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Abstract

Summary: OmicsPrint is a versatile method for the detection of data linkage errors in multiple

omics studies encompassing genetic, transcriptome and/or methylome data. OmicsPrint evaluates

data linkage within and between omics data types using genotype calls from SNP arrays, DNA- or

RNA-sequencing data and includes an algorithm to infer genotypes from Illumina DNA methylation

array data. The method uses classification to verify assumed relationships and detect any data link-

age errors, e.g. arising from sample mix-ups and mislabeling. Graphical and text output is provided

to inspect and resolve putative data linkage errors. If sufficient genotype calls are available, first de-

gree family relations also are revealed which can be used to check parent–offspring relations or

zygosity in twin studies.

Availability and implementation: omicsPrint is available from BioConductor; http://bioconductor.

org/packages/omicsPrint.

Contact: mviterson@gmail.com or bas.heijmans@lumc.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Increasingly, human studies involve the generation and analysis of

multiple omics data for large groups of individuals (Baranzini et al.,

2010; Bonder et al., 2017). These efforts require careful data man-

agement and quality control as in each step of laboratory protocols

and sample-logistics there is the risk of introducing sample mix-ups.

The resulting errors in data linkage reduce the power to detect bio-

logically meaningful results (Buyske et al., 2009). The importance of

this issue is widely recognized, particularly in the field of genetics

(Abecasis et al., 2001; Pedersen and Quinlan, 2017). However, for

the linkage of genetic data with other omics data types, fewer tools

are available. Moreover, they rely on indirect measures of genotypes

(e.g. the effect of quantitative trait loci) resulting in ambiguous as-

signments (Westra et al., 2011). Also, current tools do not provide

functionality to perform analyses within an omics data type other

than genetics to detect errors or family relations. Here, we present

omicsPrint, a versatile method for the detection of data linkage

errors and family relations in large-scale multiple omics studies. The

method uses a classification approach on the basis of genotype calls

derived from the different data types resulting in a clear distinction

between verified relationships and errors due to sample mix-ups,

mislabelings and, if sufficient genotype calls are available, first-

degree family relations.

2 Implementation

Identity by state (IBS) is a genetic similarity measure that compares

at a single locus the genotypes between two individuals and counts

the number of alleles shared (0, 1 or 2). The IBS mean and variance,

calculated for a set of genetic variants, can be used to identify re-

latedness between individuals (Abecasis et al., 2001). OmicsPrint

applies linear discriminant analysis on the IBS means and variances

for all individuals in a study to determine sample mix-ups and clas-

sify first degree family relations automatically obviating the need for
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arbitrary thresholds. Key to the comparisons across multiple types

of omics data is the availability of a set of overlapping genetic vari-

ants. Specifically, for DNA methylation data obtained using the

Illumina Human Methylation arrays (450 k/EPIC) an unsupervised clus-

tering approach using the K-means algorithm was implemented to call

genotypes for CpG-probes that are known to be affected by bi-allelic

SNPs in probe-sequences (Zhou et al., 2017). Additionally, omicsPrint

provides a subset of the annotation data generated by Zhou et al.,

(2017) to ease the extraction of CpG-probes affected by bi-allelic SNPs

specificly for different populations. For RNA-sequencing data, several

methods exist for the extraction of genotype calls (Piskol et al., 2013).

3 Example

To illustrate the use of our method, we performed sample relation verifi-

cation within and across omics data types using multiple publicly avail-

able data sets. First, we used DNA sequencing from the 1000 genomes

project (Birney and Soranzo, 2015) and Illumina 450k array data

(GSE39672) (Moen, 2013) for 134 HapMap individuals. IBS mean-

variance plots generated by omicsPrint revealed the expected clusters of

unrelated samples (comparing a sample with all other samples) and

related samples (sample with itself) for both genotypes measured using

DNA sequencing and genotypes inferred from Illumina methylation

array data using omicsPrint (Fig. 1A and B). Moreover, the IBS mean-

variance of DNA-sequencing versus DNA methylation array data using

437 overlapping genotypes verified correct data linkage for all but 2 indi-

viduals (Fig. 1C). When artificially introduced, linkage errors can clearly

be detected (Fig. 1D). A simulation indicated that �250 genotypes are

sufficient to detect data linkage errors (Supplementary Material S1).

Second, we inferred genotypes from DNA methylation array data

on 18 sibling pairs (GSE102177) (Kim et al., 2017) to show that our

approach can reliably detect first degree family relationships (1002

genotypes; Fig. 1E). Likewise, these inferred genotypes can be used to

determine the zygosity of twin pairs (Supplementary Material S2).

Finally, genotypes inferred from DNA methylation data obtained on

two tissues (dermis and epidermis) from 30 individuals (Vandiver

et al., 2015) (GSE52980) to illustrate the utility of omicsPrint to match

multiple samples from a single individual (895 genotypes; Fig. 1F).

4 Conclusion

We describe omicsPrint, a new software method for the reliable and fast

detection of data linkage errors in large-scale multiple omics studies.

The method uses genotype calls that are either measured or inferred

from RNA-seq or DNA methylation array data. Automatic classifica-

tion of genetic similarity based on IBS and supporting graphical and text

output allows users to quickly review and resolve data linkage errors.
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Fig. 1. Graphical output of omicsPrint: IBS mean-variance plots of (A) DNA-

seq/DNA-seq comparison for 104 HapMap individuals using 7107 genotypes

extracted from 1000 Genomes data, (B) DNAm-array/DNAm-array compari-

son for 134 HapMap individuals using 8977 genotypes inferred from DNA

methylation array data with omicsPrint, (C) DNA-seq/DNAm-array cross-

omics comparison for 133 HapMap individuals using 437 genotypes overlap-

ping between datasets, (D) same as (C) but now after introducing 10 artifical

sample mix-ups detectable as differently colored dots in a cluster (two rela-

tions need further inspection as these appear in an unexpected region; black

dots with circles). (E) DNAm-array/DNAm-array comparison for 18 sibling

pairs using 1002 inferred genotypes and (F) DNAm-array/DNAm-array com-

parison for 2 tissue types sampled from 30 individuals using 895 inferred

genotypes (Color version of this figure is available at Bioinformatics online.)

omicsPrint 2143

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/12/2142/4840579 by guest on 19 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty062#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty062#supplementary-data

