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Abstract

Motivation: Elucidation of protein native states from amino acid sequences is a primary com-

putational challenge. Modern computational and experimental methodologies, such as mo-

lecular coevolution and chemical cross-linking mass-spectrometry allowed protein structural

characterization to previously intangible systems. Despite several independent successful

examples, data from these distinct methodologies have not been systematically studied in

conjunction. One challenge of structural inference using coevolution is that it is limited to

sequence fragments within a conserved and unique domain for which sufficient sequence data-

sets are available. Therefore, coupling coevolutionary data with complimentary distance con-

straints from orthogonal sources can provide additional precision to structure prediction

methodologies.

Results: In this work, we present a methodology to combine residue interaction data obtained from

coevolutionary information and cross-linking/mass spectrometry distance constraints in order to

identify functional states of proteins. Using a combination of structure-based models (SBMs) with

optimized Gaussian-like potentials, secondary structure estimation and simulated annealing mo-

lecular dynamics, we provide an automated methodology to integrate constraint data from diverse

sources in order to elucidate the native conformation of full protein systems with distinct

complexity and structural topologies. We show that cross-linking mass spectrometry constraints

improve the structure predictions obtained from SBMs and coevolution signals, and that the con-

straints obtained by each method have a useful degree of complementarity that promotes

enhanced fold estimates.

Availability and implementation: Scripts and procedures to implement the methodology pre-

sented herein are available at https://github.com/mcubeg/DCAXL.

Contact: leandro@iqm.unicamp.br
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1 Introduction

Elucidation of the three-dimensional functional conformation of

proteins is a key step to understand fundamental biochemical proc-

esses of living organisms (Alberts, 1998; Alberts et al., 2014;

Piccolino, 2000). Although the native state of a protein is directly

determined by its amino acid sequence (as stated by Anfinsen’s

dogma), the very large number of degrees of freedom and consider-

ation of various physico–chemical environments turns the prediction

of protein 3-D structures a perplexing problem (Anfinsen, 1973;

Dobson et al., 1998; Dobson, 2003; Dill and MacCallum, 2012).

During the last two decades, numerous methodologies have been de-

veloped to perform in silico prediction of native states of proteins

(Baker, 2014; Baker and Sali, 2001; Cooper et al., 2010; Honig,

1999; Rohl et al., 2004; Roy et al., 2010; Webster, 2000;). Although

several methods have shown substantial accuracy in identifying fold-

ing architectures of specific systems, their applicability is usually

limited to comparative modeling or requires massive computational

power (Bender et al., 2016; Dill and MacCallum, 2012; Freddolino

et al., 2010; Kelley et al., 2015; Piana et al., 2014; Roche and

McGuffin, 2016; Yang et al., 2015).

In this context, coevolutionary signals have been used with re-

markable success in the identification of inter- and intramolecular

protein interactions related to a broad range of functional states

(Göbel et al., 1994; de Juan et al., 2013; Morcos et al., 2011; 2014;

Taylor et al., 2013). It is based on the principle that during the dif-

ferentiation of a protein family along divergent evolution, mutation

events in residues that are critical to protein functionality are com-

pensated by complementarity mutations (Göbel et al., 1994; de Juan

et al., 2013; Morcos et al., 2011; Shindyalov et al., 1994). When suf-

ficient sequence data are available, statistical methods can be applied

in multiple sequence alignments (MSAs) to estimate the correlation

between these pairwise mutations and to identify co-evolving residues

that typically are a proxy for spatial proximity in the native state

(Morcos et al., 2011). Several molecular modeling techniques have

been successfully adapted to include such co-evolutionary couplings

as parameters to assist fold recognition and elucidate the organization

of oligomeric complexes (Hopf et al., 2012; Marks et al., 2012;

Morcos et al., 2011; Ovchinnikov et al., 2014; dos Santos et al.,

2015; Sułkowska et al., 2012; Sutto et al., 2015). RNA structure elu-

cidation has also benefit from the use of global methods to extract

residue interactions (De Leonardis et al., 2015; Taylor and Hamilton,

2017; Weinreb et al., 2016).

Another distinct and promising state-of-the-art methodology to

infer structural information about biomolecular systems is the com-

bination of chemical cross-linking (XL) and mass spectrometry (MS)

techniques (XL-MS) (Sinz et al., 2015; Young et al., 2000). Most

commonly, cross-links are obtained by the exposure of a target pro-

tein to bifunctional chemical linkers able to react with specific pro-

tein residue side chains. Typically, proteins are subjected to tryptic

digestion followed by MS analysis. Identification of modified pep-

tides provides information from pairwise maximum distance limits

that can be used to restrict search through the protein conform-

ational space (Sinz, 2006; Sinz et al., 2015). Recent advances in

mass spectrometry instrumentation, the establishment of robust

cross-linking protocols and the development of specialized software

for cross-linking identification have expanded the applicability of

XL-MS to assist protein fold determination and complex predictions

(Brodie et al., 2017; Hofmann et al., 2015; Jin Lee, 2008; Liu et al.,

2015; Nguyen-Huynh et al., 2015; Paramelle et al., 2013;

Petrotchenko et al., 2014; Pereira et al., 2014; Santos et al., 2011;

Sinz, 2006 ).

Concerning the conformational search intrinsic to any structural

prediction method, the use of simplified representations of the pro-

tein structure allows an efficient search of the conformational space.

For example, coarse-grained models using only Ca atoms are proven

to be practical in the context of structure prediction from coevolu-

tionary constraints and also for the analysis of folding energy land-

scapes (Bryngelson et al., 1995; Onuchic et al., 1997; Onuchic and

Wolynes, 2004; Wolynes et al., 1995). These simplified models,

which originally were conceived using distance constraints obtained

from the crystallographic models are called structure-based models

(SBMs) and proved to properly represent not only native states but

also the multi-dimensional energy funnel that allows the observation

of ensembles of intermediate states (Bryngelson et al., 1995; Dill

et al., 2008; Onuchic et al., 1997; Wolynes et al., 1995). With an

SBM, it is possible to efficiently explore the energy landscape of

folding implied by structural data, which is incorporated as inter-

action potentials in biased molecular dynamic simulations (Clementi

et al., 2000; Noel et al., 2010; Onuchic and Wolynes, 2004;

Whitford et al., 2009). Lately, the integration of SBM and coevolu-

tionary signals has shown to be an efficient framework to study the

protein conformational changes (Morcos et al., 2013; Sfriso et al.,

2016), complex formation (dos Santos et al., 2015) and the func-

tional conformation of small globular systems (Sułkowska et al.,

2012). Recent coarse grained models like Associative Memory,

Water Mediated, Structure and Energy Model (AWSEM, Chen

et al., 2016; Davtyan et al., 2012) that include memory terms for

fragments and optimized potential have also integrated evolutionary

restrains successfully to make estimates of protein folds (Sirovetz

et al., 2017).

In this study, we show that SBMs can be used to obtain struc-

tural models of the tertiary structure of proteins by incorporating

distance constraints obtained from coevolutionary information with

those obtained by chemical cross-linking mass-spectrometry, in an

efficient and complementary fashion that leads to more robust and

accurate structural predictions.

2 Materials and methods

2.1 Estimation of coevolutionary couplings
The comparison of protein sequences within a specific domain can

provide information about correlated mutations and aid the infer-

ence of physical contacts among residues (Göbel et al., 1994;

Shindyalov et al., 1994). A very effective method to compute direct

couplings in a MSA, that are typically predictors of physically inter-

acting residue pairs, is direct coupling analysis (DCA; Morcos et al.,

2011; Weigt et al., 2009). A detailed description is provided in

Supplementary Section S1.

We have used coevolutionary information from DCA to predict

protein structures in the past for several systems (Sułkowska et al.,

2012), an approach also used successfully by several others (Hayat

et al., 2015; Hopf et al., 2015, 2012; Michel et al., 2017;

Ovchinnikov et al., 2017). In this work, we are concerned about the

effects of integrating experimental data with such coevolutionary

signals to improve the process of structural estimation. For this pur-

pose, we selected a set of five protein systems (Table 1) with differ-

ent degrees of evolutionary coupling accuracies (Cherfils et al.,

1997; Luhavaya et al., 2015; Ohren et al., 2007; Stenkamp, 2008;

Trajtenberg et al., 2014; Zhang et al., 2010). For all these systems,

MSAs were obtained from the Pfam protein family database. Top

DCA pairs with highest correlation were selected in equal number L

to the length of domain in MSAs. A number of couplings close to
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the length of the protein have been proposed to be sufficient for effi-

cient structure determination (Kamisetty et al., 2013).

2.2 Cross-linking/mass spectrometry constraints
We combined DCA constraints, i.e. couplings with high Direct

Information (DI) values, with chemical cross-linking/mass-spectrometry

(XL) constraints. The constraints were obtained either experimen-

tally or by modeling the expected constraints from the crystallo-

graphic model using the Topolink software (Martinez et al., 2017),

which computes the solvent-accessible paths and distances for a

linker connecting potentially reactive residues. Effective maximum

distances for each type of cross-linking considered are listed in

Supplementary Table S2.

The experimental dataset for SalBIII (eXL) was comprised by 38

constraints, which resulted from the use of commonly commercial

DSS cross-linker and a novel chemistry, named Xplex, which is able

to use 1, 6-hexanediamine as a linker as well as to produce simultan-

eously the formation of zero-length species (unpublished data). No

evidence for quaternary cross-links was obtained, suggesting that

SalBIII was monomeric in solution. A scheme of the possible linked

residues and the experimental constraints distribution over SalBIII

sequence is presented in Supplementary Figure S1.

In the case of the SalBIII system, an ideal cross-linking experi-

ment would provide 74 constraints, as predicted by Topolink.

Experimentally, 38 constraints were recovered (51%). This relation

was used to estimate the limitations in XL experimental determin-

ation. Therefore, for the other examples, for which experimental re-

strictions are not available, XL constraints were obtained by

randomly selecting 50% of the crosslinks predicted by Topolink,

analogous to the observed SalBIII results.

2.3 Estimation of pairwise equilibrium distances for

DCA constraints
Previous conformational studies using DCA signals as interaction

potentials for SBM systematically employ a unique equilibrium dis-

tance for Ca pairs to represent predicted interaction restrictions in-

dependently of residue types (dos Santos et al., 2015; Schug et al.,

2009; Sfriso et al., 2016). In an effort to provide a better description

of residue–residue interaction distances, we performed a statistical

analysis of a large dataset of protein conformations from protein

data bank (PDB). We analyzed 43 606 deposited crystallographic

structures within 2 Å resolution and computed the Ca–Ca distances

for all physically interacting pairs in unique chains. An statistical es-

timator corresponding to the peak of the distance distribution was

designated as equilibrium distance for each specific pair of residue

types (Supplementary Figure S2). This estimation resulted in a gen-

eral improvement in prediction accuracy.

2.4 SBMs
In order to explore the folding of a diverse set of proteins driven

by coevolution and XL/MS signals, initial unfolded models for

each system were generated using coarse-grained SBMs with resi-

dues represented only by Ca atoms (Clementi et al., 2000;

Matysiak and Clementi, 2004). These unfolded models are com-

posed by a linear arrangement of Ca beads with null parameters

for all dihedrals. Parameters for bound interactions were gener-

ated using an in-house algorithm (available at: https://github.com/

mcubeg/DCAXL). Bonding angles and dihedrals for each region

of protein sequence were estimated by computing the secondary

structure with Jpred (Drozdetskiy et al., 2015) and setting optimal

parameters based on ideal a-helix and b-sheet structures

(Supplementary Table S1). Furthermore, this simple strategy

allows the application of secondary structure predictions from di-

verse sources.

Based on the top ranked coevolving pairs from DCA

and observed cross-linking, Gaussian-like potentials were generated

to represent each pairwise interaction as described in the

Supplementary Material (Lammert et al., 2009; Noel and Onuchic,

2012; dos Santos et al., 2015). For cross-linking interactions, a

maximum effective cross-linking distance (Supplementary Table S2)

was used to approximate a flat harmonic potential by summation

of Gaussian functions with distinct equilibrium positions

(Supplementary Section S2).

A schematic of the entire process for merging coevolution and

cross-linking signals as structure based models is depicted in

Figure 1.

Table 1. Systems selected for folding prediction

System PDB Pfam ID sequences I 6 SD (%) DL FL

SalBIII 5CXO PF12680 8806 0.17 6 0.05 104 134

DesR 4LE1 PF00072 31596 0.25 6 0.07 111 132

RAP2A 1KAO PF00071 16898 0.3 6 0.1 160 167

Rhodopsin 3C9L PF00001 27067 0.20 6 0.07 252 326

Abl Kinase 3K5V PF07714 16405 0.30 6 0.08 250 286

Creatine Kinase 1U6R PF00217 1182 0.3 6 0.2 214 380

PF02807 778 0.5 6 0.2 71

Note. DL: pfam domain length; FL: full protein length; I: mean identity of

multiple alignment.

Fig. 1. Schematic representation of the steps required for generating protein

fold predictions. (A) Primary sequence of a target protein is used to predict

the type of secondary structure. An MSA of a protein family is used to esti-

mate coevolving pairs. Interaction signals obtained by chemical cross-linking

coupled to MS are also obtained. (B) These datasets are merged to generate

an initial unfolded model and a energy landscape (SBM, i.e a customized

force-field) for conformational search. (C) Short molecular dynamics simula-

tions using temperature annealing are carried out to identify conformations

with optimal restriction agreement

Combining molecular coevolution and XL/MS for protein folding prediction 2203
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2.5 Folding simulations
Simulations of protein folding were performed using a modified ver-

sion of Gromacs package with support for Gaussian-like potentials

(Noel et al., 2016, 2010; Lammert et al., 2009). Each simulation

was developed using an annealing protocol where the system tem-

perature was reduced from 200 to 1 in steps of 100 ps. With this

protocol, each folding simulations takes about 1 h of computing

time using 4 CPUs (Intel Xeon E5-2670 v2 of 2.50 GHz) for proteins

of medium range sizes (250 aa). We performed 1000 independent

folding runs for each system to obtain statistically meaningful data

on the accuracy of the folding protocol (Fig. 1). Also, the ensemble

of models obtained allows for the use of clustering methods for final

model evaluation (see Section 2.5). The final template modeling

(TM)-score (Xu and Zhang, 2010; Zhang and Skolnick, 2004) and

root-mean square deviation (RMSD) values were computed using

LovoAlign (Martı́nez et al., 2007) considering the last frame of each

simulation and the reference crystallographic models. All-atom

models of folded conformations were constructed with REconstruct

atomic MOdel from reduced representation (REMO, Li and

Zhang, 2009) from the final Ca coordinates obtained from

Molecular Dynamics (MD) simulations with no further refinement.

2.6 Blind selection of correct folds
The modeling performed here generated sets of 1000 models for

each target. Therefore, we can explore the properties of the ensem-

ble to classify models, using consensus methods (Kryshtafovych

et al., 2014). Here, we opt to use a blind selection of folding con-

formations from decoy ensembles consisting of evaluating the aver-

age similarity of each model to all other models of the ensemble.

This classificator is known as the ‘Davis-QA-consensus’ method

(Kryshtafovych et al., 2014). All-on-all structural alignments of the

models were performed within each ensemble using LovoAlign

(Martı́nez et al., 2007) and the average TM-score was computed for

each model.

3 Results

3.1 Coevolutionary and XL/MS signals contribute

synergistically to folding prediction
We investigate the contribution of coevolutionary and cross-linking

signals on prediction accuracy of the native state of full proteins

using SBMs. As an initial case of study, we performed ab initio

structure predictions of SalBIII protein from Streptomyces albus and

compared with its respective full X-ray structure (PDB ID: 5CXO -

chain B), for which experimental cross-linking constraints were

obtained recently by Gozzo and co-workers (unpublished data).

Coevolutionary constraints were inferred for SalBIII using DCA and

the MSA for its family (SnoaL-like domain; Table 1). Top L pairs

used for simulations are shown as blue dots in Figure 2. Comparison

with monomeric contacts from an X-ray crystal shows substantial

agreement of DCA within SalBIII assigned domain. Experimental

cross-linking constraints (black circles, Fig. 2) also agree very well

with the monomeric X-ray map and are mainly found outside the re-

gions covered by DCA, providing distinct and complementary con-

tact information from that obtained by coevolution. A possible

reason to this complementarity is the fact that highly coevolved cou-

plings are originated from interactions that are crucial to preserve

minimal function and are usually located in the deep core of macro-

molecular structure. On the other hand, chemical cross-linking reac-

tions are limited to exposed amino acids and can only account for

contacts within surface vicinity. Therefore, important structural

information from both sources can be used to get a refined descrip-

tion of interaction patterns.

In order to evaluate the extent to which cross-linking data can

contribute to increase folding accuracy of SalBIII, we also con-

sidered an ideal cross-linking experiment corresponding to the set of

all possible cross-links that can be expected from the set of linkers

used and crystallographic models (red dots, Fig. 2, see Section 2 for

details). Consideration of this idealized experiment confirmed the

low overlap with evolutionary couplings, evidencing that both tech-

niques can provide unique structural information, which can be uti-

lized to increase prediction accuracy of any computational protocol.

Figure 3 shows the distributions of TM-scores for 1000 simula-

tions in ensembles considering each set of distance restrictions. As

expected, simulations using only secondary structure information

and no distance restrictions resulted in TM-score values below 0.2

(distributions in grey, Fig. 3 and Table 2), corresponding to random

conformations.

When considering only predicted coevolutionary contacts

(Fig. 3, blue distribution) simulations were able to reach folded

models with TM-scores relative to the crystallographic model

greater than 0.5, meaning that the overall correct fold was obtained

(Zhang and Skolnick, 2004), however with low frequency (Table 2).

When using exclusively experimental cross-linking signals (38 pairs,

see Section 2), an improvement in the TM-score distribution is ob-

tained relative to unrestrained simulations (Fig. 3A, green distribu-

tions). Therefore, although the restrictions are quite broad in terms

of equilibrium distances, they contribute with meaningful informa-

tion to structure prediction. Nevertheless, no models with proper

folds were obtained.

When considering all possible cross-linking signals (74 pairs),

cross-linking constraints provided and additional shift of the ensem-

ble towards higher TM-scores but were still insufficient to achieve

fold-level predictions for this system (Fig. 3B, green distributions

Fig. 2. Pairwise interactions used for prediction of SalBIII structure.

Comparison of distinct residue–residue distance restrictions obtained from

coevolution analysis (blue dots) and experimental and theoretical cross-link-

ing/MS signals (black and red circles, respectively) with monomeric contacts

of SalBIII X-ray structure. Physical contacts were computed considering

Ca pairs within a distance of 10 Å
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and Table 2). Therefore, in the context of structure prediction using

SBMs, the cross-linking distance restraints appear not to be precise

enough to obtain correctly folded structures. This is expected given

that neither the SBMs (which in this case do not carry any a priori

information on the folded structure) nor the cross-links provide pre-

cise residue distance information.

Finally, when we integrate both interactions signals from coevo-

lution and cross-linking, we observe an overall and significant im-

provement of folding prediction (Table 2). The joint use of

experimental cross-links and DCA constraints promoted an increase

of 10% in the TM-score of the best predicted model and, most im-

portantly, a 20-fold enhancement of population of models display-

ing the overall correct fold (Table 2). When considering every

possible cross-linking pair along with DCA predictions, we observed

an increase of 12% in the TM-score of the best prediction, with an

improvement of approximately 40 times on the frequency of simula-

tions reaching the correct fold.

These results motivate the notion that information obtained

from coevolution and cross-linking are complementary and can be

synergistically applied to increase accuracy and the rate of success in

current structure prediction methods.

3.2 Fold of proteins with diverse topologies
We applied the proposed methodology (Fig. 1) to a set of systems

with diverse topologies (Table 1). In these cases, cross-linking con-

straints were determined computationally by using the Topolink

package and a random subset of theoretical restrictions (tXL)

was utilized to represent the average number of links obtained in

XL/MS experiments (see Section 2). Predicted DCA couplings and

cross-linking/MS signals for each system are shown in

Supplementary Figure S3. A combination of constraints obtained

from distinct methodologies (DCA or theoretical cross-linking) pro-

moted substantial improvement in prediction accuracy in all systems

selected in this study, when compared with predictions based solely

in unique sources of pairwise distance restrictions (only DCA or

cross-linking restrictions, Table 3).

Coevolutionary pairs obtained from DCA integrated in SBM po-

tentials showed fold-level accuracy in all systems selected containing

single families, with a considerable higher statistics (�80% for

RAP2A and Rhodopsin, Table 3 and Supplementary Fig. S4).

Despite cross-link signals only provide upper-limit distances for resi-

due pair interactions, in some cases, the constraints predicted

(tXL) were sufficient to drive the simulations towards correct

folds (RAP2A, Abl Kinase and Creatine Kinase, Table 3 and

Supplementary Fig. S4). These results provide evidence that cross-

linking data can improve conformational search and folding predic-

tions and validate this approach as an efficient methodology to assist

protein structural characterization.

An special case considered in this study is creatine kinase. This

protein contains two distinct conserved domains (Pfam families:

PF00217 and PF02807) with limited sequence data, hindering the

application of coevolution for structural characterization. As shown

in Table 3 and Supplementary Figure S4, using only distance con-

straints from DCA was insufficient to recover protein native con-

formations. This same limitation was observed when using only

cross-linking restrictions, although a small fraction of predicted con-

formations achieved near fold-level accuracy (Supplementary Fig.

S4). For this case, the combination of DCA and cross-linking signals

showed to be crucial to improve the prediction into fold-level accur-

acy (TM-score>0.5). This is a representative case of the types of

systems where the proposed methodology would be more beneficial.

3.3 Blind selection of native folds
Discrimination of protein native state from folding decoys is a diffi-

cult problem (Park et al., 1997). This problem is even more chal-

lenging when ab initio predictions provide large decoy ensembles

with a plethora of possible folding architectures (Brodie et al., 2017;

Cooper et al., 2010; Kosciolek and Jones, 2014; Rohl et al., 2004).

Even though there has been a significant refinement improvement in

Fig. 3. Contributions of distinct distance constraints to folding prediction.

Comparison of TM-score distributions for folding of SalBIII protein using

coevolution signals and (A) experimental cross-links or (B) theoretical cross-

links as interaction data. SalBIII X-ray structure was used as reference model

(PDB: 5CXO)

Table 2. Comparison of SalBIII folding prediction using distinct dis-

tance constraints

Restriction None DCA eXL iXL DCAþ eXL DCAþ iXL

Best TM-score 0.19 0.51 0.27 0.37 0.56 0.57

%TM-score > 0.5 0 1.3 0 0 26.0 51.9

Note. DCA: coevolution signals obtained from direct-coupling analysis;

eXL: experimental cross-linking/MS signals; iXL: ideal theoretical cross-link-

ing/MS signals based on available X-ray models.

Table 3. Combination of coevolutionary and cross-linking distances

restrictions to predict folding of diverse protein systems

System Distance restriction

None tXL DCA DCAþ tXL

DesR Best TM-score 0.19 0.38 0.56 0.60

%TM-score > 0.5 0 0 69.7 83.5

RAP2A Best TM-score 0.16 0.50 0.68 0.72

%TM-score > 0.5 0 0 80.5 75.9

%TM-score > 0.6 0 0 53.4 75.6

Rhodopsin Best TM-score 0.20 0.35 0.60 0.62

%TM-score > 0.5 0 0 79.5 81.3

%TM-score > 0.6 0 0 0 12.6

Abl kinase Best TM-score 0.15 0.47 0.58 0.64

%TM-score > 0.5 0 0 58.2 58.7

%TM-score > 0.6 0 0 0 40.8

Creatine kinase Best TM-score 0.14 0.50 0.36 0.59

%TM-score > 0.5 0 0 0 12.1

Note. DCA: coevolutionary signals obtained from direct-coupling analysis.

tXL: theoretical cross-linking/MS signals based on available X-ray models.
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theoretical models describing physical interactions, successful iden-

tification of correct folded states based solely in energy func-

tions is rare (Deng et al., 2016; Mishra et al., 2016; Mirny and

Shakhnovich, 1996; Sankar et al., 2017; Uziela et al., 2017; Zhou

et al., 2014a, 2014b). Recent progress has been achieved using alter-

native approaches such as entropy estimation and machine learning

methods (Sankar et al., 2017; Uziela et al., 2017).

Since we generate an ensemble of 1000 models for each system,

we chose to use a consensus method to classify the models

(Kryshtafovych et al., 2014). We employed the Davis-QA-consensus

classification method for each ensemble of models predicted using

DCA and cross-linking/MS data (Table 3). The models with greatest

average similarity to all other models in the ensemble were selected.

This evaluation allowed to successfully identify the models in the

upper limit of TM-score predictions (Fig. 4). Therefore, clustering

by similarity resulted to be an effective method for quality assess-

ment of models generated using the current protocol.

4 Discussion

In this work, we provide an effective, computationally inexpensive

and robust methodology to predict protein folds using residue–resi-

due couplings from coevolution and cross-linking/MS data inte-

grated with structure based models. We performed a systematic

study of the role of each signal component in structure prediction

performance for a diverse set of protein topologies. We observe a

synergism between coevolutionary and cross-linking restrictions,

each contributing with distinct and unique structural information

that led to an increase of folding prediction accuracy. While coevo-

lution couplings are usually prevalent in the core of protein struc-

tures by key intermolecular contacts that promotes packing, cross-

linking reactions are restricted to protein surface due to physical

accessibility. Therefore, both components contribute with important

information to solve tertiary structure. This is particularly true for

the challenging coevolution cases where sequence availability is lim-

ited or the domain coverage is insufficient.

Molecular coevolution has recently been established as a signifi-

cant technique to infer protein interactions and assist structural elu-

cidation. On the other side, the use of experimental cross-linking/

MS with long-range linkers as a unique source of interactions is usu-

ally insufficient for fine molecular description such as needed for

folding prediction (Tamò et al., 2017). Interestingly, although cross-

linking signals constitute non-precise distance restrictions, they can

provide enough information to allow folding elucidation when sub-

stantial data are available (as shown for DesR, RAP2A and Abl and

creatine kinases). This observation also suggests that improvement

in equipment sensibility for cross-linking/MS signals should boost

structural elucidation over the next years.

Finally, we demonstrate how folding ensembles can be used to

identify plausible functional conformations by applying a self-

consistent similarity analysis. The described methodology can be

easily applied to practical problems in structural biology using the

protocol and scripts developed in this work and available for others

to use. We expect that this approach that integrates and maximizes

computational and experimental methodologies will be useful to

elucidate important challenges in structural bioinformatics.
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