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Abstract

Motivation: Extreme phenotype sampling (EPS) is a broadly-used design to identify candidate gen-

etic factors contributing to the variation of quantitative traits. By enriching the signals in extreme

phenotypic samples, EPS can boost the association power compared to random sampling. Most

existing statistical methods for EPS examine the genetic factors individually, despite many quanti-

tative traits have multiple genetic factors underlying their variation. It is desirable to model the joint

effects of genetic factors, which may increase the power and identify novel quantitative trait loci

under EPS. The joint analysis of genetic data in high-dimensional situations requires specialized

techniques, e.g. the least absolute shrinkage and selection operator (LASSO). Although there are

extensive research and application related to LASSO, the statistical inference and testing for the

sparse model under EPS remain unknown.

Results: We propose a novel sparse model (EPS-LASSO) with hypothesis test for high-dimensional

regression under EPS based on a decorrelated score function. The comprehensive simulation

shows EPS-LASSO outperforms existing methods with stable type I error and FDR control. EPS-

LASSO can provide a consistent power for both low- and high-dimensional situations compared

with the other methods dealing with high-dimensional situations. The power of EPS-LASSO is

close to other low-dimensional methods when the causal effect sizes are small and is superior

when the effects are large. Applying EPS-LASSO to a transcriptome-wide gene expression study

for obesity reveals 10 significant body mass index associated genes. Our results indicate that EPS-

LASSO is an effective method for EPS data analysis, which can account for correlated predictors.

Availability and implementation: The source code is available at https://github.com/xu1912/

EPSLASSO.
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1 Introduction

Extreme phenotype sampling (EPS) is a commonly used study design

in genetic data analysis to identify candidate variants, genes or gen-

omic regions that contribute to a specific disease (Cordoba et al.,

2015; Zhang et al., 2014). In EPS, subjects are usually selected from

the two ends of the distribution of a quantitative trait. For example,

in an osteoporosis study, the top 100 and bottom 100 hip BMD sub-

jects were recruited for gene expression analyses from a general

study population (Chen et al., 2010). By enriching the presence and

increasing the effect size of the causal genetic factors in the extreme

phenotypic samples, EPS studies have boosted association testing

power compared to studies using comparable numbers of randomly

sampled subjects (Peloso et al., 2016).

With a broad application in genetic data analyses, numerous

methods have been proposed to analyze data from EPS studies, such

as the case–control methods. Case–control methods treat the sam-

ples with extremely high and low trait values as cases and controls,

respectively. Then the standard statistical methods for group com-

parison (e.g. t-test) can be used to find genes with differential ex-

pression levels or frequency/proportion test to identify candidate

variants with different allele frequencies (Slatkin, 1999; Wallace

et al., 2006). However, the case–control methods disregard the

quantitative trait values, wherein much of the genetic information

may reside. Considering the inefficiency of the case–control meth-

ods, several likelihood-based methods were proposed to make full

use of the available extreme phenotype data to detect associations

and showed an improved power performance (Barnett et al., 2013;

Huang and Lin, 2007; Lee et al., 2012).

On the other hand, most of the existing methods examine the

genetic factors individually. Many phenotypes, however, are deter-

mined by multiple contributing genetic factors. Therefore, it is de-

sirable to simultaneously model their joint effects. The joint

modeling may increase the power of current genetic studies and

identify novel quantitative trait loci under EPS. Considering the

number (e.g. p ~ 20 000 for transcriptomic gene expression ana-

lysis) of factors is often much greater (�) than the study sample

size (e.g. n ~ 1000 or less), the standard linear model would not be

appropriate for the joint modeling due to the rank deficiency of the

design matrix. An alternative solution is to apply a penalized re-

gression method. For instance, the least absolute shrinkage and se-

lection operator (LASSO) can deal with the high-dimensional

situations (p � n) by forcing certain regression coefficients to be

zero (Tibshirani, 1996). LASSO and its extensions have been in-

creasingly employed for various genetic data analyses, such as the

differential gene expression analysis (Wu, 2005, 2006), genome-

wide association analysis (GWAS) (Wu et al., 2009), sequence asso-

ciation studies of admixed individuals (Cao et al., 2014, 2016),

gene-based LASSO and group LASSO for the rare variant analysis

(Larson and Schaid, 2014).

After LASSO was proposed in 1996, the statistical inference of

LASSO has been broadly studied. Various algorithms were pro-

posed to solve LASSO, including LARS (Efron et al., 2004),

GLMNET (Friedman et al., 2010), SLEP (Liu et al., 2009).

Procedures considering noise level were also investigated, such as

the Scaled (Sun and Zhang, 2012) and Square-root (Belloni et al.,

2011) LASSO. Despite that the limiting distribution of the LASSO

estimator has been studied since 2000 (Fu and Knight, 2000), it

was only until recently that the hypothesis testing and/or confi-

dence intervals for LASSO were well shaped under different condi-

tions (Bühlmann et al., 2014; Lockhart et al., 2014). Several

studies proposed a debiased method for the hypothesis testing for

the sparse linear or generalized linear model with Gaussian or non-

Gaussian noise (Javanmard and Montanari, 2014a,b; van de Geer

et al., 2014; Zhang and Zhang, 2014). Ning and Liu proposed a

general testing framework based on a decorrelated score function

approach and applied it to the linear regression, Gaussian graphical

model and additive hazards model (Fang et al., 2016; Ning and

Liu, 2017). In spite of these advancements, the statistical inference

and testing for the sparse regression model under EPS remain

unknown.

In view of the challenges in high-dimensional EPS genetic data

analysis and lack of research for LASSO under EPS, we propose a

novel sparse regression model (EPS-LASSO) using the penalized

maximum likelihood for EPS. Thereafter, a hypothesis test based

on a decorrelated score function for high-dimensional regression is

developed to examine the significance of the associations from

EPS-LASSO. We show our approach can yield stable type I error

and FDR control compared to existing EPS methods through an ex-

tensive simulation study. EPS-LASSO can provide a consistent

power for both low- and high-dimensional situations compared

with other methods dealing with high-dimension situations. The

power of EPS-LASSO is close to other low-dimensional methods

under small effect sizes of causal factors and is superior when the

causal effects are large. As a demonstration and also as a compari-

son with existing methods for extreme sampling, we apply EPS-

LASSO to a transcriptome-wide gene expression study for obesity

and reveal 6 significant BMI associated genes supported by previ-

ous studies and 4 novel candidate genes worth further

investigation.

The rest of the paper is organized as follows. In Section 2, we

present the high-dimensional regression model and an efficient

algorithm to obtain the penalized estimation of parameters under

EPS. The hypothesis test and its implementation are introduced in

Section 2 as well. Section 3 presents the result of a simulation study

to evaluate the performance of EPS-LASSO compared with other

EPS methods. In addition, the result of an obesity associated gene

expression analysis using real data is presented. Section 4 deliberates

the limitations and areas for future studies.

2 Materials and methods

2.1 Sparse regression for EPS
Provided a dataset of n independent and identically distributed pairs

xi; yið Þ; i ¼ 1; 2; . . . ; n, we have the linear model:

yi ¼ x0ibþ ei; (1)

where xi ¼ ðxi1; xi2; . . . ; xipÞT is the set of the p predictor variables;

yi is the response variable for the subject i and is centered to simplify

the model by removing the intercept; b ¼ ðb1;b2; . . . ; bpÞT is the

Fig. 1. Truncated distribution under EPS. Dashed lines indicate the truncated

points and the tails beyond are kept for EPS
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vector of regression coefficients for the predictors; and ei represents

the random noise. Under random sampling, it is assumed that

ei � Nð0;r2Þ, then yijxi � Nðx0ib; r2Þ. Under EPS, the same regres-

sion model (1) can be fitted. However, the noise and phenotypic

value are no longer normally distributed due to the extreme sam-

pling (Fig. 1).

Assuming that the upper and lower thresholds for the phenotype

selection are c1 and c2 respectively, the extreme sampling yields that

yi follows a truncated normal distribution with the probability dens-

ity function (PDF):

f yijxi; c1; c2ð Þ ¼ Uðx0ib;r2Þ
U c2;x

0
ib; r

2
� �

þ 1�Uðc1;x
0
ib; r

2Þ
; yi � c2 or yi � c1;

(2)

with

U x
0

ib; r
2

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2pr2
p exp �ðyi � x

0

ibÞ
2

2r2

" #
;

Uðc; x0ib; r2Þ ¼
ðc

�1

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2
p exp �ðyi � x

0

ibÞ
2

2r2

" #
:

The log-likelihood function is:

log Lðb; rjXÞ ¼ �n

2
log 2pr2
� �

�
P

i yi � x
0

ib
� �2

2r2

�
X

i

log U c2; x
0

ib;r
2

� �
þ 1�U c1; x

0

ib;r
2

� �h i
(3)

For the low-dimensional (p<n) EPS data analysis, several methods

have studied the maximum likelihood estimate (MLE) of b and r by

the Newton Raphson (N-R) procedure (Barnett et al., 2013; Huang

and Lin, 2007), which fails to obtain estimates for high-dimensional

data. To address this challenge, we propose a penalized MLE for EPS:

ðbb; brÞ ¼ argmin ð�logLðb; rjXÞ þ k
Xp

j¼1

jbjjÞ; (4)

where k is a tuning parameter controlling the sparsity ðs0Þ of b. The

sparsity is defined as s0 ¼ k
p, where k is the number of non-zero re-

gression coefficients.

Given k, an iterative algorithm (Algorithm 1) akin to the

scaled sparse regression is used to infer bb and br by solving the opti-

mization problem (4). The initial estimate of bb 0ð Þ
is from classical

Lasso. brMLE > 0 is guaranteed when Y �Xbð ÞT Y �Xbð Þ 6¼ 0

(Supplementary Note). We use the Bayesian information criterion

(BIC) (Schwarz, 1978) considering both model fit and number of

estimated parameters (kk) to select the optimum k� from a series of k
values. The BIC is adopted because of its high power and low FDR

compared to cross-validation (Stone, 1974) and other high-

dimensional information criterion (Supplementary Note), which

also agrees with previous studies (Chen and Chen, 2012; Wang and

Zhao, 2017).

k� ¼ argmin ð�2logLþ kklognÞ

At Algorithm 1 step (iii), we take the support set of converged bbðkÞ
at step (ii) and on its support re-estimate bb and br through the N-R

procedure. The refitted estimator is motivated by the LARS-OLS hy-

brid strategy (Efron et al., 2004) and numerical studies from (Ning

and Liu, 2017), in which the refitted estimator leads to better finite

sample performance.

2.2 Hypothesis testing
Beyond the estimate of the regression coefficients, a hypothesis test-

ing procedure is indispensable to control the uncertainty of the re-

gression estimate. Different from the classical statistics under low

dimension, the limiting distribution of sparse estimators is largely

not available (Javanmard and Montanari, 2014a,b).

Here, we develop a test statistic for the proposed EPS sparse re-

gression model by following Ning and Liu’s general framework for

high-dimensional models (Ning and Liu, 2017). Suppose we are

interested in testing the null hypothesis bj ¼ 0, and let b�j denote

the other regression coefficients, bSbj
¼ rbj

L bb;brjX� �
and bI ¼ �Eb

r2
bbL bb; brjX� �� �

be the score function and Fisher information ma-

trix respectively, it is well known that (Cox and Hinkley, 1979):

nbS2

bj

bI�1

bj jb�j
� v2

df¼1;

where bIbj jb�j
¼ bIbjbj

�wbI b�jbj
; w ¼ bI bjb�j

bI�1

b�jb�j
is evaluated at the

MLE under the null hypothesis. However, Ning and Liu (2017)

illustrated that the classical score statistic is not valid in the high-

dimensional setting, because of the asymptotically ignorable remain-

der converges to some intractable limiting distribution. Instead, they

proposed a revised score statistic based on a decorrelated score func-

tion for a broad class of high-dimensional generalized linear model

(Ning and Liu, 2017):

S�bj
¼ bSbj

� bwTbSb�j
; (5)

where bw is estimated by the best sparse linear combination of bSb�j
to

approximate bSbj
.

For the EPS, provided the PDF and log-likelihood function in

Equations (2) and (3), we have the score function

S ¼ rbL bjXð Þ ¼ X
0
Y�X

0
Xb

r2 � X
0
M

r
, where M is a vector of length n

with

mi ¼
U c2 � x

0

ib; r
2

� �
� U c1 � x

0

ib;r
2

� �
U c2; x

0
ib;r

2
� �

þ 1� U c1; x
0
ib;r

2
� � ;

and the Fisher information matrix I ¼ X
0
VX
r2 , in which V is a n-di-

mensional diagonal matrix with the ith diagonal element

Algorithm 1 Estimate of ðbb; brÞ in problem (4)

Require: Data set of n i.i.d. pairs xi; yið Þ, and tuning parameter k
(i): Initialize at k¼0:

bb kð Þ ¼ argmin

P
i yi � x

0

ib
� �2

2n
þ k

Xp

j¼1
jbjj

 !
;

br kð Þ ¼ argmin
�
� logLðbb kð Þ

; rÞ
�

(ii): For k¼kþ1 until convergence:

bbðkÞ ¼ argmin �logLðb;br k�1ð ÞÞ þ k
Xp

j¼1
jbjj

� �
;

br kð Þ ¼ argmin
�
� logLðbb kð Þ

; rÞ
�

(iii): Let bS ¼ m 2 1; . . . ;pf g: bbðkÞm 6¼ 0

� �
, bSc

is the complement set

Refit ðbb Ŝ ; brÞ ¼ argmin �logLðbŜ ; rÞ
� �

, bb
Ŝ

c ¼ 0

Return bb ¼ bb Ŝ ;
bb

Ŝ
c

� �
, br
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vi¼1�
ðc2�x

0

ibÞU c2�x
0

ib;r
2

� �
�ðc1�x

0

ibÞU c1�x
0

ib;r
2

� �
U c2;x

0
ib;r

2
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þ1�U c1;x
0
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2
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r
�m2
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Then, the decorrelated score function is S�bj
defined as (5) with the

w solved by the following Lasso type estimator for the high-

dimensional setting:

bw ¼ argmin
1

2n

�����bSbj
�wTbSb�j

�����
2

2

þ k
0Xp�1

d¼1

jwdj;

where k
0

is selected by cross validation using the R package

GLMNET.

With several assumptions that are commonly made on asymp-

totics of LASSO type estimator (Ning and Liu, 2017; van de Geer

et al., 2014; Zhao and Yu, 2006), we prove the following fact for

the estimate from EPS-LASSO:ffiffiffi
n
p bS�bj

bI�1=2

bj jb�j
!d Nð0; 1Þ:

The detailed proof is shown in the Supplementary Note. Finally,

given the parameter estimate of bb and br in Algorithm 1, the

Algorithm 2 is implemented to test the null hypothesis that bj ¼ 0.

2.3 Simulation design
To validate the proposed sparse regression model with hypothesis

testing for EPS data, we simulate several typical scenarios of subjects

with extreme phenotypes and genetic predictors. We assume the ex-

treme sampling is conducted by selecting top and bottom 20% sub-

jects from a random sampling size of 500, which results in a sample

size of 200 for EPS. The number of the predictors (p) could be 100

for low-dimensional, and 200, 400 or 800 for high-dimensional situ-

ations. For each scenario, the phenotype of the ith individual in the

random sampling pool is generated by a linear model:

yi ¼
Xp

s¼1

bsGis þ ei;

where ei � Nð0; 1Þ is the random noise; and bs is the effect size

of the corresponding predictor. Gis is the sth predictor value for the

ith individual, which are generated from a multivariate normal dis-

tribution Gi � Nð0;RÞ with the covariance matrix R:

for j � k; Rjk ¼
(

qk�j if k 2 fj; jþ 1; . . . ; jþ 5g
0 for all other j � k

;

Rjk ¼ Rkj, for j > k, and q is chosen from (0, 0.2, 0.4).

By setting all bs ¼ 0, a null model is used to examine the type I

error. For scenarios to examine the power and FDR, we randomly

pick 10 non-correlated predictors as causal factors with same non-

zero bs selected from (0.1, 0.15, 0.2, 0.25, 0.3). The type I error for

those non-causal causal predictors is also summarized to compare

the type I error control when correlations among non-causal and

causal factors are present.

2.4 Model comparison
Using the simulated datasets, we compare our model, named EPS-

LASSO, with several commonly used methods for hypothesis testing

including the ordinary linear model (LM), logistic regression model

(LGM), linear model based on EPS likelihood (EPS-LM) and a

high-dimensional Lasso testing method assuming random sampling

(SSLASSO) (Javanmard and Montanari, 2014b). LM, LGM and

EPS-LM are applied to test the predictors individually. In LGM,

samples at the bottom and up percentiles are treated as two groups.

They are all implemented in R. We prepare the EPS-LM source code

based on the R package CEPSKAT. The source code for SSLASSO is

downloaded from the author’s website (https://web.stanford.edu/

�montanar/sslasso/code.html). After 500 replications, the type I

error, power and FDR are assessed at original and Bonferroni cor-

rected a ¼ 0:05 level. The type I error is defined as the proportion of

significant non-causal predictors among all the non-causal pre-

dictors. The power is defined as the proportion of significant causal

predictors among all the causal predictors. The FDR is defined as

the proportion of significant non-causal predictors among all the

significant predictors. Additionally, the absolute bias (jbr � rj) of

the estimate of the noise standard deviation (SD) from EPS-LASSO

is compared to those from LM, EPS-LM and Scaled Lasso,

respectively.

2.5 Gene expression analysis for obesity
The real data is downloaded from a substudy of Framingham

Cohort project (dbGaP: phs000363) (Mailman et al., 2007; Tryka

et al., 2014), which includes a profiling of 17 621 genes for 2442

Framingham Heart Study offspring subjects using the Affymetrix

Human Exon 1.0 ST Gene Chip platform. The gene expression val-

ues were normalized with quality control measures as previously re-

ported (Joehanes et al., 2013). We pick the BMI as the interested

trait, which is a major characteristic of obesity. Gender, age, drink-

ing and smoking status are considered as potential covariates. After

removing the missing value in phenotypes, 972 subjects with the

highest 20% or lowest 20% of BMI are selected as the EPS sample.

The Bonferroni corrected significance level of 0.05 is used to claim

the significance. All the simulation and real data analyses are con-

ducted using R packages or in-house scripts available at https://

github.com/xu1912/EPSLASSO.

3 Results

3.1 Simulation evaluation
We first assessed the type I error of EPS-LASSO under various null

scenarios. In Figure 2 showing the P-values in scheme of 200, 400

and 800 predictors with rho (q) of 0 and 0.4, points from EPS-

LASSO aligned close to the diagonal line and all fell in the 95% con-

fidence region, which indicated EPS-LASSO has well-controlled type

I error rates for both low- and high-dimensional situations.

Conversely, LM, EPS-LM and LGM resulted in a slightly deflated

type I error for high-dimensional and high-correlation scenarios,

while another high-dimensional method SSLASSO inflated the type I

error in some scenarios. The full result of all scenarios was summar-

ized in the Supplementary Note. Furthermore, we examined the type

I error in the scenarios with causal predictors using the scheme of

400 predictors as an example. When the causal factors were added

into the null model, EPS-LASSO still controlled the type I error in

Algorithm 2 Hypothesis test of bj ¼ 0

Require: ðbb; brÞ from Algorithm 1

(i): Set bbj ¼ 0 and calculate bS ¼ X
0
Y�X

0
Xbb

r̂2 � X
0
M

r̂ , bI ¼ X
0
VX

r̂2

(ii): Solve bw ¼ argmin 1
2n kbSbj

�wTbSb�j
k2

2 þ k
0Pp�1

d¼1 jwdj

(iii): Calculate S�bj
¼ bSbj

� bwTbSb�j
, bIbj jb�j

¼ bIbjbj
�wbI b�jbj

p-value¼ 1� CDFv2
df¼1

nbS�2bj

bI�1

bj jb�j

� �
¼ Pðv2

df¼1 > nbS�2bj

bI�1

bj jb�j
Þ
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the range from 0.045 to 0.055, so did the SSLASSO (Fig. 3). On the

other hand, the three low-dimensional methods LM, LGM and EPS-

LM yielded inflated type I error as great as �0.074 with the increase

of the correlation between predictors (q) and the magnitude of the

causal effect size (bs). After multiple testing correction, the type I

error of EPS-LASSO was slightly inflated for large effect size

(Fig. 3). SSLASSO inflated type I error under all conditions. The

type I error of LM and EPS-LM were controlled when the correl-

ation is weak (q�0.2), while the type I error of LGM was deflated.

When q is increased to 0.4, severe inflation occurred for LM and

EPS-LM. These findings suggested the potential advantage of using

EPS-LASSO in practice, where the correlation among predictors and

multiple causal genetic factors are present.

We compared the power and FDR of EPS-LASSO to other meth-

ods at the Bonferroni corrected significance level of 0.05 in Figure 4.

In all the scenarios, EPS-LASSO outperformed other low-

dimensional methods (LM, LGM and EPS-LM) by a faster growing

power with the increase of the causal effect size (Fig. 4). When the

causal effect size was less than 0.2, EPS-LASSO yielded a power

close to EPS-LM and LM. Then the power of EPS-LASSO exceeded

others for effect size�0.2, while LGM resulted in the worst power

due to the least information used. In addition, increasing the number

of predictors led a power loss of all these methods, but EPS-LASSO

was less sensitive compared with other methods in the power loss.

For example, for the scenarios of bs ¼ 0:3, q ¼ 0, the power of EPS-

LASSO decreased from 86.9 to 76.5% when the number of pre-

dictors increased from 200 to 800. The relative decline of 12.0%

was less than LM (13.6%), EPS-LM (14.0%) and LGM (25.4%).

The FDR of low-dimensional methods were lower than EPS-LASSO

for weak correlation scenarios, however, their FDR was greatly up-

lifted and exceeded EPS-LASSO when q>0.2. Due to the inflation

of type I error under all conditions, we did not include the result of

the other high-dimensional method SSLASSO here. But in the

Supplementary Note, SSLASSO failed to gain power for low-

dimensional settings with boosted FDR for high-dimensional set-

tings. In contrast, EPS-LASSO produced a stable FDR across all

scenarios and was robust to the change of effect size, number of pre-

dictors and correlation among predictors.

Further, EPS-LASSO was superior to LM and EPS-LM with re-

spect to the estimate of the noise SD across all the scenarios

(Table 1). The absolute bias of EPS-LASSO ranged from 0.051 to

0.085 with a slightly increasing trend about the effect size. The abso-

lute bias of EPS-LM was comparable to EPS-LASSO when the effect

size was small, but increased to �0.372 with the increase of the ef-

fect size. The ordinary method—LM resulted in greater bias as large

as �1.029. Another sparse model providing variance estimate—

Scale-Lasso gave an even worse result, which is unstable and much

greater for most cases (>100, Supplementary Table S1).

We did more simulations to illustrate the effectiveness of EPS-

LASSO. First, to show the advantage of EPS-LASSO using the true

distribution to infer b and r, we compared EPS-LASSO to LASSO

following the same decorrelated score test (LASSO-DST). As a re-

sult, the type I error of LASSO-DST for the high-dimensional scen-

arios is inflated and is close to the type I error of SSLASSO

(Supplementary Note). Second, the additional analysis demonstrated

the refitted estimator in Algorithm 1 can improve the power of EPS-

LASSO relative to the non-refitted estimator (Supplementary Note).

Third, in acknowledgement of potential issues due to re-using the

same data for model selection and hypothesis testing (Chatfield,

1995; Kabaila and Giri, 2009), we examine the impact of using data

multiple times in our method by simulations using 3 different data-

sets for tuning parameters k, k0 and the hypothesis testing. Similar to

Kabaila’s latest finding (Kabaila and Mainzer, 2017), re-use of data

in our method has little effect on the performance of power and

error control (Supplementary Note).

3.2 Application to obesity analysis
In order to further evaluate the performance of EPS-LASSO, we

applied it and other methods to a transcriptome analysis of obesity

using the EPS samples extracted from the Framingham Heart Study.

From the total 17 621 assayed genes, EPS-LASSO identified 10

genes significantly (P-value<2:84� 10�6) associated with BMI

Fig. 3. Type I error at raw (top) and Bonferroni corrected (bottom) significance

level of 0.05 for scenarios with 10 causal and 390 non-causal predictors. The

dashed line is the ideal level. The horizontal axis represents q (rho). Number

of predictors p¼400

Fig. 2. Quantile-Quantile plot for null models without causal predictors
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Table 2. P-value of identifying significant genes in EPS-LASSO and other methods for the real data analysis

Gene EPS-LASSO EPS-LM LM LGM SSLASSO Literature

MMP8 1.64E-11 1.31E-26* 4.22E-26* 1.43E-18* <2E-32* Y

CX3CR1 5.01E-09 1.48E-10* 1.99E-10* 1.69E-09* 6.99E-05 Y

TMEM56 3.16E-08 7.39E-03 7.90E-03 3.38E-03 1.39E-02 N

IRS2 1.56E-07 2.68E-02 2.81E-02 5.09E-03 9.93E-03 Y

UBE2J1 2.73E-07 1.25E-18* 1.96E-18* 7.47E-18* <2E-32* Y

GCET2 2.87E-07 3.43E-11* 4.69E-11* 6.38E-09* 7.08E-08* N

ARL6IP1 3.79E-07 1.49E-09* 1.99E-09* 1.20E-09* 2.84E-03 Y

TMEM111 5.88E-07 2.36E-12* 3.25E-12* 1.98E-09* 9.25E-03 N

DAAM2 1.02E-06 2.40E-13* 3.52E-13* 3.56E-10* 1.66E-06* Y

TPST1 1.20E-06 2.04E-13* 2.92E-13* 2.52E-11* 9.32E-05 N

Note: (*) indicates significance by EPS-LM, LM, LGM and SSLASSO.

Fig. 4. Power and FDR for scenarios with 100, 200, 400 and 800 (p) predictors. The lines aligned to the left vertical axis show the power. The histograms aligned to

the right vertical axis show the FDR. The horizontal axis represents q (rho)

Table 1. Absolute bias of the noise SD estimate in all scenarios

EPS-LASSO LM EPS-LM

bs q p¼ 100 200 400 800 p¼ 100 200 400 800 p¼ 100 200 400 800

0.1 0 0.051 0.053 0.051 0.052 0.546 0.544 0.543 0.542 0.051 0.051 0.050 0.050

0.2 0.050 0.052 0.051 0.048 0.546 0.544 0.543 0.542 0.051 0.051 0.050 0.049

0.4 0.050 0.052 0.053 0.051 0.545 0.544 0.543 0.542 0.051 0.051 0.051 0.050

0.15 0 0.060 0.070 0.051 0.073 0.630 0.629 0.628 0.627 0.099 0.100 0.099 0.100

0.2 0.061 0.068 0.071 0.076 0.629 0.629 0.628 0.626 0.100 0.100 0.099 0.099

0.4 0.062 0.072 0.074 0.077 0.628 0.628 0.627 0.626 0.101 0.099 0.099 0.099

0.2 0 0.056 0.062 0.064 0.075 0.740 0.741 0.740 0.738 0.173 0.174 0.175 0.175

0.2 0.058 0.063 0.071 0.076 0.740 0.740 0.739 0.738 0.174 0.174 0.175 0.174

0.4 0.059 0.065 0.069 0.080 0.738 0.739 0.739 0.737 0.173 0.175 0.174 0.175

0.25 0 0.067 0.068 0.071 0.075 0.873 0.874 0.874 0.872 0.263 0.266 0.267 0.265

0.2 0.067 0.069 0.073 0.074 0.872 0.874 0.873 0.871 0.264 0.265 0.265 0.265

0.4 0.067 0.071 0.073 0.074 0.870 0.873 0.872 0.871 0.264 0.265 0.265 0.265

0.3 0 0.078 0.075 0.080 0.085 1.024 1.026 1.025 1.029 0.367 0.368 0.370 0.373

0.2 0.077 0.079 0.080 0.084 1.023 1.025 1.024 1.023 0.367 0.369 0.368 0.368

0.4 0.077 0.081 0.080 0.085 1.020 1.024 1.023 1.029 0.367 0.368 0.368 0.373
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(Table 2). Meanwhile, SSLASSO, LM, LGM and EPS-LM found 14,

576, 468 and 600 significant genes respectively. The three low di-

mensional methods resulted in a large number of significant find-

ings, which may include plentiful false positive candidates and need

extensive further analysis to filter out the genuine promising targets.

Eight of the EPS-LASSO significant genes (MMP8, CX3CR1,

UBE2J1, GCET2, ARL6IP1, TMEM111, DAAM2, TPST1) are

also significant in at least one of the other methods (Table 2).

Of which, MMP8, CX3CR1, UBE2J1, ARL6IP1, DAAM2 were well

supported by previous studies on obesity or obesity related diseases. For

example, the most significant gene MMP8 (P-value¼1:64� 10�11),

has been widely studied for its role in human obesity (Andrade et al.,

2012; Belo et al., 2009). Polymorphisms in CX3CR1, UBE2J1,

DAAM2 have been associated with obesity in GWAS (Do et al., 2013;

Rouillard et al., 2016; Sirois-Gagnon et al., 2011). ARL6IP1 have been

linked to the nonalcoholic fatty liver disease (NFLD), which is in close

relation with obesity (Latorre et al., 2017). In addition, two significant

genes (TMEM56 and IRS2) were detected by EPS-LASSO, but not by

any of the other methods. The IRS2 gene has been reported to be a

major influential gene in obesity and glucose intolerance (Lautier et al.,

2003; Lin et al., 2004).

4 Discussion

In this study, we have developed a novel sparse penalized regression

model with hypothesis testing for the continuous trait under extreme

phenotype sampling. EPS-LASSO has stable and robust control of

the type I error, especially when the predictors are correlated. In

addition, EPS-LASSO can provide a persistent power for both low-

and high-dimensional situations compared with the other methods

dealing with high-dimensional situations. The power of EPS-LASSO

is close to other low-dimensional methods under small effect sizes of

causal factors and is superior to them when the causal effects are

large. To demonstrate the performance of EPS-LASSO, we applied it

to an EPS dataset extracted from the Framingham Heart Study. EPS-

LASSO manages to identify significant BMI associated genes sup-

ported by existing studies. Overall, EPS-LASSO is a more powerful

method for high-dimensional data analysis under EPS, which can ac-

count for correlated predictors.

In practice, the data type and dimension in genetic study are dif-

ferent by the research target and platform. Here, the straightforward

application of our method in gene expression analysis shows the

feasibility in analyzing several thousands of continuous genetic fac-

tors. Determined by the practical computing capability, dimen-

sion reduction is still necessary for candidate genetic factors

numbered in millions, such as the genome-wide, epigenome-wide

and metagenome-wide association study. A frequently used method

is region-based analysis by collapsing effects or hierarchical model-

ing. However, the performance of the proposed method in region-

based analysis needs further investigation. Other structured sparse

regression methods may also be explored, like the group LASSO

(Yuan and Lin, 2006).

Our method is motivated by the general theory of hypothesis test

for high-dimensional models, which answers the question by dealing

with the score statistic in high-dimension. There is another de-biased

technique that decomposes the estimate of regression coefficients into

a bias term and a normally distributed term, which facilitates the der-

ivation of Wald statistics (Javanmard and Montanari, 2014b; van de

Geer et al., 2014; Wang et al., 2016). In our method, the decorrelated

score function can be regarded as an approximately unbiased estima-

tion function for b (Godambe and Kale, 1991). Also, a de-biased

estimator (~b j) based on the decorrelated score function can be derived

by solving bS�bj
þ ~b j � bb j

� �bIbj jb�j
¼ 0. Given the approximate normal-

ity of ~bj, a Wald test is constructed, which is shown to be similar but

slightly liberal relative to the score test regarding to the type I error,

power and FDR (Supplementary Note).

In the end, we find several potential developments interesting for

future exploration with EPS-LASSO. First is the dimensional

reduced EPS-LASSO with the aid of initial screening. The feature

screening in penalized model selection has been widely studied,

including the sure screening (SS) under multiple model assumptions

via marginal Pearson correlation or distance correlation (Barut

et al., 2016; Fan and Lv, 2008; Fan and Song, 2010; Li et al., 2012).

The SS with false selection rate control helps in power by reducing

the burden of multiple testing. Given these points and a lack of

study on the SS property under EPS, we consider EPS-LASSO with

initial SS as an appealing direction, especially for the ultrahigh-

dimensional data. Second, the FDR is not considered in EPS-

LASSO. The direct application of Bonferroni correction may result

in a power loss in detecting effects. Be aware of the latest application

of an FDR controlled penalized regression model—SLOPE

LASSO—in genetic variants under random sampling (Gossmann

et al., 2015), an FDR controlled LASSO under EPS is a future direc-

tion worth pursuing.
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