
Sequence analysis

BAUM: improving genome assembly

by adaptive unique mapping and local

overlap-layout-consensus approach

Anqi Wang1,2,†, Zhanyu Wang1,2,†, Zheng Li1,2 and Lei M. Li1,2,3,*

1National Center of Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese

Academy of Sciences, Beijing 100190, China, 2University of Chinese Academy of Sciences, Beijing 100049, China and
3Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Bonnie Berger

Received on August 29, 2017; revised on December 19, 2017; editorial decision on January 6, 2018; accepted on January 12, 2018

Abstract

Motivation: It is highly desirable to assemble genomes of high continuity and consistency at low

cost. The current bottleneck of draft genome continuity using the second generation sequencing

(SGS) reads is primarily caused by uncertainty among repetitive sequences. Even though the

single-molecule real-time sequencing technology is very promising to overcome the uncertainty

issue, its relatively high cost and error rate add burden on budget or computation. Many long-read

assemblers take the overlap-layout-consensus (OLC) paradigm, which is less sensitive to sequenc-

ing errors, heterozygosity and variability of coverage. However, current assemblers of SGS data do

not sufficiently take advantage of the OLC approach.

Results: Aiming at minimizing uncertainty, the proposed method BAUM, breaks the whole genome

into regions by adaptive unique mapping; then the local OLC is used to assemble each region in

parallel. BAUM can (i) perform reference-assisted assembly based on the genome of a close spe-

cies (ii) or improve the results of existing assemblies that are obtained based on short or long

sequencing reads. The tests on two eukaryote genomes, a wild rice Oryza longistaminata and a

parrot Melopsittacus undulatus, show that BAUM achieved substantial improvement on genome

size and continuity. Besides, BAUM reconstructed a considerable amount of repetitive regions that

failed to be assembled by existing short read assemblers. We also propose statistical approaches

to control the uncertainty in different steps of BAUM.

Availability and implementation: http://www.zhanyuwang.xin/wordpress/index.php/2017/07/21/baum

Contact: lilei@amss.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome assembly refers to the reconstruction of the genomic

sequence from a collection of sequencing reads. The methods of

genome assembly have been developed along the evolution of

sequencing technologies and can be categorized into two major frame-

works: the overlap-layout-consensus (OLC) paradigm (Batzoglou

et al., 2002; Myers, 1995; Myers et al., 2000) and the de Bruijn

graph (DBG) representation of k-mers (Idury and Waterman, 1995;

Pevzner et al., 2001). The OLC methods were more robust to

sequencing errors, heterozygosity and coverage variations across the

genome and played a key role before the coming of the second genera-

tion sequencing (SGS) technologies (Metzker, 2010). The DBG-based

methods became a practical and popular choice in the era of SGS

(Bankevich et al., 2012; Butler et al., 2008; Gnerre et al., 2011; Luo

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2019

Bioinformatics, 34(12), 2018, 2019–2028

doi: 10.1093/bioinformatics/bty020

Advance Access Publication Date: 15 January 2018

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2019/4810438 by guest on 23 April 2024

http://www.zhanyuwang.xin/wordpress/index.php/2017/07/21/baum
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/


et al., 2012; Maccallum et al., 2009; Peng et al., 2010; Schatz et al.,

2010; Simpson et al., 2009; Zerbino and Birney, 2008), since the

k-mer decomposition of reads and tracking of Eulerian paths greatly

reduce the computational complexity.

A complete genome assembly pipeline involves other important

steps, like scaffolding and gap closing. SSAKE (Short Sequence

Assembly by progressive K-mer search and 3’ read Extension)

(Warren et al., 2007), SSPACE (SSAKE-based Scaffolding of Pre-

Assembled Contigs after Extension) (Boetzer et al., 2011) and

OPERA (Gao et al., 2011) are stand-alone tools to link contigs into

scaffolds. GapCloser (Luo et al., 2012) and GapFiller (Boetzer and

Pirovano, 2012) are two widely used tools to close gaps in the scaf-

folds. Iterative Mapping and Assembly for Gap Elimination

(IMAGE) (Tsai et al., 2010) iteratively performs contig extending

and merging to improve the assembly continuity. PAGIT (post-

assembly genome-improvement) (Swain et al., 2012) is an integra-

tive pipeline that consists of several open-source programs (Assefa

et al., 2009; Otto et al., 2010; 2011; Tsai et al., 2010), and it is most

suitable for bacterial or small eukaryote genomes.

An intrinsic challenge to genome assembly is the uncertainty

caused by the widespread repetitive regions across a genome. The

uncertainty is particularly high for the SGS reads since repetitive

regions could produce many identical or near-identical reads. These

short reads complicate the structure of DBG, and the sequences

under the same pattern of repetitive region are likely to collapse

together (Treangen and Salzberg, 2011). Therefore, the resulting

assembly of highly repetitive genomes can be highly fragmented or

severely shorter than the actual size. Some advances in solving repet-

itive genome assembly were reported recently. InGAP-sf (Shi et al.,

2017) aimed to improve scaffolding. It addressed the uncertainty

issue caused by repetitive sequences using a new strategy based on

the combination of direct link and paired link graphs.

A possible solution to repetitive uncertainty is the single-molecule

real-time sequencing technologies (SMRT; Eid et al., 2009; Roberts

et al., 2013) represented by Pacific BioSciences (PacBio) and Oxford

Nanopore Technologies. SMRT can sequence unprecedented long

reads that span certain repetitive regions. The assembly methods of

SMRT reads drew much attention in recent years (Berlin et al., 2015;

Chin et al., 2013; Koren et al., 2017; Phillippy, 2017; Xiao et al.,

2017). However, the high cost of SMRT sometimes makes it unaf-

fordable to obtain enough coverage that ensures accuracy, complete-

ness and continuity, especially for large genomes (Chakraborty et al.,

2016). Moreover, the high error rate requires additional computa-

tions and can impact the assembly quality (Sovic et al., 2016). In com-

parison, Illumina sequencing reads are still of great value for genome

assembly due to its high accuracy and low cost. The recent work

(Wick et al., 2017) aimed at resolving the issue by integrating

Illumina short reads and the third generation long sequencing reads.

In this article, we propose an integrative approach By Adaptive

Unique Mapping (BAUM) and local OLC to improve genome

assembly based on SGS paired-end/mate-pair libraries. BAUM has

two modules: (i) construction of the genome unique regions that are

taken as the initial contigs and (ii) iterative assembly, in which scaf-

folds are built, and contigs are extended and merged, aiming to

reconstruct the repetitive regions along the iterations. In this scheme,

the repetitive regions are separated by the unique regions. The reads

from repetitive regions can possibly gain their locations with cer-

tainty through their mates mapped to the unique regions.

The unique regions, which are the basis of BAUM, are obtained

from a given assistant genome through adaptive unique mapping

and filtration under several rules of uniqueness. The assistant

genome can be a genome from a close species, or an assembly by

another de novo assembler. In the former case, BAUM is a

reference-assisted assembler; while in the latter case, BAUM

improves the result of other assemblers.

The iterative assembly module differs from IMAGE, which also

takes an iterative scheme, in several crucial aspects. First, BAUM

builds scaffolds in every iteration, since the extension of contigs

increases the chance of more contigs’ being further linked together.

Second, BAUM uses the time-proven OLC approach for contig

extension because it is more robust to sequencing errors, hetero-

zygosity and depth variations across the genome. Although the com-

putational complexity of OLC is quadratic with respect to the read

number, all contigs are extended independently and the number of

reads used in extending one single contig is not large. Third, instead

of pooling the reads that are used to extend the adjacent two contigs

together, BAUM extends each contig by itself. We propose a robust

statistical approach to guide the merging of adjacent contigs. The

false positive merging can therefore be reduced. In addition, BAUM

makes further modifications to improve efficiency, like incorporat-

ing libraries of diverse medium insert-sizes (300-2k) in contig exten-

sion, and performing the extension of all contigs in parallel to

reduce the elapsed time.

Instead of using k-mers, BAUM extends contigs using original

reads. Thus repeats whose lengths are longer than k but shorter than

the read length could possibly be resolved by BAUM but not by the

k-mer method. Along the iterative assembly, the extended parts on

contigs could overlap with repetitive regions. If different copies of

the repetitive regions would have certain divergence, we can still

obtain UM reads under more stringent mapping criterion so that

further extension can be gained.

BAUM was tested by simulation studies based on an Escherichia

coli genome. We further tested BAUM on a plant genome and a verte-

brate genome: a wild rice Oryza longistaminata (Zhang et al. 2015)

and a parrot Melopsittacus undulatus (Bradnam et al., 2013), which

was used in Assemblathon 2 (Bradnam et al., 2013). We found that

BAUM substantially improved the assembly continuity and a consid-

erable portion of repetitive regions was recovered. Being used to

improve the Allpaths-LG’s (Gnerre et al., 2011) result for rice, BAUM

resulted in a 42% increase of genome size and this was near to the

estimated size. Besides, BAUM obtained a 21% increase of genome

size by applying the iterative assembly module to the Newbler’s (454-

Life-Sciences, 2012) assembly based on 454 long reads.

2 Materials and methods

2.1 Overview of BAUM
The workflow of BAUM is illustrated in Figure 1a. The input of

BAUM contains the SGS reads and an assistant genome. The opera-

tions can be divided into two loops. The left loop generates the ini-

tial contigs, and the right loop carries out the iterative assembly.

At the beginning of the left loop (Fig. 1a), the reads are mapped to

the assistant genome, and only the uniquely mapped (UM) reads are

kept. The UM reads are further filtered by two uniqueness rules

(Section 2.2). The resulted layouts are expected to correspond to the

unique regions of the target genome, thus the uncertainty caused by

repetitive regions is minimized at this stage. If the distance between the

assistant and target genome is relatively large, the assistant genome is

updated by the consensus of the layouts and the above procedures can

be repeated for several rounds. Thereby the assistant genome gets

closer to the target genome after this procedure. Due to the existence

of structural difference between the two genomes, layouts are split at

2020 A.Wang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2019/4810438 by guest on 23 April 2024



the probable breakpoints that are detected according to a statistical

model we proposed, and the initial contigs are formed.

In the right loop (Fig. 1a), reads are mapped to the initial contigs,

and scaffolds are built based on the paired-end/mate-pair information

of the UM reads. Next, reads whose mates are UM to the ends of each

contig are collected. Every contig, no matter whether it is linked with

other contigs in the scaffold, is extended through local OLC approach.

Libraries of multiple insert-sizes are pooled for contig extension.

After contig merging, we obtain the current assembly, and the

resulting current assembly can be taken as a new assistant genome

for the next iteration. After each iteration, the assembly is expected

to cover more regions on the target genome and the contig/scaffold

N50 is expected to grow (the contig/scaffold lengths are summed up

successively from the longest to the shortest; when the sum reaches

half of the total contig/scaffold length, the value of the correspond-

ing contig/scaffold length is the contig/scaffold N50). When BAUM

is used to improve other assembler’s result, the process can start

from either the ‘assistant genome’ or ‘current assembly’ (Fig. 1a).

In the latter case, only the right loop is performed.

We illustrate the BAUM method by an example in Figure 1b.

The two blue arrows in Figure 1b correspond to the two loops in

Figure 1a. The obtained initial contigs after the first loop include the

four unique regions shared by the assistant and target genomes

(A–D, A’–D’). The repetitive regions (R3 and R4) and the novel

region (F) on the target genome are reconstructed through local

OLC. We introduce the details of each step in Sections 2.2–2.7.

2.2 Adaptive unique mapping
UM reads are used in three different steps: (i) generate layouts of

UM reads (Fig. 1a, left loop); (ii) construct scaffolds by UM mate-

pairs (Fig. 1a, right loop); (iii) extend contigs by reads whose mates

are UM (Fig. 1a, right loop). UM reads are defined by a mapping cri-

terion and are obtained by a mapping algorithm. The mapping crite-

rion needs to be selected adaptively in different steps. Any mapping

tool designed for Second Generation Sequencing (SGS) reads

(Langmead and Salzberg, 2012; Li and Durbin, 2009) can be used in

this step. We adopt SEME (Sequential Exact seed-Match and

Fig. 1. Illustration of BAUM. (a) Flowchart of operations. BAUM mainly consists of two loops shown, respectively, in the left and right rectangles. The left loop con-

structs the initial contigs by the UM reads with respect to an assistant genome. At the beginning of the loop, reads are mapped to the assistant genome and layouts

of the UM reads are generated. A filtration is further performed based on two rules of uniqueness. The assistant genome is updated by the consensus of the layouts

if its divergence to the target genome is fairly large, and reads are mapped again. This step can be performed for several iterations. After a step of layout split at the

probable breakpoints of structural variations, the initial contigs are generated. In the right loop, scaffolds are built based on paired-end/mate-pair information, and

those reads whose mates are UM to an end of a contig, are locally assembled using the OLC paradigm to extend the contig. The ends of adjacent contigs are aligned

by Smith-Waterman algorithm to detect overlap, and a statistical approach is performed to decide which adjacent two extended contigs are merged. The resulting

assembly in turn can serve as the basis for the next iteration. When BAUM is used to improve other assemblers’ results, the process can start from either the

“Assistant genome” or “Current assembly”. In the latter case, only the right loop is performed. (b) An illustrative example explaining all steps in BAUM. (c) Multiple

paired-end libraries with medium insert sizes can lead to longer and continuous contig extension. (d) In iterative assembly, contigs are extended in each iteration,

and the extensions lead to more contigs’ being assembled into scaffolds in the next iteration (Color version of this figure is available at Bioinformatics online.)

BAUM: improving genome assembly by adaptive unique mapping and local overlap-layout-consensus approach 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2019/4810438 by guest on 23 April 2024



Extend) (Chen et al., 2013) and define the mapping criterion by the

maximal allowed mismatch number.

For the construction of layouts, if the inconsistency between the

target and assistant genome is relatively large, particularly in the

first iteration of the assistant genome update, we set a loose criterion

to optimize the mapping rate and the UM rate. After updating

(Fig. 1a, left loop), the assistant genome gets closer to the target, and

we tighten the criterion accordingly in the following iterations. The

mapping criterion in each iteration can be manually set by users or

automatically set by BAUM. In the latter case, BAUM takes a small

subset of reads and maps them under different parameter settings.

The most stringent parameter setting that keeps the mapping rate

above a certain threshold (default 80%) is selected as the mapping

criterion. In each round of updating, we replace the assistant

genome by the most frequent nucleotide in the layout at each posi-

tion. For the sake of quality control, we only update the position if

the coverage of the layout is higher than 6, and the maximal nucleo-

tide frequency in the layout is higher than 60% (by default).

In scaffolding and contig extension, we do impose a relatively

stringent criterion to minimize false positives. As contigs are extended,

some may gradually overlap with the repetitive regions. Since different

copies of the repetitive regions could have certain divergence, we can

still obtain UM reads under more stringent mapping criterion so that

further extension can be gained (Supplementary Note S1).

2.3 Filtration
After the layouts of UM reads are generated, the following kinds of

UM reads are further filtered out: (i) UM reads that fall out of

the unique regions on the assistant genome; (ii) UM reads that

locate in the regions with higher than expected depth. The unique

regions on the assistant genome are defined through ‘self-mapping’

(Supplementary Note S2). The filtration step aims to further filter

out those reads that are generated from the repetitive regions on the

target genome, thus reducing the uncertainty in assembly.

2.4 Layout split
It is necessary to detect the breakpoints of probable structural varia-

tions (SVs) between the assistant and target genome and split the

layouts at the detected sites, thus the misassemblies at the structural

level can be avoided. We simplify various kinds of SVs into two

cases: leftward breakpoint and rightward breakpoint and establish a

statistical model for breakpoint detection (Supplementary Note S3).

Specifically, for each base on the assistant genome, we consider two

null hypotheses, i.e. leftward breakpoint and rightward breakpoint.

Then we carry out two statistical tests. The layout at the position is

split if one of the tests fails to be rejected. We note that the primary

control is the rate of false positives in which necessary splits are

missed. Although the over-protection may lead to more false splits,

they can be saved in the scaffolding and extension steps. The initial

contigs are generated after layout split.

2.5 Iterative scaffolding and contig extension
Using the initial contigs as the basis, we iteratively carry out scaf-

folding and contig extension (Fig. 1a, right loop). Currently we use

SSPACE (Boetzer et al., 2011) (version 3.0) and PHRAP (Green

et al., 1994) (version 1.090518), respectively, for scaffolding and

contig extension. The TAB file required by SSPACE is made accord-

ing to the mapping information of UM reads, and the mapping step

embedded in SSPACE is skipped.

BAUM applies OLC to only a relatively small subset of reads in

each contig extension. As these reads’ mates are UM to the end of

the contig, each subset is practically from a local region of the

genome, and we term it as the local OLC. Since the extensions of all

contigs are independent of each other, we can implement local OLC

through parallel computation. The time complexity is linear with

respect to the number of contigs and is quadratic only with respect

to the sequencing coverage. The technical details are as follows.

Proposition: Denote the read length by l, the number of contigs

by NC and the sequencing coverage by D. Then the average time

complexity of local OLC for contig extension is O D2l2NC

� �
.

A proof is given in Supplementary Note S5. It should be noticed

that BAUM is able to use the read libraries of multiple insert sizes simul-

taneously in the contig extension. The libraries of medium insert sizes

may lead to longer and continuous extensions (Fig. 1c). Moreover, con-

tigs are extended in each iteration, and the extensions can lead to more

contigs’ being assembled into scaffolds (Fig. 1d). Therefore, BAUM

builds the scaffold in each iteration to improve continuity.

2.6 Statistical criterion for contig merging
We apply Smith–Waterman algorithm (Smith and Waterman, 1981)

to align the adjacent extended contigs. The existence of high scoring

segments in an alignment suggests a possible overlap of the two

adjacent contigs. An estimated size of the gap between two adjacent

contigs can therefore be calculated according to the position of the

overlap. On the other hand, SSPACE also estimates the same gap

distance using the insert-sizes of mate-pairs that are UM to the

neighboring contigs. Statistically, we pool the two estimates for the

cases of ‘no hanging end’ (Supplementary Fig. S1) and fit a linear

regression line by the least trimmed squares (LTS) approach (Li,

2005). The adjacent extended contigs are merged for the cases

whose residuals are within a certain range (Supplementary Note S4).

2.7 Stopping rule of assistant genome update and

iterative assembly
In each round of assistant genome update, we map a small set of

reads to the assistant genome under various criteria and select the

most stringent parameter setting that keeps the mapping rate above

a threshold (80% by default, Section 2.1). If the mismatch threshold

in the selected parameter setting is no larger than 2 (default in

BAUM), then we stop the assistant genome update; otherwise we

continue the updating. The maximal number of assistant genome

update is 10 by default.

For iterative assembly, at least two iterations are carried out.

The iteration is terminated if at least one of the following conditions

occurs: (i) the absolute deviation of the regression line slope from 1

is larger than a threshold (default value is 0.1) and (ii) the change of

total contig length compared with the previous iteration is smaller

than a given threshold (default value is 0.1%). The users can con-

tinue to run more iterations manually when necessary.

2.8 Illumina sequencing data
We test BAUM on two eukaryote genomes: O. longistaminata, a

wild rice from Africa and M. undulatus. The data of O. longistami-

nata contain seven Illumina paired-end/mate-pair libraries of insert

sizes—300, 400, 900, 2k, 5k, 10k and 20k (Zhang et al., 2015). The

depth of the cleaned data is 230. The data of M. undulatus are from

Assemblathon 2 (Bradnam et al., 2013), which contains 19 Illumina

paired-end/mate pair libraries of insert sizes—220, 500, 800, 2k, 5k,

10k, 20k and 40k. The estimated depth is 289.

2022 A.Wang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2019/4810438 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data


2.9 Validation by assembly from O. longistaminata

454 reads
An independent Roche 454 sequencing data (Zhang et al., 2015) of

O. longistaminata is used to evaluate the accuracy of BAUM’s

results. We assemble the 454 long reads using Newbler (version 2.9

20130529_1641). The statistics related to the assembly can be found

in Table 2. Since long reads are likely to generate relatively more

reliable assembly result, we take the assembled 454-contigs as a

reference and evaluate the consistency between them and the assem-

blies based on Illumina short reads. The degree of consistency can

be taken as a measure of BAUM’s accuracy. Specifically, we align

each scaffold (or contig) in the Illumina short read assemblies to the

454-contigs using basic local alignment search tool (Camacho et al.,

2009) and calculate the lengths of high scoring pairs (HSPs), indels

and hanging ends (Supplementary Fig. S1). Shorter indels and less

hanging ends indicate higher consistency.

2.10 Data accessibility
The raw sequencing data for O. longistaminata are available in SRA

database of NCBI under the accession numbers SRX1156187 and

SRX1156186. The Roche 454 long reads for O. longistaminata are

available under SRX1156057. The sequencing data for M. undulates

are accessible from ERR244154 to ERR244163. The fosmid sequen-

ces for M. undulates can be downloaded from http://gigadb.org/data

set/100062.

2.11 Computing equipments
We assembled the O. longistaminata genome using a tower server

with 48 logic cores (Intel Xeon CPU E5-2697 v2 @ 2.70GHz) and

378 GB DDR3 memory. We assembled the M. undulates genome

using a rack server with 48 logic cores (Intel Xeon CPU E5-2680

v3 @ 2.50GHz) and 504 GB DDR4 memory.

3 Results

3.1 Simulation tests on E. coli genome assembly
We first tested BAUM’s performance on simulated data.

Specifically, we generated SVs (including insertion, deletion, dupli-

cation and reversion) using StructURal Variant majorIty VOte

(SURVIVOR) (version 1.0.1) (Jeffares et al., 2017) on the E. coli

reference genome (strain K-12 MG1655) with the default parame-

ters. Then we obtained three different target genomes by mutating

the structurally variated genomes at the rate of 5%, 10% and 25%

(the variant sites were also generated by SURVIVOR). Hundred-bp

paired-end/mate-pair reads were sampled from the three target

genomes using ART (version 2.5.8) (Huang et al., 2012)

(Supplementary Table S1). We took the E. coli reference genome

(strain K-12 MG1655) as the initial assistant genome and ran

BAUM for the three cases. After assistant genome updating and iter-

ative assembly, BAUM resulted in a single contig that totally cov-

ered the target genome in each of the three target genomes (Case 1

in Supplementary Table S1). Moreover, we evaluated the results by

quality assessment tool for genome assemblies (QUAST) (version

4.5) (Gurevich et al., 2013). If break-points occur when aligning

assembled contigs to a reference genome, QUAST breaks the scaf-

folds into aligned blocks and calculates the N50 of these blocks,

which is the so-called NGA50 of the assembly. QUAST showed no

misassemblies in our results and the corresponding genome fractions

were all higher than 99.99%. The NGA50 of the three assemblies

were all higher than 4.68 Mbp (Case 1 in Supplementary Table S1).

Next, directly from the original E. coli genome (K-12 MG1655),

we generated 100-bp paired-end/mate-pair sequencing reads of the

same depth as above using ART. The original E. coli genome con-

tains quite a fraction of long and short repeated sequences (Blattner

et al., 1997). We applied BAUM to the simulated sequencing reads

using different assistant genomes. As a test, we first obtained initial

contigs from the E. coli genome itself by the left loop in Figure 1a.

Then after eight rounds of iterative assembly, BAUM reached one

single scaffold, in which no misassembly occurred and the NGA50

and contig N50 were, respectively, 4.63 Mbp and 2.5 Mbp. Second,

we generated initial contigs using the three simulated genomes with

nucleotide divergence rates of 5%, 10% and 25% from the original

E. coli genome on top of SVs (last paragraph). Still, BAUM could

reconstruct the genome with NGA50 4.63 Mbp, 4.63 Mbp and 2.69

Mbp, respectively, with contig N50 2.50 Mbp, 2.50 Mbp and 0.61

Mbp, respectively, and without any misassembly (Case 2 in

Supplementary Table S1). We also assembled the simulated reads

using SOAPdenovo2 (version 2.04) plus GapCloser (version 1.12)

and compared the result with those of BAUM. BAUM outperformed

by less local misassemblies and single-scaffold continuity except

the situation with 25% divergence rate (Case 2 in Supplementary

Table S1).

We further used BAUM to improve the results of de novo assem-

blers. When we took the results from Allpaths-LG (version 52488)

as the assistant genome, after six iterations of iterative assembly,

BAUM reached three scaffolds, in which the scaffold N50, NGA50

and contig N50 were, respectively, 3.06 Mbp, 3.04 Mbp and 469

kbp without any misassembly (Case 3 in Supplementary Table S1).

In comparison, the GapCloser based on the Allpaths-LG’s results

ended up with 4 scaffolds and 11 misassemblies. GapCloser worked

much better with SOAPdenovo2, and reached 4 scaffolds and 1.22

Mbp of contig N50, while 21 local misassemblies also occurred. We

applied one iteration of BAUM (right loop) to this result, and it

reached one single scaffold with all gaps filled and only 20 local mis-

assemblies (Case 4 in Supplementary Table S1).

These simulation results demonstrated that BAUM could extend

and merge scaffolds/contigs with high fidelity. Its performance was

robust with respect to the reference genome either from a relatively

close species or from the results obtained by a fair de novo assem-

bler. BAUM still worked even if the divergence between the target

and assistant genomes was as high as 25%. Moreover, BAUM

offered extra margin of scaffold/contig extension beyond existing

methods.

3.2 Reference-assisted assembly of O. longistaminata
The genome of the cultivated rice, Oryza sativa japonica (IRGSP-

1.0), was taken as the assistant genome. The estimated genome size

of O. longistaminata based on the cytometry test was 329 Mbp

(Zhang et al., 2015). The O. longistaminata and the O. japonica

were estimated to diverge from Oryza glaberrima about 1.9 and 0.6

million years ago (Zhang et al., 2015). The divergence between O.

japonica and O. longistaminata was fairly large, therefore, we ran

four rounds of assistant genome updating before we carried out nine

rounds of iterative assembly.

3.2.1 Convergence of assistant genome updating

We took the proportion of the reads that could be successfully

mapped to the assistant genome as a measure of the similarity

between the assistant and target genome. The proportion of success-

fully mapped reads remained at roughly the same level along the

updating process, even as mapping criteria got more and more

BAUM: improving genome assembly by adaptive unique mapping and local overlap-layout-consensus approach 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2019/4810438 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
http://gigadb.org/dataset/
http://gigadb.org/dataset/
http://62
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data


stringent, namely, the maximal allowed mismatch number decreased

from 20 in the first round to 10 in the fourth round (all the sequenc-

ing reads were between 90 and 100 bp) (Supplementary Table S2).

This indicates that the assistant genome converged to the target

genome through updating.

3.2.2 Evaluation of initial contigs

The initial contigs were obtained after the steps of filtration and lay-

out split. First, we evaluated the uniqueness of initial contigs. We

observed that no more than 0.04% of the reads were mapped to

multiple places on the initial contigs, while the multiple mapping

rates were between 14.8% and 18.0% for the assistant genome

from last round of update (Supplementary Fig. S2a). This implied

that the uncertainty caused by the repetitive regions was largely

reduced in initial contigs.

Second, we evaluated the results of layout split by aligning

the initials contigs to the 454-contigs. The results showed that most

of the initial contigs had no or very short hanging ends (Batzoglou

et al., 2002), which demonstrated that no severe structural mistake

existed in the initial contigs after layout split (Supplementary Fig. S3).

We observed an example of a 22-nucleotide deletion in

O. longistaminata. The layout split method detected it successfully

(Supplementary Fig. S2b).

3.2.3 Iterative assembly

The libraries of insert-size 300, 400 and 900 were used in all itera-

tions of iterative assembly, and we also added the 2 kbp library

from iteration 5. The contig N50 increased steadily from 947 bp of

the initial contigs to 27 887 bp, a 28-fold increase. The final scaffold

N50 was 500 737 bp. Correspondingly, the number of closed gaps

had a decreasing trend, down from 188 107 in the first iteration to

507 in the last iteration. It is noticed that the total size of initial con-

tigs was only 211 Mbp, while the final scaffold size was 301 Mbp

(Fig. 2a–d, Supplementary Table S3). This demonstrates that the

iterative assembly recovered about one-third of the target genome.

3.2.4 Evaluation of iterative assembly

To evaluate the assembly accuracy, we checked the consistency by

aligning the BAUM’s scaffolds to the 100 longest 454-contigs

(Section 2.9). Among the 136 HSPs, only 1 had an obvious inconsis-

tency (lengths of indel or hanging ends larger than 1 kbp)

(Supplementary Table S4). Using these 454-contigs as the reference,

QUAST found only five local misassemblies in the BAUM’s result,

the second best next to ABySS’ (Table 1, the third and second col-

umn from the right).

The reliability status of the iterations can partially be monitored

by the scatter plot of the two estimates of gap sizes between adjacent

contigs, one by alignment and one by insert sizes of mate pairs

(Supplementary Fig. S4). Figure 2e shows this scatter plot in the sec-

ond iteration. We fit a simple linear regression by LTS. The dots fall-

ing inside the band correspond to the cases of good consistency,

while those falling out of the linear band correspond to the some-

what inconsistent cases. The inconsistency may be caused by mis-

alignment in the presence of interspersed repeats or size errors in the

libraries. The adjacent extended contigs were not merged for these

occasions. When the slope estimate of LTS substantially deviates

Fig. 2. (a)–(d) Statistics of reference-assisted assembly of O. longistaminata.

The x-axes represent the numbers of iteration, where ‘0’ represents the initial

contigs. The statistics are: (a) contig N50, (b) scaffold N50, (c) number of

closed gaps, (d) Total scaffold sizes (left bars) and total contig sizes (right

bars). (e) Scatter plot of estimated gap sizes and the fit by LTS. It shows the

case in the second round of iterative assembly. The x-axis is the estimate

obtained through alignment of the two adjacent extended contigs. The y-axis

is the estimate obtained using the insert-size of paired-end/mate-pair library

in scaffolding step. A line of slope 1 is fit by LTS. The vertical distances

between the dashed lines and the solid line are 200 bp and those dots falling

inside the two dashed lines represent the adjacent extended contigs that are

merged. (f) Comparison of contig length distribution between BAUM’s refer-

ence-assisted assembly result for O. longistaminata and three de novo

assemblers (Color version of this figure is available at Bioinformatics online.)

Table 1. Comparison of BAUM (reference-assisted version) with three de novo assemblers on O. longistaminata

Tool Ctg

N50

(kbp)

Scaf

N50

(kbp)

Ctg

size

(Mbp)

Scaf

size

(Mbp)

Scaf

number

Running

time

Memory

peak

(Gb)

Complete

BUSCOs

Mis-

assemblies

Local

misassemblies

NGA50

(kbp)

SOAPdenovo2 5.4 161.0 185 279 12 090 3 h 67 1204 (83.6%) 0 7 11.7

ABySS 3.3 14.8 299 320 48 617 16 h 89 1283 (89.1%) 0 3 8.9

Allpaths-LG 8.1 27.7 207 228 18 010 37 h 138 1125 (78.1%) 1 8 17.5

Allpaths-LGa 8.1 27.2 206 228 18 112 38 h 138 1124 (78.1%) 0 15 18.0

BAUM 27.9 500.7 291 301 14 947 142 h/9 13 1409 (97.8%) 0 5 18.3

aCheat mode of Allpaths-LG, in which the genome of O. sativa japonica was used to assist the assembly.

Notes: (1) Ctg and Scaf are the abbreviations of contig and scaffold, respectively. (2) Only the 2 kbp mate-pair library was used in Allpaths-LG’s scaffolding

step because the program could not handle more than one mate-pair libraries in our server. (3) Since the Allpaths-LG did not output the scaffolds longer than

1 kbp, scaffolds shorter than 1kbp in all other assemblies were skipped for fair comparisons. (4) BAUM’s running time is from the last updated assistant genome

to the final assembly result, with nine iterations of scaffolding, contig extension and merging. (5) The NGA50 is calculated in the restricted scope of the 100

longest 454 contigs.

2024 A.Wang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2019/4810438 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data


from 1 or the portion of good cases gets small, it suggests that itera-

tion should be stopped.

3.2.5 Comparison with de novo assemblers

We compared the above reference-assisted assembly result

with those generated by three widely used SGS assemblers:

SOAPdenovo2 (Luo et al., 2012) (version 2.04), ABySS (Simpson

et al., 2009) (version 1.9.0) and Allpaths-LG (Gnerre et al., 2011)

(version 52488). It can be seen from Table 1 that the contig N50 of

BAUM was 3-fold, 5-fold and 8-fold of that of Allpaths-LG, ABySS

and SOAPdenovo2, respectively. The large proportion of repetitive

regions on the rice genome accounts for the smaller N50 of the three

de novo assemblers; whereas the design of BAUM resolves this prob-

lem to a great extent. It can be seen that the contig number of

BAUM was significantly smaller than the others, and the length dis-

tribution of BAUM contigs had an obvious shift to the right com-

pared with the others (Fig. 2f). All these indices demonstrate that

BAUM achieved the best continuity. The genome size of the BAUM

assembly was close to the estimated value given by the cytometry

test (329 Mbp), while those corresponding to SOAPdenovo2 and

Allpaths-LG were much smaller. We assessed the completeness of

genome assembly using BUSCO (Benchmarking Universal Single-

Copy Orthologs) (version v3) (Sim~ao et al., 2015), which was a soft-

ware that assessed the genome assembly and annotation complete-

ness based on evolutionarily informed expectations of gene content).

Table 1 shows the number of complete BUSCOs (predicted gene

content) in these assemblies. It can be seen that BAUM achieved the

best results, 1409 (97.8%). In other words, BAUM’s result was most

complete from the perspective of single-copy orthologs.

3.3 Improvements of other assemblers’ results
To examine BAUM’s ability to improve other assemblers’ results,

we ran BAUM on the Allpaths-LG’s assembly for O. longistaminata.

We carried out 14 rounds of iterative assembly (Supplementary

Table S5, Supplementary Fig. S5). The contig N50 grew from 8.1

kbp to 29.5 kbp, and the final contig size (non-N base number)

increased by 42% (Table 2), indicating that BAUM recovered a con-

siderable amount of unassembled regions. We further checked the

consistency between the assembly and the top 100 longest 454-con-

tigs as described above. Among the 126 HSPs (Supplementary Table

S6), only three serious inconsistencies (lengths of indel or hanging

ends larger than 1 kbp) were found.

As another example, we applied BAUM to Newbler’s assembly of

454 long reads, which we used above to evaluate the assembly results.

The iterative assembly was carried out for five iterations

(Supplementary Table S7, Supplementary Fig. S6). The genome size

grew from 263 Mbp to 332 Mbp, and the contig N50 grew from 2.9

kbp to 25.0 kbp (Table 2). Moreover, the contig and scaffold numbers

decreased by, respectively, 1 and 2 orders of magnitude. This indicates

that BAUM can improve the assembly obtained from long reads too.

We also ran BAUM on the Allpaths-LG’s result for M. undula-

tus, a parrot from Australia. This genome was taken as a gage in

Assemblathon 2 (Bradnam et al., 2013) to evaluate the performance

of different assemblers. It was mentioned in Assemblathon 2 that

the estimated genome size was 1.2 Gbp. We used the same parame-

ters as in Assemblathon 2 to generate an assembly using Allpaths-

LG, and then carried out four rounds of BAUM iterative assembly

(Supplementary Table S8, Supplementary Fig. S7). Although the

assembly result for Allpaths-LG was already satisfactory, BAUM

made further improvement on continuity (Table 2). The contig N50

grew from 58 555 bp to 222 017 bp, a 3-fold increase, while the

scaffold N50 grew from 17.9 Mbp to 23.0 Mbp.

To evaluate the accuracy of the result, we aligned the scaffolds

before and after running BAUM to the 46 fosmid sequences pro-

vided by Assemblathon 2. The improvements made by BAUM were

all validated by the fosmid sequences despite four small indels

(Supplementary Table S9). Using these fosmid sequences as the

reference, QUAST found no misassembly in BAUM’s result

(Table 2, the third and second column from the right).

Apart from contig N50 and genome size, the complete BUSCOs

also increased by a great deal in these three cases. The number of

complete BUSCOs for M. undulatus increased from 4037 (82.1%)

to 4592 (93.4%), even better than that of BCM-HGSC, one of the

best assemblies of the same genome in Assemblathon 2 which was

obtained by integrating 454, Illumina and PacBio sequencing data

(Table 2). Thus, on top of the state-of-art results, BAUM can make

extra room for biology research.

3.4 Comparison of BAUM’s iterative assembly with

GapCloser and IMAGE
When BAUM was used to improve Allpaths-LG’s assembly for O.

longistaminata, we replaced the steps of contig extending and merging

with GapCloser (Luo et al., 2012) in the beginning four iterations,

and compared the results. The total size of contigs (the number of

non-N bases) of BAUM increased steadily to 271 Mbp in the first

four iterations, while that of GapCloser stopped around 246 Mbp

(Supplementary Table S10). It is noted that BAUM extended each

contig on both sides, even if it was located at the end of a scaffold.

Table 2. Improvement of BAUM on other assemblers’ results

Species Tool Ctg

N50

(kbp)

Scaf

N50

(kbp)

Ctg

size

(Mbp)

Scaf

size

(Mbp)

Scaf

number

Running

time

Memory

peak

(Gb)

Complete

BUSCOs

Mis-

assemblies

Local

misassemblies

NGA50

(kbp)

Rice Allpaths-LG 8.1 27.7 207 228 18 271 37 h 138 1125 (78.1%) 1 8 17.5

After BAUM 29.5 429.9 294 309 2676 94 h/14 13 1382 (96.0%) 0 4 18.3

Rice Newbler 2.9 3.0 263 263 143 270 3 h 18 942 (65.4%) – – –

After BAUM 25.0 511.4 319 332 5121 35 h/5 13 1391 (96.6%) – – –

Bird Allpaths-LG 58.6 10 935 1124 1183 5890 4.3 d 380 4037 (82.1%) 3 7 13.2

After BAUM 222.0 22 965 1148 1164 2703 4.6d/4 50 4592 (93.4%) 0 0 17.3

BCM-HGSC 159.3 13 049 1177 1330 56 982 �25 d �400 4497 (91.5%) 0 2 14.0

Notes: (1) Ctg and Scaf are the abbreviations of contig and scaffold. (2) ‘Rice’ and ‘Bird’ represent O. longistaminata and M. undulatus. (3) Scaffolds shorter

than 1 kbp were removed for comparisons. (4) BAUM’s running time is from multiple iterations as indicated after the slash sign. (5) The NGA50 is calculated in

the restricted scope of the 100 longest 454 contigs in the Rice case and in the restricted scope of the fosmid clones provided by Assemblathon 2 in the Bird case,

respectively. (6) The running time and memory peak for BCM-HGSC were from Assemblathon 2 (Bradnam et al., 2013).

BAUM: improving genome assembly by adaptive unique mapping and local overlap-layout-consensus approach 2025

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2019/4810438 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data


Larger contig sizes provided a higher chance of more contigs’ being

linked in the next iteration. The memory usage for BAUM was much

less than GapCloser, since the extension for all contigs were separate

and the memory usage of extending one contig with local OLC

approach was not that large (Supplementary Table 11).

We also compared the performance of BAUM with IMAGE

(Tsai et al., 2010) (version 2.4.1) in the first iteration of the same

case. The total size of contigs (the number of non-N bases) only

increased from 207 Mbp to 210 Mbp for IMAGE, whereas it

reached 238 Mbp for BAUM. The contig N50 and number of

merged contigs for BAUM (11 224 bp and 11 520) were also greater

than that of IMAGE (8340 bp and 1236), respectively. In terms of

the time usage of contig extending and merging, the elapsed time for

BAUM was 2h 22min, which was much less than that of IMAGE,

55h. It is noted that this version of IMAGE was not able to extend

all contigs in parallel.

3.5 Reconstruction of repetitive regions
We took RepBase (Bao et al., 2015) to evaluate the repetitive region

reconstruction. Specifically, the RepBase (version 22.11) library of

Oryza (oryrep.ref) and ‘other vertebrates’ (vrtrep.ref) were used to

evaluate the rice and parrot assemblies, respectively. We aligned the

assemblies to the RepBase and labeled a region as a repetitive region

if its similarity to the reference was higher than 70%. Figure 3a

shows the results of the reference-assisted assembly of O. longista-

minata. The proportion of repetitive regions in the initial contigs

was only 5.2%, while it increased to 18.2% in the final assembly.

Among the regions that were reconstructed through the iterative

assembly, more than half (52.7%) were repetitive regions. These

demonstrate that after unique mapping and filtration, BAUM

reduced the uncertainty of repetitive regions in the initial contigs,

and it recovered a considerable amount of repetitive regions in the

following iterative assembly. Figure 3b shows the case of Allpaths-

LG þ BAUM on O. longistaminata. The genome size increased

greatly after BAUM was applied, and about one-third (35.2%) of

the extended regions were repetitive regions. In the case of M. undu-

latus (Fig. 3c), the proportion of repetitive regions in the extended

sequences was 34.4%, which was significantly larger than that in

the whole assembly (3.1%). All these results demonstrate that

BAUM has a unique ability in reconstructing repetitive regions.

This edge of BAUM over other assemblers is illustrated by three

repetitive regions, namely the Gypsy-47_OS-LTR (Supplementary

Fig. S8a), OLO24 (Supplementary Fig. S8b) and Helitron-N107B_OS

(Supplementary Fig. S8c). These three cases were taken from the

reference-assisted assembly of O. longistaminata. We can see that all

the three assemblers, SOAPdenovo2, Allpaths-LG and Abyss, had

problems in these regions, while BAUM successfully reconstructed the

three repetitive regions together with their neighborhoods.

4 Discussion

In this article, we propose an approach BAUM that can perform

reference-assisted assembly or improve the results by other assem-

blers. As shown by the cases of O. longistaminata and M. undulatus,

BAUM greatly improved the continuity and genome size, even if the

original assembly was highly fragmented and far from complete.

Moreover, a considerable amount of repetitive regions, which failed

to be assembled by the mentioned existing methods, were success-

fully reconstructed by BAUM. The performance of BAUM demon-

strates that for genome assembly, the SGS data still have great value

to be exploited.

The datasets in our experiments have a common feature: the

paired-end libraries with medium insert-sizes (300-2k) have high

coverage. Since BAUM pools paired-end libraries of diverse insert-

sizes in contig extension, a longer continuous extension can be

obtained within each iteration. This is crucial for improving the

highly fragmented assembly. The above results indicate that generat-

ing multiple medium insert-size libraries with higher coverage could

lead to much better assembly results.

Unique regions are the key to the control of uncertainty in all

steps of BAUM. The notion of unique regions has been used in the

DNA assembly since the era of Sanger sequencing (see Celera

Assembler (Myers et al., 2000) and ARACHNE (Batzoglou et al.,

2002)). In the context of SGS, the read lengths are short and the bal-

ance between uncertainty and uniqueness is different. BAUM uses

UM reads to deal with uncertainty, and the specific mapping crite-

rion decides whether a read is UM. We provide a theoretical founda-

tion for uniqueness in this work (Supplementary Note S1), which

can generally be used in computational genome research.

Computationally, BAUM adopts local OLC to extend the con-

tigs. Without decomposing the reads into k-mers, OLC can achieve

more robust contig extension. The computational complexity of

pair-wise alignment in OLC is quadratic with respect to read num-

ber. By distributing the reads according to their UM mates, the OLC

is carried out locally around the ends of each contig. The number of

reads involved in the extension of each contig is not large, and con-

sequently the computation complexity is acceptable. Since the exten-

sions for all contig are independent, we implement them in parallel.

The challenging computational requirements imposed by current

assembly projects of large genomes using high coverage of SGS reads

include not only the CPU number but also memory. For example, it is

written in the manual of Allpaths-LG that the estimated memory

usage is generally 1.7 times of the size of the dataset (Computational

Research and Development Group, 2013). Since BAUM performs

iterative assembly, we can take only a fraction of reads in de novo

assembly to ease the memory burden. Although the assembled contigs

are less complete to cover the whole genome, the missed part can be

recovered through the iterative assembly, as shown in the case of

Fig. 3. Reconstruction of repetitive regions in three applications of BAUM. The ini-

tial contigs (or the result of Allpaths-LG) and final assemblies are aligned to

RepBase and a region is identified as a repetitive region if it can be aligned to the

RepBase with identity higher than 70%. The bar charts show the lengths of repeti-

tive and unique regions. The pie charts show the proportions of repetitive and

unique regions in the extended parts. The RepBase library of Oryza is used to eval-

uate the two assemblies of O. longistaminata, while the RepBase library of ‘other

vertebrates’ (vrtrep.ref) is used to evaluate the assembly of M. undulatus. (a)

Reference-assisted assembly of O. longistaminata. (b) Improvement of Allpaths-

LG’s assembly for O. longistaminata. (c) Improvement of Allpaths-LG’s assembly

for M. undulatus (Color version of this figure is available at Bioinformatics online.)

2026 A.Wang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2019/4810438 by guest on 23 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty020#supplementary-data


O. longistaminata. Along the iterations, reads that are mapped to the

inner parts of contigs can be discarded, so that the mapping time in

the following iterations becomes shorter and shorter.

In the current version of BAUM, the initial contigs are generated

either from the genome of a close species or from a de novo assem-

bler. Different initial contigs may lead to different results. This can

be seen in Table 2, in which initial contigs were generated by

Allpaths-LG using Illumina reads and by Newbler using 454 reads.

The former has a longer contig N50 value while the latter has a lon-

ger genome size. How to integrate these results is an interesting topic

in the future investigation. The method proposed in (Zhao et al.,

2008) is a relevant technique solving such a problem.

As SMRT long reads become more and more widely used in

genome assembly, BAUM can potentially be incorporated into

hybrid assembly (Zimin et al., 2017). The improvement on continu-

ity and the increase on genome size by BAUM can reduce the num-

ber of long reads that need to be de novo assembled, and thereby

reduce the cost.

Acknowledgements

We thank Dr. Wen Wang and Dr. Yesheng Zhang at Kunming Institute of

Zoology, Chinese Academy of Sciences (CAS) for providing us with the

Illumina HiSeq and Roche 454 sequencing data of O. longistaminata.

We thank Liang Li from Chinese Academy of Sciences for her help with the

software development. We thank Dr. Meng Zou at the University of Iowa for

his critical suggestions on the organization and writing of the manuscript.

Funding

This work was supported by the Strategic Priority Research Program of the

Chinese Academy of Sciences (grant no. XDB13040600), the National

Natural Science Foundation of China (grant no. 91530105, 91130008), the

National Center for Mathematics and Interdisciplinary Sciences of the CAS

and the Key Laboratory of Systems and Control of the CAS.

Conflict of Interest: none declared.

References

Assefa,S. et al. (2009) ABACAS: algorithm-based automatic contiguation of

assembled sequences. Bioinformatics, 25, 1968–1969.

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Bao,W. et al. (2015) Repbase Update, a database of repetitive elements in

eukaryotic genomes. Mob. DNA, 6, 11.

Batzoglou,S. et al. (2002) ARACHNE: a whole-genome shotgun assembler.

Genome Res., 12, 177–189.

Berlin,K. et al. (2015) Assembling large genomes with single-molecule

sequencing and locality-sensitive hashing. Nat. Biotechnol., 33, 623–630.

Blattner,F.R. et al. (1997) The complete genome sequence of Escherichia coli

K-12. Science, 277, 1453–1462.

Boetzer,M. et al. (2011) Scaffolding pre-assembled contigs using SSPACE.

Bioinformatics, 27, 578–579.

Boetzer,M. and Pirovano,W. (2012) Toward almost closed genomes with

GapFiller. Genome Biol., 13, R56.

Bradnam,K.R. et al. (2013) Assemblathon 2: evaluating de novo methods of

genome assembly in three vertebrate species. Gigascience, 2, 10.

Butler,J. et al. (2008) ALLPATHS: de novo assembly of whole-genome shot-

gun microreads. Genome Res., 18, 810–820.

Camacho,C. et al. (2009) BLASTþ: architecture and applications. BMC

Bioinformatics, 10, 421.

Chakraborty,M. et al. (2016) Contiguous and accurate de novo assembly of

metazoan genomes with modest long read coverage. Nucl. Acids Res., 44,

e147.

Chen,S. et al. (2013) SEME: a fast mapper of Illumina sequencing reads with

statistical evaluation. J. Comput. Biol., 20, 847–860.

Chin,C.S. et al. (2013) Nonhybrid, finished microbial genome assemblies from

long-read SMRT sequencing data. Nat. Methods, 10, 563–569.

Computational Research and Development Group, t.B.I. ALLPATHS-LG FAQ.

2013. http://software.broadinstitute.org/allpaths-lg/blog/?page_id=336.

Eid,J. et al. (2009) Real-time DNA sequencing from single polymerase mole-

cules. Science, 323, 133–138.

Gao,S. et al. (2011) Opera: reconstructing optimal genomic scaffolds with

high-throughput paired-end sequences. J. Comput. Biol., 18, 1681–1691.

Gnerre,S. et al. (2011) High-quality draft assemblies of mammalian genomes

from massively parallel sequence data. Proc. Natl. Acad. Sci. USA, 108,

1513–1518.

Green,S.J. et al. (1994) PHRAP documentation. http://www.phrap.org

(22 January 2015, date last accessed).

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assem-

blies. Bioinformatics, 29, 1072–1075.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.

Bioinformatics, 28, 593–594.

Idury,R.M. and Waterman,M.S. (1995) A new algorithm for DNA sequence

assembly. J. Comput. Biol., 2, 291–306.

Jeffares,D.C. et al. (2017) Transient structural variations have strong effects

on quantitative traits and reproductive isolation in fission yeast. Nat.

Commun., 8, 14061.

Koren,S. et al. (2017) Canu: scalable and accurate long-read assembly via

adaptive k-mer weighting and repeat separation. Genome Res., 27,

722–736.

Langmead,B. and Salzberg,S.L. (2012) Fast gapped-read alignment with

Bowtie 2. Nat. Methods, 9, 357–359.

Li,H. and Durbin,R. (2009) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Li,L.M. (2005) An algorithm for computing exact least-trimmed squares esti-

mate of simple linear regression with constraints. Comput. Stat. Data Anal.,

48, 717–734.

Luo,R. et al. (2012) SOAPdenovo2: an empirically improved memory-efficient

short-read de novo assembler. Gigascience, 1, 18.

Maccallum,I. et al. (2009) ALLPATHS 2: small genomes assembled accurately

and with high continuity from short paired reads. Genome Biol., 10, R103.

Metzker,M.L. (2010) Sequencing technologies—the next generation. Nat.

Rev. Genet., 11, 31–46.

Myers,E.W. (1995) Toward simplifying and accurately formulating fragment

assembly. J. Comput. Biol., 2, 275–290.

Myers,E.W. et al. (2000) A whole-genome assembly of drosophila. Science,

287, 2196–2204.

Newbler, Roche (2014) 454-Life-Sciences.

Otto,T.D. et al. (2010) Iterative correction of reference nucleotides (iCORN)

using second generation sequencing technology. Bioinformatics, 26,

1704–1707.

Otto,T.D. et al. (2011) RATT: rapid annotation transfer tool. Nucl. Acids

Res., 39, e57.

Peng,Y. et al. (2010) IDBA—a practical iterative de Bruijn graph de novo

assembler. Res. Comput. Mol. Biol., Proc., 6044, 426–440.

Pevzner,P.A. et al. (2001) An Eulerian path approach to DNA fragment assem-

bly. Proc. Natl. Acad. Sci. USA, 98, 9748–9753.

Phillippy,A.M. (2017) New advances in sequence assembly. Genome Res., 27,

xi–xiii.

Roberts,R.J. et al. (2013) The advantages of SMRT sequencing. Genome

Biol., 14, 405.

Schatz,M.C. et al. (2010) Assembly of large genomes using second-generation

sequencing. Genome Res., 20, 1165–1173.

Shi,W.Y. et al. (2017) The combination of direct and paired link graphs can

boost repetitive genome assembly. Nucl. Acids Res., 45, e43.

Sim~ao,F.A. et al. (2015) BUSCO: assessing genome assembly and annotation

completeness with single-copy orthologs. Bioinformatics, 31, 3210–3212.

Simpson,J.T. et al. (2009) ABySS: a parallel assembler for short read sequence

data. Genome Res., 19, 1117–1123.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.

BAUM: improving genome assembly by adaptive unique mapping and local overlap-layout-consensus approach 2027

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2019/4810438 by guest on 23 April 2024

http://software.broadinstitute.org/allpaths-lg/blog/?page_id=336
http://www.phrap.org


Sovic,I. et al. (2016) Evaluation of hybrid and non-hybrid methods for de

novo assembly of nanopore reads. Bioinformatics, 32, 2582–2589.

Swain,M.T. et al. (2012) A post-assembly genome-improvement toolkit (PAGIT)

to obtain annotated genomes from contigs. Nat. Protoc., 7, 1260–1284.

Treangen,T.J. and Salzberg,S.L. (2011) Repetitive DNA and next-generation

sequencing: computational challenges and solutions. Nat. Rev. Genet., 13,

36–46.

Tsai,I.J. et al. (2010) Improving draft assemblies by iterative mapping and

assembly of short reads to eliminate gaps. Genome Biol., 11, R41.

Warren,R.L. et al. (2007) Assembling millions of short DNA sequences using

SSAKE. Bioinformatics, 23, 500–501.

Wick,R.R. et al. (2017) Unicycler: resolving bacterial genome assemblies from

short and long sequencing reads. PLoS Comput. Biol., 13, e1005595.

Xiao,C.L. et al. (2017) MECAT: fast mapping, error correction, and de novo

assembly for single-molecule sequencing reads. Nat. Methods, 14,

1072–1074.

Zerbino,D.R. and Birney,E. (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res., 18, 821–829.

Zhang,Y. et al. (2015) Genome and comparative transcriptomics of African

wild rice Oryza longistaminata provide insights into molecular mechanism

of rhizomatousness and self-incompatibility. Mol. Plant, 8, 1683–1686.

Zhao,F.Q. et al. (2008) A new pheromone trail-based genetic algorithm for

comparative genome assembly. Nucl. Acids Res., 36, 3455–3462.

Zimin,A.V. et al. (2017) Hybrid assembly of the large and highly repetitive

genome of Aegilops tauschii, a progenitor of bread wheat, with the

MaSuRCA mega-reads algorithm. Genome Res., 27, 787–792.

2028 A.Wang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2019/4810438 by guest on 23 April 2024


	bty020-TF1
	bty020-TF2
	bty020-TF3

