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Abstract

Motivation: Single-nucleotide polymorphism (SNP)–SNP interactions (SSIs) are popular markers

for understanding disease susceptibility. Multifactor dimensionality reduction (MDR) can success-

fully detect considerable SSIs. Currently, MDR-based methods mainly adopt a single-objective

function (a single measure based on contingency tables) to detect SSIs. However, generally, a

single-measure function might not yield favorable results due to potential model preferences and

disease complexities.

Approach: This study proposes a multiobjective MDR (MOMDR) method that is based on a contin-

gency table of MDR as an objective function. MOMDR considers the incorporated measures,

including correct classification and likelihood rates, to detect SSIs and adopts set theory to predict

the most favorable SSIs with cross-validation consistency. MOMDR enables simultaneously using

multiple measures to determine potential SSIs.

Results: Three simulation studies were conducted to compare the detection success rates of

MOMDR and single-objective MDR (SOMDR), revealing that MOMDR had higher detection success

rates than SOMDR. Furthermore, the Wellcome Trust Case Control Consortium dataset was ana-

lyzed by MOMDR to detect SSIs associated with coronary artery disease.

Availability and implementation: MOMDR is freely available at https://goo.gl/M8dpDg

Contact: chuang@isu.edu.tw or e0955767257@yahoo.com.tw

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As revealed by the results of genome-wide association studies

(GWAS), some diseases tend to be influenced by interactions be-

tween multilocus single-nucleotide polymorphisms (SNPs) (Moore

et al., 2010). SNP–SNP interactions (SSIs) among genes have been

found in some complex traits of the diseases (Steen, 2012). The ana-

lysts have considered SSIs as a solution to address concerns about

missing heritability (Mackay, 2014). Moreover, developing efficient

approaches for SSI analysis is imperative in genetic association stud-

ies (Mackay and Moore, 2014).

A model-free approach is one method which can be used to de-

tect SSIs and does not require prior assumption of the genetic models

and data. (Hahn et al., 2003; Li et al., 2014; Zhang et al., 2010).

Multifactor dimensionality reduction (MDR) (Ritchie et al., 2001) is

a well-known model-free approach in case–control studies. MDR

entails adopting a dimensionality reduction technique to reduce the

number of dimensions by converting a high-dimensional multilocus

space into a one-dimensional space. It also entails using a two-way

contingency table to assess SSIs and k-fold cross validation (CV) to

avoid the overfitting of training data. MDR has been successfully
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applied in numerous disease and cancer studies, including oral can-

cer Yang et al., 2015c, hypertension (Yang et al., 2015a) and breast

cancer (Fu et al., 2016).

Most of the extensions of MDR can be classified into three groups.

The first group focuses on the modifications and combinations of bio-

statistics in terms of the uncertainty of binary high/low classification,

such as odds ratio-based MDR (Chung et al., 2007), log-linear model-

based MDR (Lee et al., 2007) and MDR-ER (Yang et al., 2013). The

second group involves resolving particular data problems, such as

quantitative MDR for quantitative traits (Gui et al., 2013) and Cox-

MDR for survival data (Lee et al., 2012). Finally, the third group

focuses on improving computational costs, such as unified model-

based MDR (Yu et al., 2016), Fast MDR (Yang et al., 2015b), graph-

ical processing unit (GPU)-based MDR (Greene et al., 2010) and dif-

ferential evolution (DE)-based MDR (Yang et al., 2017). However,

most MDR methods have been developed using a single measure

based on a two-way contingency table [single-objective (SO) function]

for SNPs and diseases. Considering the potential preference of

measure-based approaches and the complexity of different disease

models, (Bush et al., 2008) used classification error rate (CER) values

to compare 10 measures based on a two-way contingency table; their

results suggested that measures in MDR processes could substitute the

likelihood rate (LR) for the CER. However, SOMDR may not operate

satisfactorily in all disease models; i.e. certain solutions do not have

the highest values for the CER and another measure. The CER con-

flicts with other measures in certain disease models; therefore, these

measures cannot be easily incorporated in an MDR operation to de-

tect SSIs. A multiobjective (MO) approach is a multiple-criteria deci-

sion analysis for explicitly evaluating multiple conflicting criteria in

decisions (Greco et al., 2005). This approach enables n objectives to

be evaluated simultaneously for obtaining agreeable solutions (Deb

et al., 2014). An agreeable solution is referred to as a Pareto optimal

solution, and a set of Pareto optimal solutions is called a Pareto set.

The present study proposes an multiobjective MDR (MOMDR)

method to incorporate two measures and obtain Pareto sets within

k-fold CV. Therefore, more than one solution can be obtained in each

CV. In CV consistency (CVC) operations, set theory is adopted to se-

lect optimal solutions (SSIs) from a number k of Pareto sets. We exe-

cuted experiments on various simulation datasets and achieved

satisfactory detection success rates. MOMDR was determined to have

higher detection success rates and superior CVC, compared with

SOMDR.

2 Approach

2.1 MDR process
MDR is a powerful data-mining tool for detecting non-linear inter-

actions among multiple factors such as genetic (i.e. gene–gene or

SNP–SNP) and environmental factors (Ritchie et al., 2001). A data re-

duction process is used to categorize the dimensionality of multilocus

genotypes into high- and low-risk groups. This process enables trans-

forming all multifactor combinations into a two-way contingency

table. To avoid data overfitting, the k-fold CV approach was used to

obtain k CV candidates. Subsequently, the CVC operation was per-

formed to select an optimal solution from the k CV candidates. The

MDR processes are detailed in the Supplementary Material.

2.2 MO function definition
For an MO maximization problem, the MO function can be formu-

lated as max [f1(x), . . ., fn(x)], where the integer n �2 is the number

of objectives and f: X !Rn, f(x)¼ [f1(x), . . ., fn(x)] is the set of

objective functions. A decision vector is regarded as a solution to the

problem of MO maximization, which is denoted as the vector

x¼ (x1, . . ., xm), where m is the number of elements in x. A set X

contains all feasible decision vectors (i.e. x 2 X). If fi(x1) � fi(x2) for

all indices i 2 {1, . . ., n}, then x1 dominates another solution x2. In

the Pareto set X*, all vectors x* 2 X* are not dominated by any

other vector. For SSI detection, we considered an m-SNP combin-

ation (where m is the number of order SSI) as the decision vector

and the measures as corresponding objective functions. For the con-

sistency objective (maximize all objective functions), we select ob-

jectives’ correct classification rate (CCR; i.e. 1–CER) (Ritchie et al.,

2001) and LR (Bush et al., 2008) to formulate the MO function as

follows:

Maximize
f1ðxÞ ¼ CCRðxÞ

f2ðxÞ ¼ LRðxÞ

(
(1)

where functions f1 and f2 are CCR and LR measures, respectively.

2.3 MOMDR process
In MOMDR, the Pareto set operation is included in the MDR pro-

cess to simultaneously evaluate multiple objectives. Then, set theory

is incorporated into the CVC operation for selecting optimal solu-

tions. The Pareto set operation generates additional storage and

applies Pareto-set filter operators to save all non-dominated solu-

tions in each evaluation of the decision vector. For k-fold CV in the

MDR process, the number k of Pareto sets (X*) is generated and ini-

tialized in an empty space. The elements in the Pareto sets can be im-

proved throughout the evaluations of decision vectors. Therefore,

each Pareto set among k-fold CV (Xj*, where j 2 {1, . . ., k}) has

more than one solution. Finally, the optimal solutions are selected

by an intersection operation in the CVC operation. The training

model in a fold of CV includes eight steps (Fig. 1):

• Step 1. The complete dataset is divided into a number of k subsets

for CV. In the CV operation, a subset (j-subset, where j 2 {1, . . ., k})

is used as testing data, and the remaining subsets are used as train-

ing data. The CV operation uses the number of k training data to

build models independently.
• Step 2. A set of all feasible decision vectors was generated and

each decision vector (m-SNP combination) was evaluated by the

following steps. According to the m-SNP combination, the num-

bers of m-combinations from a given dataset of n SNPs are gen-

erated to evaluate all SSIs. For example, the set of feasible

decision vectors with two-SNP combinations from a dataset of 3

SNPs {S1, S2, S3} is {{S1, S2}; {S1, S3}; {S2, S3}}.
• Step 3. A table of multifactor classes is generated, and the num-

bers of cases and controls in the classes are counted. SNPs typic-

ally have three genotypes; therefore, a decision vector can

construct a table having 3m multifactor classes. The samples in

the training data are classified into multifactor classes according

to genotype combinations, followed by counting of the numbers

of cases (black bar, Fig. 1, Step 3) and controls (white bar).
• Step 4.1. The ratios between cases and controls in all multifactor

classes are calculated using Equation (2).

bha ¼
nþ0 � na1

nþ1 � na0
(2)

where nab is the number of samples within the ath multifactor class

in the b outcome [control (b ¼0) and cases (b ¼ 1)] and nþb is the

total number of samples in the b outcome [control (b ¼ 0) and cases

(b ¼ 1)]. Equation (2) is an adjustment function to identify low- and
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high-risk groups to deal with unbalanced datasets (Yang et al.,

2013).

• Step 4.2. The high- or low-risk groups in multifactor classes are

determined. Each multifactor class is labeled as a low-risk group

when the ratio bha (Equation 2) is <1 (Ritchie et al., 2001); other-

wise, the class is labeled as a high-risk group. The labeled multi-

factor classes are referred to as the label table.
• Step 5. The number of 3m labeled classes is transformed into a

two-way contingency table according to groups (high- or low

risk) and outcomes (cases and controls). Each cell in the two-way

contingency table represents the number of samples (table in

Step 3) belonging to the corresponding groups and outcomes

(table in Step 4).
• Step 6. The objective functions within a feasible decision vector

are evaluated. According to the MO function definition, two ob-

jective functions, which are based on the two-way contingency

table, are considered to detect SSIs.

Objective 1: The CCR is the first objective function f1(Xi) that

calculates the proportion of correctly classified individuals within a

feasible decision vector (Equation 3).

f1 Xið Þ ¼ CCR Xið Þ

¼ 0:5� A

Aþ C
þ D

BþD

� �

s:t:

A ¼
X

a2fbha ; ha�1g

ta1

B ¼
X

a2fbha ;ha�1g

ta0

C ¼
X

a2fbha ;ha <1g

ta1

D ¼
X

a2fbha ;ha <1g

ta0

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

(3)

where tab is the set of individual matches to the ath multifactor class

in the b outcome status, where b ¼ 1 for the case group and b ¼ 0 for

the control group. A and B are the numbers of case and control sam-

ples classified into the high-risk group, respectively, and C and D are

those classified into the low-risk group, respectively. To handle unbal-

anced datasets, the CCR function was used to determine the balanced

accuracy using the A and D ratios for cases and controls, respectively

(Yang et al., 2013), where the value is between 0 and 1; a value of 1

indicates the most optimal solution.

Objective 2: The LR is the second objective function f2(Xi)

(Equation 4) used in the MO function definition (Equation 1). The

LR statistically compares the maximum likelihood of an unrestricted

model, which consists of the observed frequencies in the data, with a

restricted model, which comprises expected frequencies under the

null hypothesis of no association (Bush et al., 2008).

f2 Xið Þ ¼ LR Xið Þ

¼ 2
P

Observed log
Observed

Expected

� �

¼ 2

"
A� log

A

A�

� �
þ B� log

B

B�

� �

þC� log
C

C�

� �
þD� log

D

D�

� �#

s:t:

A� ¼ Aþ Cð Þ Aþ Bð Þ
Aþ Bþ CþD

B� ¼ BþDð Þ Aþ Bð Þ
Aþ Bþ CþD

C� ¼ AþCð Þ CþDð Þ
Aþ Bþ CþD

D� ¼ BþDð Þ CþDð Þ
Aþ Bþ CþD

8>>>>>>>>>>>><>>>>>>>>>>>>:
(4)

where A, B, C and D are the same as those in (Equation 3).

• Step 7. Pareto operation. The Pareto operation uses a Pareto-set

filter operator to collect good solutions (Xj* ¼ (x1*, . . ., xi*) in

Pareto setj, where j 2 {1, . . ., k}) according to the MO values. All

x* do not dominate one another in Xj*. The Pareto operation in-

cludes two steps: Step 1: Comparison between the decision vec-

tor X and all x* in Xj*; if X is not dominated by any x*, X is

added to Xj*. Step 2: comparison between xp and xq (p 6¼ q) in

Xj*; if xp is dominated by xq, xp is discarded from Xj* [i.e. fi(xq)

� fi(xp) for all indices i 2 {1, . . ., n}, where n is the number of ob-

jective functions].
• Step 8. Each solution was evaluated on the basis of the testing

data.

In aforementioned MOMDR process, Steps 1–8 are repeated

until all feasible decision vectors are completely determined in each

CV set. Following this iterative procedure, the number of k Pareto

sets is obtained. In the CVC operation, the intersection operation

was used to the select the optimal solutions. For each candidate, the

number of occurrences in the Pareto sets is counted. The candidates

with the highest CVC in all Pareto sets are considered as the optimal

solutions. Finally, the medians of the objective values in the optimal

solutions (evaluated in Step 8) are considered as the model measures

using testing data.

3 Results

The performance of MOMDR was evaluated by comparing CCR-

and LR-based MDR by using simulated datasets and a large

genome-wide dataset from the Wellcome Trust Case Control

Consortium (WTCCC; http://www.wtccc.org.uk/) using the

Affymetrix GeneChip 500 K Mapping Array Set (Burton et al.,

2007).

3.1 Experiments on simulated data
3.1.1 Case 1: disease loci with marginal effects

Disease loci with marginal effects were used to evaluate the perform-

ance of SOMDR and MOMDR in detecting disease-associated SSIs.

We used six disease models with marginal effects (Namkung et al.,

2009); disease Models 1–3 were obtained from (Namkung et al.,

2009) and disease Models 4–6 were obtained from (Ritchie et al.,

2003). The disease models were designed according to the inter-

action structure with different diseases, minor allele frequencies

(MAFs), and prevalences. The details of the multilocus penetrances

are presented in the Supplementary Table S1. The heritability (h2)

values were between 0.031 and 0.008. In each disease model, 100

datasets were randomly generated using GAMETES, which can gen-

erate datasets containing a specific two-locus SSI with random archi-

tectures (Shang et al., 2013). Each dataset included an interacting

SNP pair (M0P0 and M1P1) which was generated according to the

disease model setting, and other SNPs were generated with an MAF

selected uniformly in (0.05, 0.5). In case 1, our goal was to detect

2230 C.-H.Yang et al.
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the interacting SNP pair (M0P0 and M1P1) in each dataset. The

detection success rates were calculated by observing the frequency

of goal detection within an epistatic model for each of the 100

datasets.

The detection success rates of SOMDR (CCR), SOMDR (LR),

and MOMDR in the six models are presented in Figure 2 (white

bar). The detection success rates of all methods could be improved

by increasing the sample size. In general, SOMDR (LR) had higher

detection success rates than SOMDR (CCR); however, Model 4

showed that SOMDR (CCR) had a higher detection success rate

than SOMDR (LR). Our results are consistent with those of (Bush

et al., 2008) at different simulation settings. The details of compari-

son between MOMDR and SOMDR (LR) in the six models with

marginal effects are shown in Supplementary Table S2. MOMDR

outperformed SOMDR (LR) in six models with marginal effects.

The Wilcoxon signed-rank test was used to compare the perform-

ance of SOMDR and MOMDR in the six disease models (Table 1).

A P value of < 0.05 (bold type) was considered to indicate signifi-

cant superiority of MOMDR to the other methods. R� represents

the degree to which MOMDR is inferior to SOMDR, and the results

demonstrated that MOMDR was superior to SOMDR. Moreover,

MOMDR exhibited a significant improvement compared with

SOMDR (Rþ), in which SOMDR (LR) had good detection success

rates in the datasets with 800 samples. Regarding the detection suc-

cess rates at CVC ¼ 5, SOMDR (LR) outperformed SOMDR

(CCR), particularly for disease Models 1, 2, 3, 5 and 6; this indicates

that SOMDR (LR) exhibited improved stability in different datasets,

but this stability may decline in certain disease models (e.g. disease

Model 4). However, MOMDR had higher stability than SOMDR

(LR) and SOMDR (CCR). Table 2 presents the Wilcoxon signed-

rank test results for the detection success rate at CVC ¼ 5. Although

MOMDR and SOMDR (LR) had the same SSI detection ability in

the dataset with 800 samples (Table 1), MOMDR outperformed

SOMDR (LR) in terms of stability (CVC ¼ 5). These results indicate

that the MO approach can effectively detect SSIs because it can sim-

ultaneously consider multiple measures in disease loci with marginal

effects.

For 100 datasets including 1000 SNPs with 400 samples in dis-

ease loci with marginal effects, MOMDR took an average of 12.7 s

to run a complete process, whereas SOMDR took an average of

12.4 s. For 800 samples, the average computational times of

MOMDR and SOMDR were 28.1 and 27.3 s, respectively.

3.1.2 Case 2: disease loci without marginal effects

A total of 40 two-locus and pure disease models without marginal

effects were obtained from (Wan et al., 2010). The simulation data-

sets were generated under various parameter settings (h2 and MAF

values) by using GAMETES. Each dataset contained a specific two-

locus interacting SNP pair (M0P0 and M1P1) with random architec-

tures (Urbanowicz et al., 2012). The details of the multilocus pene-

trances are presented in the Supplementary Tables S3–S6. The h2

values that controlled the phenotypic variation of all disease models

and ranged from 0.025 to 0.2, and MAFs of 0.2 and 0.4 were

included. Each disease model was generated using 100 datasets con-

sisting of 1000 SNPs, in which two SNPs (M0P0 and M1P1) were

the specific SNPs, and other SNPs were generated with MAFs se-

lected uniformly in (0.05, 0.5). The detection success rates were

Fig. 1. The procedure of MOMDR

Multiobjective multifactor dimensionality reduction to detect SNP–SNP interactions 2231
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calculated by observing the frequency of goal detections through the

datasets within a disease model (without marginal effects).

The detection success rates of SOMDR (CCR), SOMDR (LR)

and MOMDR in the 40 disease models are presented in Figure 3.

The detection success rates in disease models 11–40 could be im-

proved by increasing the sample size. The results showed that

SOMDR (LR) had higher detection success rates than SOMDR

(CCR). The details of comparison between MOMDR and SOMDR

(LR) in the 40 models without marginal effects are shown in

Supplementary Table S7. MOMDR achieved superior results in 33

models among 40 models without marginal effects within 400 sam-

ples, and 22 models of MOMDR were superior to those of SOMDR

(LR) within 800 samples; other models demonstrated equal detec-

tion success rates. The Wilcoxon signed-rank test was employed to

compare the performance of SOMDR and MOMDR in the 40 dis-

ease models (Table 1). A p value of < 0.05 (bold type) was con-

sidered to indicate significant superiority of MOMDR to SOMDR

(CCR) and SOMDR (LR).

The results demonstrated that MOMDR was not inferior to

SOMDR (R�), and that MOMDR exhibited significant improve-

ment compared with SOMDR (Rþ). At CVC ¼ 5, SOMDR (CCR)

exhibited a high stability in disease Models 21–25 and 31–35, indi-

cating that SOMDR (LR) may have decreased stability in certain

disease models. However, MOMDR had higher stability than

SOMDR (LR) and SOMDR (CCR). The Wilcoxon signed-rank test

results for the detection success rate at CVC ¼ 5 indicated that

MOMDR showed significantly improved stability (Table 2).

Therefore, the MO approach can effectively detect SSIs in disease

loci without marginal effects.

For 100 datasets including 1000 SNPs with 400 samples in dis-

ease loci without marginal effects, MOMDR took an average of

12.7 s to run a complete process, whereas SOMDR took an average

of 12.4 s. For 800 samples, the average computational times of

MOMDR and SOMDR were 28.1 and 27.4 s, respectively.

3.1.3 Case 3: random simulation

We used GAMETES to generate 100 000 random, strict, and pure

disease models for each of the different combinations of genetic con-

straints that were obtained using different two-locus interacting

SNP pairs (M0P0 and M1P1); h2 values of 0.001, 0.025, 0.05 and

0.1; and MAFs of 0.2 and 0.4, with a varying population prevalence.

For each setting, 100 000 disease models were ranked on the basis

of the ease of detection measure (EDM), and the disease models

with the lowest EDM values were selected as the random disease

models for data simulation (Urbanowicz et al., 2012). For each se-

lected disease model, we simulated 100 replicate datasets under

Fig. 2. Comparison between SOMDR and MOMDR in the six disease models

with marginal effects. For each disease model, the detection success rate was

calculated as the proportion of 100 datasets, in which the specific SSI was de-

tected. Each dataset included 1000 SNPs, and the sample sizes were 400 (200

cases and 200 controls, above figure) and 800 (400 cases and 400 controls,

below figure). In each disease model, the bars from the left to the right indi-

cate SOMDR (CCR), SOMDR (LR) and MOMDR. In each bar, the white region

is the total detection success rate. The non-white regions represent the

detection success rates of SOMDR (CCR), SOMDR (LR) and MOMDR at CVC ¼ 5,

respectively. The absence of bars indicates zero detection success rate

Table 1. Comparison of SOMDR and MOMDR for detection success

rate using the Wilcoxon Signed-Rank test

MOMDR versus R� Rþ R¼ Mean

rank

Sum of

ranks

Z-test P value

Case 1: 400 samples

CCR 0 6 0 3.5 21.0 �2.201 0.028

LR 0 6 0 3.5 21.0 �2.232 0.026

Case 1: 800 samples

CCR 0 5 1 3.0 15.0 �2.023 0.043

LR 0 1 5 1.0 1.0 �1.000 0.317

Case 2: 400 samples

CCR 0 23 17 12.0 276.0 �4.207 <0.001

LR 0 20 20 10.5 210.0 �3.933 <0.001

Case 2: 800 samples

CCR 0 10 30 5.5 55.0 �2.825 0.005

LR 0 15 25 8.0 120.0 �3.415 0.001

Case 3: 400 samples

CCR 0 4 4 2.5 10.0 �1.826 0.068

LR 0 5 3 3.0 15.0 �2.070 0.038

Case 3: 800 samples

CCR 0 5 3 3.0 15.0 �2.023 0.043

LR 0 5 3 3.0 15.0 �2.023 0.043

R�, negative ranks; Rþ, positive ranks; R¼, ties; n, numbers, bold type

indicates the significant improvement (P < 0.05).

Table 2. Comparison of SOMDR and MOMDR for detection success

rate in CVC ¼ 5 using the Wilcoxon Signed-Rank test

MOMDR versus R� Rþ R¼ Mean

rank

Sum of

ranks

Z-test P value

Case 1: 400 samples

CCR 0 5 1 3.0 15.0 �2.023 0.043

LR 0 3 3 2.0 6.0 �1.604 0.068

Case 1: 800 samples

CCR 0 6 0 3.5 21.0 �2.201 0.028

LR 0 6 0 3.5 21.0 �2.220 0.026

Case 2: 400 samples

CCR 0 31 9 16.0 496.0 �4.869 <0.001

LR 0 31 9 16.0 496.0 �4.886 <0.001

Case 2: 800 samples

CCR 0 14 26 7.5 105.0 �3.311 0.001

LR 0 20 20 10.5 210.0 �3.938 <0.001

Case 3: 400 samples

CCR 0 4 4 2.5 10.0 �1.826 0.068

LR 0 3 5 2.0 6.0 �1.633 0.102

Case 3: 800 samples

CCR 0 5 3 3.0 15.0 �2.060 0.039

LR 0 5 3 3.0 15.0 �2.023 0.043

R�, negative ranks; Rþ, positive ranks; R¼, ties; n, numbers.
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the sample sizes of 400 and 800 with balanced cases and controls

and a total of 1000 SNPs. Each dataset contained one pair of

highly interactive SNPs (M0P0 and M1P1), and other SNPs

were generated with MAFs selected uniformly in (0.05, 0.5). The de-

tection success rates were calculated by observing the frequency

of goal detection through the datasets within the random disease

models.

The detection success rates of SOMDR (CCR), SOMDR (LR)

and MOMDR in the eight random disease models are illustrated in

Figure 4. For all disease models, the detection success rates in

Methods 1, 2 and 5 revealed that SOMDR (LR) had higher detec-

tion success rates than SOMDR (CCR); however, SOMDR (LR)

was inferior in disease Models 6 and 7. The details of comparison

between MOMDR and SOMDR (LR) in the eight random models

are shown in Supplementary Table S8. MOMDR outperformed

SOMDR (LR) when the MAF ¼ 0.4 and h2 < 0.05 (Models 1, 2, 3,

4, 6 and 8), in which the increased MAF and decreased h2 values

experienced more difficulty detecting the goal (the particular SSI).

The Wilcoxon signed-rank test indicated that MOMDR was signifi-

cantly superior to SOMDR (CCR) and SOMDR (LR). In addition,

R� was not observed in all disease models, and MOMDR had

higher detection success rates than SOMDR (Rþ). At CVC ¼ 5, the

results indicated that SOMDR (LR) had a higher stability than

SOMDR (CCR) in the disease models; nevertheless, SOMDR (LR)

had lower detection success rates in disease Models 6 and 7.

MOMDR had higher stability than SOMDR (LR) and SOMDR

(CCR). The Wilcoxon signed-rank test results for the detection suc-

cess rate at CVC ¼ 5 indicated that MOMDR exhibited significantly

improved stability compared with SOMDR (CCR) and SOMDR

(LR) (Table 2). Therefore, MOMDR can be effective in SSI detec-

tion in the random disease models.

For 100 datasets including 1000 SNPs with 400 samples in a ran-

dom simulation, MOMDR took an average of 12.8 s to run a com-

plete process, whereas SOMDR took an average of 12.5 s. For 800

samples, the average computational times of MOMDR and

SOMDR were 28.1 and 27.3 s, respectively.

Fig. 3. Comparison between SOMDR and MOMDR in the disease models without marginal effects. Under each setting, the detection success rate was calculated

as the proportion of 100 datasets, in which the specific disease-associated SSIs were detected. Each dataset contains 1000 SNPs. In each disease model, the bars

from the left to the right represent SOMDR (CCR), SOMDR (LR) and MOMDR. In each bar, the white region is the total detection success rate. The non-white

and red regions represent the detection success rates of SOMDR (CCR), SOMDR (LR) and MOMDR at CVC ¼ 5, respectively. The absence of bars indicates zero

detection success rate
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3.2 Experiments on the WTCCC dataset
A real dataset was obtained from the WTCCC to evaluate

MOMDR performance. The dataset was collected through a collab-

orative effort between 50 British research groups established in

2005 (Burton et al., 2007) and contains a total of 500 569 SNPs,

including 1988 cases with coronary artery disease (CAD) and 1500

controls obtained from people living in Great Britain who self-

identified as white Europeans. These people were genotyped using

the Affymetrix GeneChip 500 K Mapping Array Set.

Supplementary Table S9 shows the SSIs detected by MOMDR.

The SNP locations were determined from dbSNP at the National

Center for Biotechnology Information (https://www.ncbi.nlm.nih.

gov/snp/). The designation UNKNOWN’ in the table refers to an

SNP that is not located on a gene. Each chromosome includes more

than one detected SSI because MOMDR yields more than one solu-

tion. The P-values were calculated through a chi-squared (v2) test

using the raw datasets to determine the significance level for an epi-

static interaction between the two SNPs. All SSIs detected by

MOMDR in the 24 chromosomes yielded P < 0.0001, indicating a

highly significant interaction between the two SNPs. The CVC

shows the degree to which the same best model is discovered across

five divisions of the data, and CVC ¼ 5 indicates the highest degree

(Motsinger and Ritchie, 2006). When the CCR was higher than 0.5,

the frequency of chance was significantly reduced, indicating that

our results identified significant SSIs (Coffey et al., 2004). High LR

values indicate that uncertainties were reduced in the disease model

(Bush et al., 2008). The CCR values were in the range of 0.675–

0.988, with the mean CCR value being 0.787 [SD ¼ 0.086]. The LR

values were in the range of 39.2–724.4, with the mean LR value

being 211.2 (SD ¼ 163.7). Notably, the SSIs rs1454640 and

rs3989940 (Chromosome 12) achieved the highest CCR (0.988) and

LR (724.4) values (CVC ¼ 5, P < 0.0001, marked by a double aster-

isk in Supplementary Table S9). The six detected SSIs thus demon-

strate the beneficial measures of LR > 400 and CCR > 0.9 (CVC ¼
5, P < 0.0001, marked by asterisks in Supplementary Table S9).

These seven SSIs showed high values of CCR (>0.9), LR (>400) and

CVC (¼5) and strong significance (P < 0.0001), indicating these

SNP pairs could potentially be the epistatic interactions in CAD.

Further studies on implicated genes polymorphisms and their func-

tional relevance could provide crucial information for the etiology

and treatment of CAD. The running times of chromosomes in the

WTCCC dataset are shown in Supplementary Table S9. Regarding

the average running times for all large datasets, both SOMDR and

MOMDR required �6.16 h, indicating that MOMDR does not in-

crease the running time.

4 Discussion

According to our review of the relevant literature, this study is the

first to implement an MO approach-based MDR for SSI detection.

In the MDR process, a combination of high-dimensional factors can

be reduced by assigning multilocus genotypes to high- or low-risk

groups, enabling the determination of SSI quality through two-way

contingency table analysis (Ritchie et al., 2001). The CCR is the

most commonly applied measure in MDR-based methods (Gola

et al., 2016). Bush et al. (2008) compared 10 general measures in

the text classification field to evaluate the degree of improvement in

the SSI detection ability of MDR; the LR was suggested to improve

MDR detection in simulations. Our results also demonstrated that

SOMDR (LR) revealed a detection ability superior to that of

SOMDR (CCR) in all of the tests. The success of MOMDR is pri-

marily attributed to the conflicts between CCR and LR measures in

certain disease models, which increase the detection success rates. In

three experiments on simulated data, SOMDR (LR) did not outper-

form SOMDR (CCR) in all disease models, indicating that an opti-

mal known solution could either have the highest LR or CCR value.

These disease models could be detected using either the LR or CCR

measure. Moreover, the optimal solution may have the highest value

in one measure and not have appreciable values in the other measure

in all feasible decision vectors. This situation indicates that the CCR

is usually one of the main criteria, but it may conflict with the other

measure (Greco et al., 2005). Therefore, the CCR and other meas-

ures (e.g. the LR) do not equally contribute to increased SSI detec-

tion ability. MOMDR can simultaneously evaluate multiple

measures for detecting SSIs. It exhibited the most successful SSI iden-

tification rates when the LR and CCR were used simultaneously to

determine significant SSIs in this study.

The detection of disease-associated SNPs was considerably com-

plex in the current case–control study. A single measure may not be

able to detect some vital SSIs, thus, multiple measures should be

used to successfully detect significant associations, and even enhance

the credibility of the result. MOMDR was enabled to simultan-

eously employ multiple measures to determine potential SSIs. The

results demonstrated that MOMDR performed strongly in both

simulated and real datasets. Moreover, MOMDR retained the fol-

lowing advantages of MDR methods. First, MOMDR can handle

unbalanced datasets (i.e. situations in which the numbers of cases

and controls are different). MOMDR uses adjustment functions

(Eqs. 2 and 3) to identify low- and high-risk groups and to evaluate

the SSIs for selecting the optimal solutions for unbalanced datasets.

Therefore, MOMDR can accurately classify multiple classes into

high- and low-risk groups and subsequently increase the values of A

and D in Equation (3). Second, MOMDR can effectively minimize

false-positive results to detect SSIs. MOMDR uses the CV function

to select optimal solutions solely based on its ability to make predic-

tions using independent data. This is an important model validation

technique to avoid data overfitting and reduce false positives in

Fig. 4. Comparison between SOMDR and MOMDR in the random disease

models. Under each setting, the detection success rate was calculated as the

proportion of 100 datasets, in which the specific disease-associated SSIs

were detected. Each dataset contains 1000 SNPs. In each disease model, the

bars from the left to the right represent SOMDR (CCR), SOMDR (LR) and

MOMDR. In each bar, the white region is the total detection success rate.

The non-white regions represent the detection success rates of SOMDR

(CCR), SOMDR (LR) and MOMDR at CVC ¼ 5, respectively. The absence of

bars indicates zero detection success rate
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statistical analysis. Third, MOMDR can describe the locus genotype

combinations associated with high- and low-risk disease groups.

Through the reduction of the dimensionality of the multilocus data,

the simultaneous detection of multiple genetic loci associated with

diseases can be clearly identified to determine whether they are

more common in affected or unaffected individuals. Fourth,

MOMDR is a model-free method, which does not require a specific

mode of inheritance (Ritchie et al., 2001). In human physiology,

epistasis is chaotic and irreducible, with gradual changes with an un-

known mode of inheritance. However, there are simple mono- or

oligo-genetic traits that might relate to the epistasis. Therefore, the

model-free method is very crucial for detecting SSIs to understand

epistasis. In addition, MOMDR can be used directly for case–

control and family-based control studies. Finally, MOMDR is non-

parametric, rendering it suitable for use with small samples; thus, it

is widely applied in the tests of differences between independent

samples (e.g. case–control studies). Non-parametric methods are not

required to assume the distribution of data before statistical ana-

lysis, and they can thus avoid problems associated with the use of

parametric statistics to detect high-order epistatic interactions

(Ritchie et al., 2001).

Currently, many MDR studies focus on addressing the problems

facing multilocus modeling (Gola et al., 2016) to overcome statis-

tical challenges, including population stratification, cryptic related-

ness, differential linkage disequilibrium and haplotype effects. In

this study, we do not address the statistical limitations of MDR, be-

cause MOMDR is based on the original multilocus modeling of

MDR. Our MOMDR can be incorporated with adjusted MDR

methods because most MDR versions must use the measurement

required to evaluate SSIs in the transformed 2 � 2 contingency table.

Niu et al. (2011) used the principal components of genotypes at a

set of unlinked markers to represent the genetic background. Then,

the genetic background was used to control the population stratifi-

cation. Thus, an association test based on the principal components

of genotypes was employed (instead of using the ratio of cases to

controls as MDR does) to classify the multilocus genotype as high-

or low-risk in each multilocus cell. Lee et al. (2007) mixed the

log-linear models to reclassify the cells with the best combination of

factors. The expected number of cases and controls per cell are cal-

culated using maximum likelihood estimates of the selected log-

linear models. Thus, the expected numbers can be used to classify

the multilocus genotype as high- or low-risk. In future applications

of MOMDR in studies of genetic interactions, a more conservative

outcome can be achieved in potentially high-risk epistasis to avoid

excessive Type I errors (false positive). Furthermore, in applications,

MOMDR might be limited to the datasets that are genetically

homogeneous. Further exploration of the possible impacts of batch

effects on analyses is required.

Regarding implemental efficiency, MOMDR is similar to

SOMDR. For 100 datasets including 1000 SNPs with 800 samples,

MOMDR was determined to spend on average 28.1 s to run a com-

plete process on an Intel Core i7 2.8 GHz CPU with 4 GB memory,

whereas SOMDR spent on average 27.3 s. To determine the optimal

n-locus models among the number of k subsets in the number of m

SNPs, MOMDR would require a total computational time of k �
(m choose n) � the total number of samples � 3n times. Moreover,

the computational time can be improved by adopting powerful com-

putation approaches such as parallel operations (Bush et al., 2006),

GPU-based MDR (Greene et al., 2010), the greedy search strategy

(Yang et al., 2015b) and DE-based MDR (Yang et al., 2017).

In MDR-based methods, certain SSIs can be detected using par-

ticular measures such as the CCR and LR based on a two-way

contingency table. The MO approach enables MOMDR to generate

several SSI sets from multiple measures based on the two-way con-

tingency table. Therefore, each fold of CV includes at least one can-

didate in k-fold CV, and our improved CVC operation can

systematically predict the optimal SSIs among multiple candidates.

The MOMDR performance assessment revealed that the applied

MO approach was successful in enhancing MDR method’s detection

success rates for SSIs. The WTCCC analysis revealed that MOMDR

can detect several significant SSIs. In future studies, additional meas-

ures based on a two-way contingency table can be combined and

flexibly embedded into MOMDR to enhance detection ability.
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