, most real-world systems, including cellular func-

tioning, are dynamic (i.e. they evolve over time). Static networks can-

not properly model the temporal aspect of such systems, but dynamic

networks can (Holme, 2015). Because of this, and as more dynamic

network data are becoming available, there is a need for methods that

are capable of analyzing dynamic networks, including NA methods.

So, in our previous work, we generalized static NA to dynamic

NA (Vijayan et al., 2017), which (unlike static NA) explicitly ex-

ploits the temporal information from the dynamic networks being

aligned. Specifically, we introduced the first method for dynamic

NA, DynaMAGNAþþ, a generalization of a state-of-the-art static

NA method MAGNAþþ (Vijayan et al., 2015). MAGNAþþuses a

genetic algorithm (GA) to optimize static node and edge conserva-

tion. DynaMAGNAþþ inherits the GA of MAGNAþþ, but it opti-

mizes measures of dynamic node and edge (event) conservation. By

evaluating DynaMAGNAþþ against MAGNAþþ on ecological

(animal proximity), cellular [protein-protein interaction (PIN)], and

social (e-mail communication) networks, we showed that dynamic

NA is superior to static NA.

While DynaMAGNAþþperforms well, it does not necessarily

scale well to larger networks, because of its GA. So, in this study,

we ask whether another state-of-the-art static NA method can be

generalized to its dynamic counterpart that will scale better than

DynaMAGNAþþ. Recently, 10 static NA methods were evaluated

(Meng et al., 2016), and MAGNAþþ, WAVE (Sun et al., 2015),

and L-GRAAL (Malod-Dognin and Pr�zulj, 2015) produced high-

quality alignments across all comparison tests. Of these methods,

WAVE is the fastest. Thus, we extend WAVE from static NA to

dynamic NA into a new DynaWAVE approach. Indeed, we

show that DynaWAVE scales better to larger networks than

DynaMAGNAþþ.
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2 Materials and methods

First, we briefly describe the existing NA methods MAGNAþþ,

DynaMAGNAþþ and WAVE. Then, we describe our proposed dy-

namic NA method, DynaWAVE. All four methods are similar in the

sense that they find an alignment by maximizing bSE þ ð1� bÞSN,

where SE and SN are edge and node conservation, respectively, and b
is a parameter between 0 and 1 that balances between the two con-

servation types. Note that SN is typically the mean of node similar-

ities sð�; �Þ of all aligned node pairs. What the four methods differ in

are the specific SE and SN measures that they optimize, as well as

their optimization strategies, as follows.

MAGNA11. For this existing static NA method, SE is the S3

measure of static edge conservation (Saraph and Milenkovi�c, 2014;

Vijayan et al., 2015), and SN is a static graphlet-based measure of

node conservation (Kuchaiev et al., 2010; Milenkovi�c and Pr�zulj,

2008). MAGNAþþmaximizes its objective function using a GA-

based search strategy that evolves a population of alignments over a

number of generations.

DynaMAGNA11. For this existing dynamic method, SE is the

DS3 measure of dynamic edge conservation (Vijayan et al., 2017),

and SN is a dynamic graphlet-based measure of node conservation

(Hulovatyy et al., 2015). DynaMAGNAþþmaximizes its objective

function via MAGNAþþ’s GA.

WAVE. For this existing static method, SE is the weighted edge

conservation (WEC) measure (see below) (Sun et al., 2015), and SN

is the same static graphlet-based node conservation measure as that

of MAGNAþþ.

WEC is a popular edge conservation measure that has since been

used in other studies (Malod-Dognin and Pr�zulj, 2015; Mamano

and Hayes, 2017). Similar to MAGNAþþ’s S3, WAVE’s WEC also

counts the number of conserved edges, but unlike S3 which treats

each conserved edge the same, WEC favors conserved edges with

similar end-nodes over conserved edges with dissimilar end-nodes

(for details, see Supplementary Material Section S1.1.1).

WAVE maximizes its objective function using a greedy seed-

and-extend (rather than search) strategy (Supplementary Material

Section S1.1).

DynaWAVE. For this proposed dynamic NA method, SE is our

proposed dynamic WEC (DWEC) measure of dynamic edge (event)

conservation (see below) and SN is the same dynamic graphlet-based

node conservation measure as that of DynaMAGNAþþ.

DWEC is an extension of WEC from static NA to dynamic NA.

Similar to DynaMAGNAþþ’s DS3, DynaWAVE’s DWEC also com-

putes the conserved event time (CET) of the alignment where the

CET of the mapping of node pair (u, v) to node pair ðu0; v0Þ is the

amount of time during which both (u, v) and ðu0; v0Þ are active, and

the total alignment CET is the sum of CETs across all mapped node

pairs; Supplementary Material Section S1.2.1). However, unlike

DS3, DWEC favors a conserved event with similar end-nodes over

an equally conserved event with dissimilar end-nodes. That is, for

each node pair (u, v) that is mapped to node pair ðu0; v0Þ, the

mapping of the node pair is weighted by both the node similarities

sðu;u0Þ and sðv; v0Þ as well as CETððu; vÞ; ðu0; v0ÞÞ. For details, see

Supplementary Material Section S1.2.1.

Similar to WAVE, DynaWAVE maximizes its objective function

using a greedy seed-and-extend alignment strategy (Supplementary

Material Section S1.2).

Parameters of the four methods. We set b ¼ 1
2 for all four meth-

ods, since WAVE, MAGNAþþ and DynaMAGNAþþ all use this par-

ticular parameter value in their respective papers, and since we already

showed in previous work (Meng et al., 2016) that setting b ¼ 1
2 gives

the best performance in general. Supplementary Table S1 shows our se-

lected values for the remaining parameters of the four methods.

3 Results and discussion

We use the recently established dynamic NA evaluation framework

(Vijayan et al., 2017) to compare DynaWAVE to the other three

methods, as follows.

A good NA approach should produce high-quality alignments for

similar networks and low-quality alignments for dissimilar networks

(Guzzi and Milenkovi�c, 2017). So, we align an original dynamic

real-world network (see below) to its noisy (randomized) version.

We add noise to a given original network by rewiring a fraction of its

events, which we refer to as the non-strict randomization model

(Supplementary Material Section S2.1.1). In the main paper, we report

results only for the non-strict model. Note that we analyze an additional

randomization model, referred to as the strict model, which only

randomizes time-stamps of the events, but not the actual events

(Supplementary Material Section S2.1.2). For this model, we report re-

sults only in the supplement, due to space constraints. Nonetheless, all

findings are consistent between the two models. Since with the non-

strict model we only rewire events when adding noise, we know the true

node mapping between the original and noisy networks. So, we can cal-

culate the alignment quality in terms of node correctness (NC), the over-

lap between the given alignment and the true node mapping. We

analyze three original networks: (i) the zebra proximity network (27

nodes and 779 events) (Rubenstein et al., 2015; Vijayan et al., 2017),

(ii) the yeast PIN (1004 nodes and 10 403 events) (Vijayan et al., 2017)

and (iii) the human aging PIN (6300 nodes and 76 666 events) (Faisal

and Milenkovi�c, 2014). We vary the noise level; the higher the noise

level, the more dissimilar the aligned networks. So, NC should be high

at lower noise levels, and also, NC should decrease as noise increases.

When comparing dynamic NA against static NA, each of

DynaWAVE and DynaMAGNAþþperforms better than its static

counterpart overall (Fig. 1), since the given dynamic NA method

achieves higher NC at lower noise levels than its static counterpart.

Fig. 1. NC for DynaWAVE, WAVE, DynaMAGNAþþ and MAGNAþþas a func-

tion of noise level when aligning the original network to its randomized

(noisy) versions, for each of the zebra proximity network, yeast PIN

and human aging PIN, for the non-strict randomization model. The error

bars represent SDs over multiple runs. For each network and each noise

level, each method was run five times, except that MAGNAþþ and

DynaMAGNAþþwere run only once on the aging PIN, because of their long

running times on this largest network
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When comparing the two dynamic approaches, we find

that DynaWAVE is: (1) less accurate but faster than

DynaMAGNAþþ for the smallest zebra proximity network, (2)

similarly accurate and yet faster than DynaMAGNAþþ for the

medium-size yeast PIN and (3) both more accurate and faster than

DynaMAGNAþþ for the largest human aging PIN (Fig. 1, Table 1

and Supplementary Figs S1–S3).

Above, we have concluded that DynaWAVE is superior to

DynaMAGNAþþ for large network data. However, the real-world

networks that we have analyzed have not just different sizes but are

also of the different types. So, next, we perform a more controlled

experiment: we analyze (in the same manner as above, but focusing

only on the two dynamic NA methods) synthetic networks of differ-

ent sizes, where the synthetic networks come from the same random

graph model and are thus of the same type. To test the robustness of

results to the choice of random graph model, we repeat the entire

analysis for three different models used by Vijayan et al. (2017):

geometric gene duplication with probability cutoff (GEO-GD) with

p¼0.3, scale-free gene duplication (SF-GD) with p¼0.3 and

q¼0.7, and social network evolution (SNE) with k ¼ 0:032; a ¼ 0:8;

and b ¼ 0:002 (Supplementary Material Section S2.2). For each

network model, we vary the network size from 100 nodes to 4000

nodes in smaller increments initially and larger increments later on.

Note that for the given number of nodes, the number of edges, i.e.

network density, is determined automatically by the model param-

eters. For each network model and network size, we create three

network instances, and average the results over the three runs.

So, the question is: for the given synthetic network model, does

DynaWAVE’s superiority become more pronounced with the in-

crease in network size, just as it does for the real-world networks?

Indeed, this is exactly what we observe (Fig. 2 and Supplementary

Fig. S4).

So far, we have concluded that DynaWAVE is superior to

DynaMAGNAþþ for large networks, and we have verified that this

holds for both real-world and synthetic networks. However, the two

methods have both different objective functions and different opti-

mization strategies (Section 2). So, next, as is typically done

(Crawford et al., 2015), we aim to fairly evaluate whether it is

DynaWAVE’s objective function or its optimization strategy that re-

sults in its superior performance compared to DynaMAGNAþþ.

We test this by modifying DynaMAGNAþþ so that it optimizes

DynaWAVE’s objective function. We refer to this version of

DynaMAGNAþþ as DynaMAGNAþþ (DWEC). Note that we

cannot modify DynaWAVE to optimize DynaMAGNAþþ’s object-

ive function, because DynaWAVE’s algorithmic design does not

allow for this. By comparing DynaMAGNAþþ (DWEC) against

DynaMAGNAþþ, since the two methods share the same optimiza-

tion strategy but differ in their objective functions, we can evaluate

the effect of DynaWAVE’s objective function on the results. When

doing so, since we find that DynaMAGNAþþ (DWEC) and

DynaMAGNAþþperform similarly (Fig. 2), we conclude that

DynaWAVE’s objective function is not the reason for its superior

performance over DynaMAGNAþþ. By comparing DynaWAVE

against DynaMAGNAþþ (DWEC), since the two methods use the

same objective function but differ in their optimization strategies, we

can evaluate the effect of DynaWAVE’s optimization strategy on the

results. When doing so, since we find that DynaWAVE performs much

better than DynaMAGNAþþ (DWEC) (Fig. 2), we conclude that

DynaWAVE’s optimization strategy is the reason for its superior

performance over DynaMAGNAþþ. In summary, DynaWAVE’s su-

perior performance compared to DynaMAGNAþþ, which becomes

more pronounced as the network size increases, is entirely due to its

optimization strategy and not its objective function.

4 Conclusion

In the recent DynaMAGNAþþ study, dynamic NA was already

shown to produce superior alignments compared to static NA. In

this paper, we further confirm this by introducing and characterizing

a novel approach for dynamic NA called DynaWAVE. Our results

confirm the need for DynaWAVE as a more scalable dynamic NA

approach (in terms of both accuracy and runtime) compared to

DynaMAGNAþþ.
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