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Abstract

Summary: Gene expression analyses of bulk tissues often ignore cell type composition as an

important confounding factor, resulting in a loss of signal from lowly abundant cell types. In this re-

view, we highlight the importance and value of computational deconvolution methods to infer the

abundance of different cell types and/or cell type-specific expression profiles in heterogeneous

samples without performing physical cell sorting. We also explain the various deconvolution scen-

arios, the mathematical approaches used to solve them and the effect of data processing and differ-

ent confounding factors on the accuracy of the deconvolution results.

Contact: katleen.depreter@ugent.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Over the years, the analysis of the transcriptome has substantially

contributed to our understanding of the processes involved in

human development and disease, but the complex nature of samples

and tissues under investigation has been largely neglected.

For instance, most tumor samples are heterogeneous in nature,

containing a variable portion of non-malignant cells that depends on

the cancer type (Fridman et al., 2012) (even when collected from the

same patient) and includes epithelial, stromal and infiltrating im-

mune cells (Egeblad et al., 2010). Moreover, the expression level of

each individual gene varies between different cell types and, when

analyzing bulk samples of heterogeneous tissues, only tissue-

averaged expression levels are measured. As a result, the expression

contribution of low abundant cell types could be masked by that of

more abundant ones (Kuhn et al., 2012). Therefore, observed

changes in gene expression might be the result of underlying

differences in cell type proportions between samples, genuine

changes due to clinical condition or a combination of both.

Since traditional analyses do not take into account cell type com-

position as a confounding factor in differential gene expression ana-

lyses, this might result in a loss of signal from less abundant cell

types and might limit the conclusions that can be drawn from the ex-

periments. Together with insufficiently documented or incorrect

data processing practices (MAQC Consortium, 2010), platform-

specific differences and variations introduced during the library

construction (SEQC/MAQC-III Consortium, 2014), this sample het-

erogeneity may partially explain the problem of lack of reproducibil-

ity that the scientific community is currently facing (Baker, 2016).

The field of single-cell genomics has grown exponentially during

the past few years, leading to the development of novel tools for the

analysis of single cells within heterogeneous tissues (https://github.

com/seandavi/awesome-single-cell). Initially, single cells were
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isolated using Fluorescence-Activated Cell Sorting (FACS) or Laser

Capture Microdissection (LCM) technologies. However, this up-

front sorting required specific cell-surface markers to be known and

appropriate antibodies to be available. To overcome this bottleneck,

novel systems enable single cell isolation using other physical prop-

erties (e.g. cell size) by applying microfluidics or dielectrophoretic

separation. Nevertheless, while promising, single-cell technologies

have labour-intensive protocols and require expensive and special-

ized resources, currently hindering their establishment in a clinical

setting.

For all these reasons, and to exploit the wealth of publicly avail-

able bulk data that can be re-analyzed, multiple computational

approaches have been developed in the past years to infer abundance

of different cell types and/or cell type-specific expression profiles in

heterogeneous samples. This task, known as computational deconvo-

lution of expression data from mixed cell populations, is the scope of

this review. Therefore, articles regarding deconvolution of unrelated

topics (i.e. fluorescence measurements or image processing) were not

included here. The use of other omics data is briefly discussed in the

section ‘Alternative data types to perform the deconvolution’.

Moreover Teschendorff and Zheng (2017) recently highlighted the

impact of cell-type heterogeneity in DNA methylation data and pro-

vided a detailed overview of algorithms for correcting cell-type com-

position in the context of Illumina Infinium Methylation Beadarrays.

Titus et al. (2017) have also recently published a review about cell-

type deconvolution from DNA methylation.

To date, there are three reviews addressing the deconvolution

problem using transcriptomics data as input (Mohammadi et al.,

2017; Shen-Orr and Gaujoux, 2013; Yadav and De, 2015; see

Fig. 1). For those readers also interested in an in-depth analysis of

the impact of different loss functions, constraint choices and regular-

ization techniques on the deconvolution, we highly recommend the

review by Mohammadi et al. (2017), where a total of 16 different

combinations were carefully investigated.

Unlike the previous references, here we extensively review more

than 50 methods developed between 2001 and 2017 (see Fig. 1;

Supplementary Table S1). We also discuss the effect of data scale,

(pre-)processing, normalization and different confounding factors

on the accuracy of the deconvolution results. Finally, we highlight

potential issues associated with traditional linear modelling and

include a section with methods readily available as webtools, whose

only requirement is an internet connection.

2 Defining the deconvolution problem

Sixteen years ago, Venet et al. (2001) presented a method ‘to infer

the gene expression profile of the various cellular types [. . .] directly

from the measurements taken on the whole sample’. They framed

this problem as a multiple linear regression model applied to micro-

array gene expression data. The generalization of this problem be-

longs to the category of blind signal separation (BSS) problems, with

the ‘cocktail party problem’ being the most known example

(Cherry, 1953). It was formulated as the recognition of what a per-

son says when others are speaking at the same time (Bronkhorst,

2015), which in turn can be translated into separating a set of obser-

vations into the constituent independent signals (sources).

The expression of a given gene in a heterogeneous sample can be

modelled as the weighted sum (¼linear combination) of the expres-

sion values from each cell type present in the mixture, assuming that

every cell type has similar expression levels across different samples.

Thus, the deconvolution problem can be formulated in matrix nota-

tion as follows (Equation 1):

T ¼ C � P (1)

where T¼measured expression values from heterogeneous tissue/

tumor samples; C¼ cell type-specific average expression values and

P¼mixing proportions.

It can also be formulated algebraically as a latent variable model

where the error term is not directly measurable (Equation 2):

tij¼
XK

k¼1

cik � pkj þ eij; i ¼ 1 . . . M and j ¼ 1 . . . N (2)

where tij¼observed expression value of gene i in heterogeneous

sample j; cik¼ averaged expression value of gene i in cell type k;

pkj¼proportion of cell type k in sample j; eij¼ error term;

K¼number of cell types; M¼number of genes and N¼number

of samples.

The deconvolution can be performed if the system of linear equa-

tions has solution [the number of solutions of a system of linear

equations can be determined using the Capelli-Fontené-Frobenius-

Kronecker-Rouché theorem (Gorodentsev, 2016)]. Depending on

the information used as input, the deconvolution can have several

definitions, as described in Figure 2.

Finally, some methods model the heterogeneous samples as a

two-component system (e.g. tumor and non-tumor) (Ahn et al.,

2013; Ghosh, 2004; Lähdesmäki et al., 2005; Li and Xie, 2013;

Wang et al., 2015), whereas others increase the complexity by

including three or more cell types in the mixture (Becht et al., 2016;

Hoffmann et al., 2006; Li et al., 2016; Stuart et al., 2004; Wang

et al., 2010), getting as far as 22 (Newman et al., 2015) or 25 differ-

ent cell types (Chen et al., 2017).

3 Mathematical approaches to solve the
deconvolution problem

A detailed description of the particular deconvolution problem

solved by each method, the necessary input data and their availabil-

ity can be found in Supplementary Table S1.

The most commonly used group of methods is called ordinary

least squares (OLS), linear least squares (LLS) or simply least
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Fig. 1. Venn diagram showing the number of deconvolution methods covered

by each review article (using transcriptomics data as input). (*) We discussed

Nanodissection 1.0 within Section 4 as a method for selecting cell-type spe-

cific markers; (**) There are 3 methods only reviewed by Shen-Orr and

Gaujoux (2013): Verhaak et al. (2010), Miller et al. (2011) and Shoemaker et al.

(2012) [references taken from their article]; (***) There are three methods

covered by all reviews: Erkkilä et al. (2010), Shen-Orr et al. (2010) and Qiao

et al. (2012). Gosink et al., 2007; Bolen et al., 2011; Frishberg et al., 2016; Shen

et al., 2016; Steuerman and Gat-Viks, 2016 are described on Supplementary

Table S1
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squares (LS), whose goal is to minimize the sum of squares of the

differences between fitted (C�P) and observed values (T) (also known

as minimization of the norm of the reconstruction error or mini-

mization of the Euclidean distance) regardless of the distribution of

the error term (Equation 3; see Fig. 2):

Given T and C ðor T and PÞ : minPðor CÞjjC � P – Tjj2 (3)

Under the assumption that the error terms follow a normal distribu-

tion, a maximum likelihood estimation approach can also be applied

to solve the minimization problem (Berkson, 1956).

Optimization problems aim to minimize or maximize diverse

objective functions with or without imposed constraints. With this

initial formulation of the problem (Equation 3, unconstrained opti-

mization problem), both positive or negative proportions (P) may

arise and the sum of the proportions might be different than one (see

Box 1). Since those scenarios are meaningless in the context of the

deconvolution, two constraints are included into the optimization

problem: 1) the proportions must be strictly positive between 0 and

1 (‘non-negativity’ constraint); 2) the sum of proportions within

each sample is 1 (‘sum-to-one’ constraint). This approach is known

as the non-negative least squares method (NNLS) (Abbas et al.,

2009; Repsilber et al., 2010; Venet et al., 2001; Wang et al., 2016;

Zuckerman et al., 2013). The nnls (https://nl.mathworks.com/mat

labcentral/fileexchange/38003-nnls-non-negative-least-squares) or

lsqnonneg (https://nl.mathworks.com/help/matlab/ref/lsqnonneg.

html) functions in MATLAB or the nnls package (Stokkum and van,

2012) in R are common functions implementing this approach.

The sum of squared residuals can also be minimized using simu-

lated annealing (SA) (Lu et al., 2003; Wang et al., 2006) (see Box 2)

or other non-convex optimization strategies. However, since

only convex objective functions guarantee that a local solution
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Fig. 2. The deconvolution problem has multiple formulations depending on the available input data. T¼matrix containing the observed (measured) expression

values from heterogeneous (tissue/tumor) samples (M genes, N samples); C¼matrix consisting of cell type-specific average expression values (M genes, K cell

types); P¼matrix containing the mixing proportions (¼relative composition) (K cell types, N samples); min¼minimum; max¼maximum. Case 1) Only T is avail-

able, C and P are estimated (dark grey arrows). Case 2) Given T and C, P is estimated (dashed pink arrows; grey heatmap on the bottom-right corner). One variant

of this formulation uses T and cell type signatures (lists of marker genes for each cell type) known from literature or obtained by supervised/unsupervised marker

selection strategies to estimate relative measures of the tissue heterogeneity (¼enrichment scores; orange heatmap on the bottom-right corner) instead of cell

type proportions [e.g. ESTIMATE (Yoshihara et al., 2013), Şenbabao�glu et al., 2016]. Proportion values are strictly positive, bounded between 0 and 100 and with

straightforward interpretation, whereas enrichment scores are unbounded and sometimes negative, making them harder to interpret. Case 3) Given T and P, C is

estimated (dashed blue arrows). See Supplementary Table S1 and ‘Mathematical approaches to solve the deconvolution problem’ for more details

Box 1.Dummy example for deconvolving cell type propor-

tions of 4 cell types (k¼4) present in 1 sample (j¼1) assum-

ing expression values in linear scale for 8 genes (i¼8).

Assuming T and C are known (P is unknown): Each cell type

proportion corresponds to the regression coefficient (b) of a

linear model formulated as:

tij ¼ cik � bkj
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When solving the above problem by linear least squares regres-

sion, the solution is: b1;1¼ -0.0005, b2;1¼0.9789, b3;1¼0.0320

and b4;1¼0.2092; with the total sum of proportions being 1.220.

Negative proportions are meaningless in the context of the de-

convolution. When adding the non-negativity constraint by

using the nnls function (R package), the new solutions are:

b1;1¼0, b2;1¼0.9789, b3;1¼0.0268 and b4;1¼0.2092; with

the total sum of proportions being 1.215. Finally, the sum-to-

one constraint still has to be incorporated (during or after the

optimization procedure) to obtain a definitive solution:

b1;1¼0, b2;1¼0.8057, b3;1¼0.0221 and b4;1¼0.1722.
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corresponds to the global solution (Belzer et al., 1979), these are not

guaranteed to find the optimal solutions and might get stuck in local

minima or maxima. Moreover, since gene expression matrices

are typically not sparse, non-convex optimization strategies might

result in high computational times and low rates of convergence (see

Box 2).

Fortunately, every constrained LS problem will always be convex

and a specific instance of a quadratic programming problem (Boyd

and Vandenberghe, 2004) (see Box 2). Authors such as Gong et al.

(2011) developed a method that guarantees a globally optimal solu-

tion by quadratic programming using the lsqlin function from

MATLAB (https://nl.mathworks.com/help/optim/ug/lsqlin.html).

Other commonly used functions are quadprog in MATLAB

(Turlach and Weingessel, 2013; https://nl.mathworks.com/help/

optim/ug/quadprog.html) and limSolve (Soetaert et al., 2009;

Shannon et al., 2014) or the quadprog package (Turlach and

Weingessel, 2013; Zhong et al., 2013) in R Core Team (2017).

A second group of methods are support vector regression

approaches with linear kernel (�-SVR) (see Box 2), including

CIBERSORT (Newman et al., 2015) and ImmuCC (Chen et al.,

2017). Support vectors are robust against noise introduced by un-

known cell types present in the mixture and involve the minimiza-

tion of both a linear loss function and a L2-norm function (see

Box 2 and ‘Multicollinearity: presence of correlated cell types in the

mixture’).

Since the first and second group of methods use a priori informa-

tion (matrix C or P) along with T, they are often called supervised

or guided approaches.

Thirdly, the separation of heterogeneous samples into their

constituent cell types can be also approached as an unsupervised

(¼non-guided) dimensionality reduction problem, with principal

component analysis (PCA) being widely used for this goal

(Kassambara et al., 2015; Lenz et al., 2016). The number of relevant

components (¼cell types present) can be established visually or by

using diverse rules (Peres-Neto et al., 2005). However, PCA-based

approaches may not be the most appropriate since factors other

than the cell type identity might be contributing to the proportion of

variance explained.

The final group of methods jointly estimate the gene expression

of pure populations (C) and the mixing percentages (P) only starting

from the expression data (T), without any prior information (¼un-

supervised or non-guided approaches; Case 1 from Fig. 1). It in-

cludes unsupervised non-negative matrix factorization (NMF or

NNMF) and different Bayesian approaches. The NMF formulation

Box 2.Glossary of terms

Bayesian framework: statistical inference framework in which

Bayes’ theorem is used:

p yjhð Þ ¼ p hjyð Þ � p yð Þ
p hð Þ

Therefore: p yjhð Þ a p hjyð Þ � p yð Þ (where a denotes proportion-

ality). This is often translated into posterior a
likelihood � prior

In Bayesian inference, the prior distribution represents the

knowledge we have about how the data was generated before

its actual generation. The prior is combined with the prob-

ability distribution of the observed data to yield the posterior

distribution. The likelihood function for the data represents

how likely the data (y) is given the model specified by any

value of h. A parameter is the numerical characteristic of a

statistical model and a hyperparameter is the parameter of a

prior distribution.

Condition number (CN) of a matrix: jjAjj � jjA�1jj; where jj:jj
is the matrix norm. Example (using A and the Frobenius ma-

trix norm):

A ¼
1 2

2 1

 !
;A�1 ¼

�1

3

2

3

2

3

�1

3

0
BBBBB@

1
CCCCCA

cond Að ÞF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 22 þ 22 þ 12

p
*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1
3

� �2 þ 2
3

� �2 þ 2
3

� �2 þ �1
3

� �2
q

¼ 3.33

Convergence: criterion used to evaluate the improvement of a

solution found by an algorithm after each iteration. When a

solution does not change more than a pre-specified threshold

with respect to the last n iterations (n >¼ 1), it is said that

the algorithm has converged and it halts.

Convex function: function in which the midpoint of any

segment between two points of the graph of the function

is located above the graph or on the graph itself.

Frobenius matrix norm (5Euclidean norm):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1

Pn
j¼1 a2

ij

q
.

Square root of the sum of the squares of the elements of a

m x n matrix.

Gini index: in the context of marker selection, measure rang-

ing from 0 to 1 used for the identification of tissue-enriched

genes. The closer to 1, the higher the likelihood of a gene

being exclusively expressed in one tissue.

ICA (Independent Component Analysis): unsupervised

statistical technique that identifies mutually independent

non-Gaussian components (dimensions) that are latent in the

data. In contrast to PCA (where the components are uncorre-

lated and ranked by the amount of variance they explain),

ICA components might be correlated.

Jensen-Shannon divergence: metric from information theory

often used to discover cell-type/tissue specific genes. It quanti-

fies the similarity between the expression of a given gene

across cell types/tissues and that of a hypothetical gene whose

expression is restricted to only one cell type/tissue.

K-dimensional polytope: geometric object of K dimensions

with K flat sides.

L2-norm function:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

j¼1 b2
j

q
. In the context of the deconvo-

lution, bj can be the least squares coefficient estimate and p

the number of predictors.

Quadratic programming (QP): optimization of a function

that contains at least one quadratic term and all constraints

are linear.

Simulated Annealing (SA): optimization of a function that

allows worse solutions at some iterations with a probability

that decreases as the solution space is explored. The worsen-

ing steps allow a broader search across the function domain.

Sparse matrix: matrix in which most elements are zero.

Support Vector Regression (Support Vector Machine): super-

vised learning model used for regression or classification of

linearly separable data into two categories.
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factorizes T as the product of C and P and incorporates the non-

negativity constraint for all elements of both C and P. As a first step,

initial values for P or C have to be generated (Gaujoux and Seoighe,

2012). On one hand, these initial values can be easily implemented

by sampling random numbers from a uniform distribution.

However, multiple attempts with different initializations are needed

to achieve a stable final solution. (Moffitt et al., 2015) successfully

applied the NMF to pancreatic ductal adenocarcinoma with 20 ran-

dom initializations, identifying different tumor subtypes with differ-

ent tumor and stromal fractions. On the other hand, since the

initialization process has a significant impact in the final results, sin-

gular value decomposition-based methods have been developed in

an attempt to improve the initialization stage (Boutsidis and

Gallopoulos, 2008). The most common algorithm used for NMF is

called alternating least squares (ALS) (Berry et al., 2007) and con-

sists in two iterative steps that are repeated until convergence: first,

P is fixed and, together with T, C is estimated by NNLS; secondly, C

is fixed and, together with T, P is estimated.

Regarding those with a Bayesian framework (see Box 2), all at-

tempt to maximize a likelihood function, but each method models

the problem differently. They have a different type and number of

parameters and hyper-parameters, with completely different a priori

and a posteriori specifications (probability mass/density functions),

leading to completely different likelihood functions. Since the joint

estimation can be computationally intractable when the number of

parameters is high, each method proposes different alternatives to

make the problem tractable (e.g. approximating posterior distribu-

tions using Markov Chain Monte Carlo techniques, approximating

expected values of parameters with Monte Carlo integration or

using expectation-maximization (EM) algorithms to iteratively

maximize the likelihood of the observed data) (Erkkilä et al., 2010;

Ghosh, 2004; Lähdesmäki et al., 2005; Li and Xie, 2013; Roy et al.,

2006). It is unfeasible to describe them individually here and we

highly advise the reader to go to the original publications to get a de-

tailed overview of the modelling approach of interest.

The performance of non-guided methods strongly depends on

the ability to recover meaningful gene signatures or expression pro-

files for the different cell types. Hence, supervised (¼guided) meth-

ods where either C or P is available in addition to T, generally result

in lower mean absolute difference (MAD) values (Gaujoux and

Seoighe, 2012) and better performance (Gong et al., 2011) com-

pared to non-guided versions.

4 Selection of cell-type specific markers or
expression profiles

For the second formulation of the deconvolution problem (see

Fig. 2), cell type-specific markers or cell-type specific expression

profiles are needed. In this section, we describe several useful

approaches for this endeavour.

Importantly, we have focused on expression values at gene level

throughout this review. However, scenarios where underlying differ-

ences in alternative transcript expression among different samples are

masked at gene level may very well arise. Moreover, the usage of tran-

script expression might result in more candidate biomarkers and even

higher cell-type specificities, potentially increasing the accuracy of the

deconvolution results. Therefore, a deconvolution using expression val-

ues at both gene and transcript level should be considered if possible.

Ideally, a cell type-specific marker is a gene whose expression is

restricted to one cell type and is robustly expressed across different

biological replicates from the same cell type (Hoffmann et al.,

2006). However, since the deconvolution can only be solved if the

number of marker genes is greater or equal than the number of cell

types present in the mixture (Gorodentsev, 2016) and the presence

of closely related cell types (¼with only subtle differences in their

transcriptome) is a very frequent scenario, the original restrictive

definition of a cell type-specific marker is changed to a gene predom-

inantly expressed in one cell type and to a lesser extent expressed in

others (Venet et al., 2001).

A first approach to select marker genes consists of finding genes

whose average expression value in one cell type is several times

greater than the median expression value across all cell types. The

‘highly expressed, cell specific’ (HECS) gene database (available at

http://www.influenza-x.org/�jshoemaker/cten/f/HECS%20data

base.zip) (Shoemaker et al., 2012) is an example of this approach

and contains lists of cell type-specific genes from microarray data

across 84 human and 96 murine tissues and cell types. The previous

approach can be refined by statistically assessing differential gene

expression between every cell type against all other cell types and

setting arbitrary fold-change (e.g.�3) and p-value (e.g.<0.05)

thresholds (Chen et al., 2017; Chikina et al., 2015; Gaujoux and

Seoighe, 2012; Reinartz et al., 2016). Of note, several authors rec-

ommend the use of medium-to-high expressed genes as robust

markers, instead of the most expressed ones (Kuhn et al., 2012;

Repsilber et al., 2010).

Some methods go one step further and rank the markers based on

signal-to-noise ratios (Becht et al., 2016; Wang et al., 2006) or include

an extra feature selection strategy to remove poorly discriminating

marker genes (Kuhn et al., 2012; Newman et al., 2015; Shannon

et al., 2014). The F-statistic (measure of their fit in the multiple linear

regression model) (Wang et al., 2010), the Gini index (Zhang et al.,

2017), the Jensen-Shannon divergence (Cabili et al., 2011) (see Box 2)

or the components from PCA, ICA or NMF analyses (Zinovyev et al.,

2013) can be also used to identify marker genes.

More advanced methodologies include CellMapper (Nelms

et al., 2016), Nanodissection 1.0 (Ju et al., 2013), UNDO (Wang

et al., 2015) and CAM (Wang et al., 2016). Assuming that marker

genes for a given cell type should correlate with each other and start-

ing with as little as one cell type-specific marker gene, CellMapper

(developed and validated using microarray data but potentially ap-

plicable to RNA-seq data) uses thousands of publicly available ex-

pression profile datasets (pre-loaded as objects in ‘CellMapperData’

Bioconductor package) or custom datasets to find other marker

genes with similar expression patterns and specifically expressed in

a cell type of interest.

By selecting among 28 different human tissues and uploading a

set of at least ten candidate marker genes (‘positive standard’) and

ten genes expressed in other lineages (‘negative standard’),

Nanodissection 1.0 (available at http://nano.princeton.edu/) esti-

mates the probability that a gene is cell-type specific using an itera-

tive linear support vector machine (SVM) approach.

Both UNDO and CAM are completely unsupervised approaches

that allow novel marker identification without any prior informa-

tion by geometrically identifying the vertices and resident genes of a

K-dimensional polytope (see Box 2) built from a gene expression

matrix, with K being the number of cell types present in the mixture.

In conclusion, the generation of cell type-specific expression matri-

ces is not trivial, varies from method to method and is a determinant

factor to consider when approaching the deconvolution strategy.

5 Factors affecting the deconvolution efficiency

Several studies have shown that the detection of differentially ex-

pressed genes after the deconvolution of bulk expression data is less
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prone to the identification of false positives and false negatives

(Wang et al., 2006), resulting in more accurate (Zhong et al., 2013),

specific and sensitive results (Shen-Orr et al., 2010) when compared

to those obtained from bulk heterogeneous (tumor) samples.

Cancer genomics is a field that can greatly benefit from the decon-

volution of bulk expression data. Taking tumor heterogeneity into ac-

count led to an increase in the sensitivity of relapse-free survival

analyses and more accurate tumor subtype predictions (Elloumi et al.,

2011). Nevertheless, it is important to note that tumor heterogeneity

is challenging at multiple levels: first, inter-tumor heterogeneity exist

both between different tumor types and between samples within a

given cancer (sub-)type (biological heterogeneity). Second, intra-

tumor heterogeneity may also exist within a given sample (different

tumor subclones). Several authors stated that their methods should

specifically be applied to samples belonging to a common tumor

(sub-)type (Ahn et al., 2013; Quon and Morris, 2009) or to a common

tissue (Frishberg et al., 2015). Importantly, non-guided approaches

such as NMF successfully identified different pancreatic ductal adeno-

carcinoma subtypes (Moffitt et al., 2015). However, this only

addresses the inter-tumor heterogeneity. In order to study intra-tumor

heterogeneity, either single-cell profiling data or sequencing multiple

locations from the same tumor would be needed.

Of note, there are multiple factors affecting the performance of

the deconvolution, which are discussed below.

5.1 Effect of pre-processing and normalization
As Hoffmann et al. (2006), Clarke et al. (2010) and Repsilber et al.

(2010) pointed out, the data normalization procedure has an impact

on the estimation of cell type proportions, cell type-specific expression

profiles and thus, the power to detect differential expression.

Moreover, (Newman et al., 2017) highlighted the need of accounting

for normalization differences in order to perform meaningful com-

parisons between different deconvolution methods. Most methods

presented in this review assume that the data is appropriately pre-

processed and normalized prior to the deconvolution (see

Supplementary Table S1). Some methods applied to data coming from

different platforms incorporate a batch effect correction using

Combat (Gentles et al., 2015; Şenbabao�glu et al., 2016) or the super-

vised normalization of microarray (SNM) method (Qiao et al., 2012).

Controversially, some methods propose background correction

(Chen et al., 2017; Shannon et al., 2014) whereas others recommend

not to apply it (Liebner et al., 2014). On the one hand, (Hoffmann

et al., 2006) finds the Microarray Suite 5 (MAS5) to provide a more

robust estimation of the proportions compared to the robust multi-

array analysis (RMA) and model based expression index (MBEI).

On the other hand, (Ahn et al., 2013) discuss a deviation from the

linearity assumption when applying MAS5 scale normalization,

which was not observed when using RMA together with quantile

normalization. Interestingly, (Irizarry et al., 2006) shows that rather

than the normalization method, background correction is the main

factor explaining differences between different pre-processing alter-

natives for Affymetrix GeneChip systems. Thus, a quantitative

evaluation of the impact on the deconvolution results would be rele-

vant for the field but is outside the scope of this review. A detailed

summary about the normalization strategies can be found in

Supplementary Table S1.

5.2 Logarithmic versus linear space
Statistical tests typically used to assess differential gene expression

assume an underlying normal distribution of the data being

analyzed. For this reason, since the log-normal distribution is

considered as a good approximation for microarray expression data

(Hoyle et al., 2002) and stabilizes the variance (Tsai et al., 2003),

the data is often transformed into logarithmic scale.

However, Zhong and Liu (2012) showed that log transformed

microarray data violated the linearity assumption of Equation 2 (see

‘Defining the deconvolution problem’), leading to a consistent

under-estimation of the signal when deconvolving cell-type specific

expression profiles. On the other hand, when the data was trans-

formed back to linear scale, it resulted in an accurate deconvolution.

In our experience, data transformations used for variance stabiliza-

tion (e.g. glog transformation) also lead to a consistent under-

estimation, in agreement with Zhong and Liu (2012) (data not

shown). The linearity assumption was also confirmed by Kuhn et al.

(2011, 2012) on non-log transformed microarray data. Zhong et al.

(2013) alleged that the linearity assumption also holds true for

RNA-seq data and recently, Jin et al. (2017) performed a thorough

assessment of the linearity assumption of transcript abundance from

RNA-seq data. They showed the need of normalizing the data prior

to the deconvolution and concluded that when using RNA-seq data,

TPM values from Salmon, RSEM or Kallisto provided the most ac-

curate reconstruction of cell type proportions present in a mixture.

In line with this argument, the vast majority of methods re-

viewed here agreed on transforming the data into log scale for pre-

processing and data normalization followed by a conversion back to

linear scale (using the anti-log transformation) prior to the deconvo-

lution (Anghel et al., 2015; Lähdesmäki et al., 2005; Wang et al.,

2016). Although the linearity assumption is valid for most genes, a

more accurate deconvolution might be achieved by detecting and

excluding genes affected by non-linear amplification (Shen-Orr

et al., 2010), excluding noisy genes with little biological signal

(Abbas et al., 2009) or removing outliers (¼trimmed robust regres-

sion) (Hoffmann et al., 2006) before applying the least squares

method.

However, others claimed that it is possible to apply the deconvo-

lution to both log-transformed and non-log transformed data

(Erkkilä et al., 2010; Repsilber et al., 2010), modelled the expres-

sion data as log2 normal distributions (Clarke et al., 2010; Elloumi

et al., 2011) or claimed more accurate results when using quantile

normalized and log2-transformed data (Shannon et al., 2014).

Furthermore, Clarke et al. (2010) requires log-transformed data to

find accurate estimates of the proportion of a cell type in a mixture.

A counterintuitive statement comes from Repsilber et al. (2010),

claiming optimal deconvolution of cell type-specific gene expression

using log-transformed data whereas cell type-specific differential ex-

pression is optimal when using non-log-transformed data.

Since the cell type-specific expression is over-estimated when the

linear relationship between the heterogeneous expression and the

cell proportion predictors is absent and the interpretation of the re-

gression coefficients may be incorrect, we advise to perform the de-

convolution on data in linear scale.

5.3 Multicollinearity: presence of correlated cell

types in the mixture
Significant correlation between two or more cell types (also known

as multicollinearity in the context of linear regression) might result

in an increase of the estimation errors and the impossibility of sepa-

rating the contribution from individual cell types (Kuhn et al.,

2012).

Even though some authors assume gene expression profiles be-

tween different cell fractions to be uncorrelated (Venet et al., 2001),

this might be an unrealistic scenario with important consequences.
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As (Newman et al., 2015) pointed out, the deconvolution results can

be negatively affected when many related cell types were present,

which may result in higher proportions being assigned to the cell

type whose expression profile is most similar to the mixture. One

possible solution to tackle this problem is the support vector regres-

sion (SVR) methodology implemented by CIBERSORT (Newman

et al., 2015), which minimizes the variance of weights assigned to

highly correlated predictors. CIBERSORT was able to deal with five

highly collinear cell types and has been successfully applied to more

than 18 000 expression profiles to analyze overall survival across 25

cancer types and abundance of diverse tumor-associated leukocyte

subsets (Gentles et al., 2015).

Mohammadi et al. (2017) found that using the L2 loss function

together with an R2 regularizer gave the best results and they rea-

soned that the regularization of the objective function can improve

the performance in cases where highly correlated cell types are pre-

sent in a mixture.

5.4 Condition number of a matrix
It is known that the condition number (‘CN’; see Box 2) has an im-

pact when solving systems of linear equations (Equation 1) (Fang,

2003). Abbas et al. (2009) and Newman et al. (2015) stated that ref-

erence expression profiles (matrix C in Fig. 2) could become more

robust by minimizing the CN. Abbas et al. (2009) found the CN to

be high for matrices containing small or large number of genes

whereas the CN was minimum for moderate numbers. Newman

et al. (2015) calculated the CN value for all candidate signature

matrices for 22 cell types and kept the one with lowest CN. Glass

and Dozmorov (2016) discovered that a high CN of the matrix con-

taining the cell proportions (matrix P in Fig. 2) negatively affected

the sensitivity of the deconvolution. Interestingly, Gentles et al.

(2015) noticed that the exclusion of cell types with the lowest

proportion mean resulted in a noticeable improvement in sensitivity

and in a considerable reduction of the CN. Interestingly,

Teschendorff and Zheng (2017) also emphasize the importance of

optimizing the CN when selecting CpGs to deconvolute DNA

methylation data. For all these reasons, we advise users to not over-

look this factor when building the necessary matrices for their de-

convolution problem, aiming at the smallest CN values as possible.

5.5 Cell cycle
Cells are dynamic systems, reflected by continuous changes in their

transcriptome. Each sample has a mixture of cells in different phases

of the cell cycle. When working with cultured cells, the cell cycle can

be synchronized by chemical arrest or nutrient starvation (Bar-

Joseph et al., 2008). However, this is not possible when tissue sam-

ples are profiled. Lu et al. (2003) pioneered the estimation of the

proportions of cells in different phases of the cell cycle using micro-

array expression data. They proposed the use of phase-specific

markers (such as cyclin CLN2 for phase G1 or CLB4 for phase G2)

to establish different time points of the cell cycle. Even though the

vast majority of methods in the present review did not include this

complex aspect when modelling the deconvolution problem, this

must be ideally taken into account when developing new tools.

6 Minimum cell type proportions that can
be detected

Zhong et al. (2013) were able to accurately estimate cell types

present at more than 10%, with a substantial decrease in accuracy

if the percentage was smaller than that threshold. PERT

(Qiao et al., 2012) and DeconRNAseq (Gong and Szustakowski,

2013) were able to retrieve proportions as small as 2% whereas

CIBERSORT (Newman et al., 2015) detected fractions down to

0.5% in mixtures containing<50% of tumor content.

7 Assessment of the deconvolution results

Multiple empirical approaches have been proposed to assess the val-

idity of the estimations generated by the deconvolution methods: (i)

in-situ hybridization (ISH) (Kuhn et al., 2011, 2012) or immunohis-

tochemistry (IHC) staining from the Human Protein Atlas (Ju et al.,

2013) to validate cell type-specific gene expression; (ii) comparison

of predicted proportions with those measured by flow cytometry

(Qiao et al., 2012); (iii) combination of microscopy and FACS ana-

lysis to evaluate the estimated proportion of yeast cells in different

stages of the cell cycle (Wang et al., 2016); (iv) correlation with

immune-fluorescence cell estimates or cell fractions inferred from

DNA methylation (Li et al., 2016; Şenbabao�glu et al., 2016) or

DNA copy number data (Şenbabao�glu et al., 2016).

8 Potential issues with traditional linear modelling

There are four important aspects that need to be taken into account

when modelling gene expression data as the weighted sum of gene

expression profiles of pure populations:

1) There should be reference profiles for all populations present

in the mixture or at least one marker for each cell type. This might

be problematic for some cell types that cannot be isolated easily

(mostly the less abundant ones) and might not have been analyzed

or sequenced yet. Since reference profiles are assumed to accurately

represent the actual cell types present in heterogeneous samples

(Qiao et al., 2012), they should be carefully obtained. Moreover, the

existence of a sufficient number of marker genes to perform the de-

convolution is crucial (Hoffmann et al., 2006). Some methods need

as little as one marker per cell type (Venet et al., 2001) but most of

them recommend a higher number (5–10) to avoid the potential in-

fluence of outliers (Ahn et al., 2013).

2) Since the true composition is unknown, some cell types may

be ignored. Some methods require precise knowledge of either the

constituent cell types (Kuhn et al., 2012) or the cell type proportions

present in the heterogeneous sample (Li and Xie, 2013) (e.g. assess-

ment from a pathologist or estimated by FACS) for solving the de-

convolution problem. However, it is possible that there are no

surface markers available yet (Altboum et al., 2014) for sorting un-

known populations. Moreover, since the assessment of a pathologist

provides information about cell type proportions but not on the

amount of mRNA present, the estimates might not be accurate

(Clarke et al., 2010). Even though we have stated that some un-

supervised methods take advantage of a priori information when-

ever this is available, other authors are against this practice. For

example, (Chikina et al., 2015) argue that Coulter counter measure-

ments can have an error�5% for lowly abundant cell types, advis-

ing not to use them as input for the deconvolution. Furthermore,

Gong et al. (2011) showed that Erkkila’s Bayesian approach could

not find any solutions when seeded with random estimates (¼ab-

sence of prior information). Therefore, although a priori informa-

tion can be efficiently exploited (e.g. in a Bayesian framework), the

use of incorrect proportion estimates can negatively affect the de-

convolution. Finally, an incorrect model specification (e.g. ignoring

a cell type that is actually present) might result in incorrect estimates
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of cell type-specific expression levels for some methods (Kuhn et al.,

2012; Zuckerman et al., 2013).

3) Some methods designed to infer the cell type composition

from expression data assume a stable cell type composition within a

given heterogeneous tissue (Ahn et al., 2013). Marker genes are not

guaranteed to be expressed at the same levels across different cells

(Zhong et al., 2013), even in a tumor from the same patient.

Furthermore, the expression profiles are platform-specific, which

might result in markers not being present in all platforms and in

varying expression levels for a given marker across different plat-

forms (Li and Xie, 2013; Shannon et al., 2017).

Assuming that the expression of a marker gene in one cell type is

independent from other cell types present in the mixture is often un-

realistic due to potential paracrine signalling effects. This can be

tackled by including an extra coefficient in the linear model account-

ing for the cross-product between different cell types: Kuhn et al.

(2012) excluded all those genes likely to be expressed by a cell type

that was not included in the model and Stuart et al. (2004) observed

many transcripts with high cross-product values, suggesting that the

expression levels in one cell type are affected by the presence and

abundance of other cell types.

4) The majority of the methods do not take into account the fact

that the reference expression profiles are often perturbed by micro-

environment or developmental effects or were simply obtained

under different conditions or with different technologies or plat-

forms. To address this issue, PERT (Qiao et al., 2012) estimates a

shared perturbation factor across all cell types to account for tran-

scriptional variation between the reference and constituent expres-

sion profiles. ISOLATE (Quon and Morris, 2009) uses a

multinomial model to measure noise in gene expression data and as-

sumes that there is a new population not represented by the avail-

able reference profiles. Finally, ISOpure (Quon et al., 2013)

[ISOpureR (Anghel et al., 2015)] is similar to ISOLATE in the es-

timation of tumor purities and a reference cancer profile but as-

sumes that each healthy profile is the weighted sum of the available

healthy tissue profiles and imposes non-negative and sum-to-one

constraints.

9 Deconvolution methods readily available
as webtools

The column ‘Availability/GUI’ from Supplementary Table S1 con-

tains detailed information about how to get access to the different

reviewed methods. Most of them are accessible as pre-built pack-

ages or raw code from different programming languages (e.g. R,

Python, Java, . . .). For scientists lacking bioinformatics skills, we

highlight seven tools readily accessible for everyone with an inter-

net connection, with little or no bioinformatics background

required:

• CellPred (Wang et al., 2010): Allows estimation of cell type pro-

portions using Affymetrix microarray data as input. Available at

http://webarraydb.org/webarray/index.html (CellPred tab).
• TIMER (Li et al., 2016): A great resource containing the propor-

tions of B cells, CD4þ and CD8þ T cells, macrophages, neutro-

phils and dendritic cells across 11 509 samples corresponding to

32 cancer types from The Cancer Genome Atlas (TCGA).

Available at https://cistrome.shinyapps.io/timer/. Users can

download the TIMER method from https://github.com/hanfei

sun/TIMER to run it on their own samples.
• DSection (Erkkilä et al., 2010): Estimation of cell type-specific

expression profiles, corrected cell type proportions and

differential gene expression using microarray data. Available at:

http://informatics.systemsbiology.net/DSection/.
• DCQ (Altboum et al., 2014) and CoD (Frishberg et al., 2015)

are two tools from the Irit Gat-Viks lab allowing the estimation

of cell type quantities to identify disease-relevant cell types using

microarray or RNA-seq data. Available at: http://www.dcq.tau.

ac.il/ (detailed information: http://dcq.tau.ac.il/application.html)

and http://www.csgi.tau.ac.il/CoD/ (detailed information: http://

www.csgi.tau.ac.il/CoD/application.html).
• ESTIMATE (Yoshihara et al., 2013): Allows quick access to rela-

tive stromal and immune cell type composition across all samples

available at TCGA (microarray and RNA-seq data). Available

at: http://bioinformatics.mdanderson.org/estimate/.
• CIBERSORT (Newman et al., 2015): Given microarray or RNA-

seq data from heterogeneous samples and selecting pre-built or

custom-made matrices with cell type-specific expression profiles,

it generates proportions of up to 22 cell types. Available at:

https://cibersort.stanford.edu/runcibersort.php.

10 Alternative data types to perform the
deconvolution

Although being outside of the scope of this review, other omics data

also being used as input for the deconvolution problem are worth

mentioning due to their rapid growth.

EpiDISH (Teschendorff et al., 2017) infers cell-type composition

using DNA methylation data and cell-type specific DNase hypersen-

sitive sites. Other tools such as MeDeCom (Lutsik et al., 2017) and

eFORGE (Breeze et al., 2016) have been designed to estimate cell

type-specific signal and account for tumor purity in heterogeneous

methylomes. Onuchic et al. (2016) proposed EDec, a two-step ap-

proach in which cell-type proportions in each sample and cell type-

specific methylation and gene expression profiles are retrieved.

Importantly, as Teschendorff and Zheng (2017) pointed out, a direct

comparison between expression-based and DNA methylation-based

cell type composition estimates has not been performed yet.

Several methods have been proposed to detect copy number ab-

errations from DNA profiling of heterogeneous samples: BACOM

2.0 (Fu et al., 2015), ABSOLUTE (Carter et al., 2012) and

CloneCNA (Yu et al., 2016). Finally, Aran et al. (2015) created the

Consensus measurement of Purity Estimation (CPE), a robust value

for tumor purity obtained from combining gene expression, somatic

copy number, methylation and immunohistochemistry data that

they successfully applied to more than 10 000 samples from The

Cancer Genome Atlas (TCGA).

11 Conclusion and future directions

Bayesian and regression-based methodologies have been proven ef-

fective in the framework of the deconvolution problem. However,

currently there is no tool addressing all the challenges we discussed

throughout this review, leaving some room for improvement. The

ideal tool should: (i) include alternatives to solve all formulations of

the deconvolution problem described in Figure 2, meaning supervised

and completely unsupervised scenarios. For the former scenario and

following the concerns we raised ‘Potential issues with traditional

linear modelling’, we argue against the use of non-informative

(¼random) initial estimates and recommend the use of one or more

approaches described in ‘Selection of cell type-specific markers or

expression profiles’. For the latter we propose the geometric identi-

fication of markers proposed by UNDO (Wang et al., 2015)
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and CAM (Wang et al., 2016), as they only rely on the geometric top-

ology inherent to the expression data from a mixture rather than ex-

ternal reference datasets (that might come from several technology

platforms) or arbitrary log fold change and p-value thresholds; (ii)

allow to study the changes in cell type proportions across multiple

time points [such as DCQ (Altboum et al., 2014)]; (iii) account for

different phases of the cell cycle using markers such as CLN2 for

phase G1; (iv) account for small perturbations between reference ex-

pression profiles of pure cell types and those constituting the heteroge-

neous samples [such as PERT (Qiao et al., 2012) or ISOpure(R)

(Quon et al., 2013; Anghel et al., 2015)]; (v) be computationally effi-

cient, with fast running time and rate of convergence; (vi) be able to

account for the presence of multiple correlated cell types in the mix-

ture [such as CIBERSORT (Newman et al., 2015)].

The amount of gene expression data from single cells is growing

exponentially, revealing information that is hidden in tissue-

averaged expression measurements from heterogeneous samples.

However, the expression levels are often smaller than the detection

limits of current state-of-the-art single-cell technologies. To over-

come the detection issue, an approach called ‘stochastic profiling’

has been proposed (Bajikar et al., 2014; Janes et al., 2010;

Narayanan et al., 2016). Stochastic profiling consists of measuring

the expression of random pools of cells (e.g. 10 cells) followed by

modelling the expression of each gene as a binomial choice from a

mixture of two different regulatory states: ‘ON’ for cells expressing

the gene and ‘OFF’ for those that do not. Since the amount of input

mRNA from a pool of cells is bigger than the mRNA from a single

cell, this method offers more robust detection.

In conclusion, while single-cell and stochastic profiling are

postulated as firm candidates to revolutionize the transcriptomics

field with continuous improvements in terms of sensitivity and af-

fordability, we foresee a rapid inclusion of deconvolution methodol-

ogies to existing pipelines for the analysis of omics data in the

meantime, increasing the accuracy and reliability of downstream

cell type-specific differential gene expression analysis without incur-

ring in additional costs.
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