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Abstract

Motivation: Parameter estimation methods for ordinary differential equation (ODE) models of bio-

logical processes can exploit gradients and Hessians of objective functions to achieve convergence

and computational efficiency. However, the computational complexity of established methods to

evaluate the Hessian scales linearly with the number of state variables and quadratically with the

number of parameters. This limits their application to low-dimensional problems.

Results: We introduce second order adjoint sensitivity analysis for the computation of Hessians

and a hybrid optimization-integration-based approach for profile likelihood computation. Second

order adjoint sensitivity analysis scales linearly with the number of parameters and state variables.

The Hessians are effectively exploited by the proposed profile likelihood computation approach.

We evaluate our approaches on published biological models with real measurement data. Our

study reveals an improved computational efficiency and robustness of optimization compared to

established approaches, when using Hessians computed with adjoint sensitivity analysis. The hy-

brid computation method was more than 2-fold faster than the best competitor. Thus, the proposed

methods and implemented algorithms allow for the improvement of parameter estimation for me-

dium and large scale ODE models.

Availability and implementation: The algorithms for second order adjoint sensitivity analysis are

implemented in the Advanced MATLAB Interface to CVODES and IDAS (AMICI, https://github.com/

ICB-DCM/AMICI/). The algorithm for hybrid profile likelihood computation is implemented in the

parameter estimation toolbox (PESTO, https://github.com/ICB-DCM/PESTO/). Both toolboxes are

freely available under the BSD license.

Contact: jan.hasenauer@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In systems and computational biology, ordinary differential equa-

tion (ODE) models are used to gain a holistic understanding of com-

plex processes (Becker et al., 2010; Hass et al., 2017). Unknown

parameters of these ODE models, e.g. synthesis and degradation

rates, have to be estimated from experimental data. This is achieved

by optimizing an objective function, i.e. the likelihood or posterior

probability of observing the given data (Raue et al., 2013a). This op-

timization problem can be solved using multi-start local, global, or

hybrid optimization methods (Raue et al., 2013a; Villaverde et al.,

2015). Since experimental data are noise-corrupted and in most

cases, only a subset of the state variables is observable, the inferred

parameter estimates are subject to uncertainties. These uncertainties

can be assessed using profile likelihood calculation (Raue et al.,

2009), bootstrapping (Joshi et al., 2006) and sampling (Ballnus

et al., 2017).

Many of the algorithms, which are applied in optimization, pro-

file likelihood computation, bootstrapping, or sampling, exploit the

gradient and the Hessian of the objective function or approxima-

tions thereof. These quantities can be used to determine search direc-

tions in optimization (Balsa-Canto et al., 2001; Vassiliadis et al.,

1999), to update the vector field in integration-based profile
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calculation (Chen and Jennrich, 1996), or to construct tailored pro-

posal distributions for MCMC sampling (Girolami and Calderhead,

2011). However, the evaluation of gradients and Hessians using stand-

ard approaches, i.e. finite differences or forward sensitivity analysis, is

computationally demanding for high-dimensional ODE models. To ac-

celerate the calculation of the objective function gradient, first order

adjoint sensitivity analysis have been developed and applied (Plessix,

2006). In engineering and certain areas of natural sciences, similar con-

cepts have been proposed for the calculation of the Hessian (Cacuci,

2015), but to the best of our knowledge, these methods were never

adopted to parameter estimation in biological applications.

In this manuscript, we provide a comprehensive formulation of se-

cond order adjoint sensitivity analysis for ODE-constrained parameter

estimation problems with discrete-time measurements. We outline the

algorithmic evaluation of the Hessian, discuss the computational com-

plexity and investigate Hessian-based parameter estimation methods in

a frequentist context on biological application examples. We imple-

ment the functionality of using second order adjoint sensitivity analysis

in the ODE-solver toolbox AMICI (Advanced MATLAB Interface for

CVODE and IDAS), which is a MATLAB and Cþþ interface to the

C-based and highly optimized ODE and DAE solvers CVODES and

IDAS from the SUNDIALS package (Hindmarsh et al., 2005).

Furthermore, we introduce a hybrid approach for the calculation of

profile likelihoods, which combines the ideas the two currently existing

approaches and exploits the Hessian.

We provide detailed comparisons of optimization and profile

likelihood calculation of the proposed approaches and state-of-the-

art methods based on published models of biological processes. Our

analysis reveals that the robustness of optimization can be improved

using Hessians. Moreover, we find that the hybrid method outper-

forms existing approaches for profile likelihood computation in

terms of accuracy and computational efficiency when combined

with second order adjoint sensitivity analysis. Accordingly, this

method will facilitate the uncertainty-aware mathematical model-

ling of complex biological processes, for which accurate uncertainty

analysis methods have not been applicable before. This will enable

data integration and mechanistic insights into biological processes.

2 Materials and methods

2.1 Mathematical model
We consider ODE models of biological processes. The evolution in

time t 2 R of a state vector x tð Þ 2 Rnx is given by a vector field f,

depending on time, state and unknown parameters h. These parame-

ters are usually restricted to come from a biologically plausible

region of the parameter space X � Rnh . The corresponding differen-

tial equation is given as

_x t; hð Þ ¼ f x t; hð Þ; t; hð Þ; x t0; hð Þ ¼ x0 hð Þ: (1)

The initial state x0 may be parameter dependent. As in most applica-

tions not all states can be observed directly, a set of observables

y 2 Rny is defined:

y t; hð Þ ¼ h x t; hð Þ; t; hð Þ (2)

Measurements are usually noise-corrupted and this noise is modelled

as normally distributed random variables with standard deviation rij

for observable i ¼ 1; . . . ; ny and time point.

�yij ¼ yi x tj; h
� �

; tj; h
� �

þ eij; eij � N 0;r2
ij

� �
: (3)

If the noise is unknown, it can be modelled as parameter dependent

rij ¼ rij hð Þ and inferred from the data together with the other

parameters. Throughout the manuscript, we will assume that rij is

known, i.e. independent of h. All derivations for parameter depend-

ent rij can be found in the Supplementary Section S1.

2.2 Parameter optimization
To infer the unknown parameters h, we maximize the likelihood.

LD hð Þ ¼
Ynt

j¼1

Yny

i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

ij

q exp �
�yij � yi tj

� �� �2

2r2
ij

0
B@

1
CA (4)

of observing the experimental data D ¼ f�yij; i ¼ 1; . . . ;ny; j ¼ 1; . . . ;

ntg given the parameter vector h. Hence, the maximum likelihood

estimate h� is defined as:

h� ¼ argmax
h2X

LD hð Þ: (5)

LD hð Þ depends on the solution of the model and hence estimating h�

is an ODE-constrained optimization problem. It must be solved

numerically, since the considered ODEs rarely have closed form

solutions. To improve numerical stability, we use the negative

logarithm of the likelihood function as objective function,

J hð Þ ¼ �log LD hð Þð Þ, for minimization:

J hð Þ ¼ 1

2

Xnt

j¼1

Xny

i¼1

log 2pr2
ij

� �
þ

�yij � hi x tj; h
� �

; t; h
� �� �2

r2
ij

0
B@

1
CA: (6)

Typically, the considered optimization problems are non-convex

and possess multiple local optima.

In this study, we solve the optimization problems using multi-start

local optimization, an approach which has been shown to perform

well in systems and computational biology (Raue et al., 2013b). Initial

points for local optimizations are drawn randomly from the parameter

domain X, to which optimization is restricted (box-constraints), and

the results of these optimizations are sorted by their final objective

function value. In this way, local optima and the regions in parameter

space which yield fits of similar quality can be assessed. There may be

additional (linear or non-linear equality or inequality) constraints on

the parameters, which we will however disregard in the remainder of

this manuscript. Local optimization is carried out using either least-

squares algorithms such as the Gauss–Newton-type methods combined

with trust-region (TR) algorithms (Coleman and Li, 1996; Dennis

et al., 1981), or constraint optimization algorithms, which compute

descent directions with (quasi-) Newton-type methods combined with

interior-point (IP) or TR algorithms (Byrd et al., 2000). Convergence

of these methods can usually be improved, if the computed derivatives

are accurate (Raue et al., 2013b). Common least-squares algorithms

such as the MATLAB function lsqnonlin only use first order deriva-

tives of the residuals, whereas constraint optimization algorithms like

the MATLAB function fmincon exploit first and second order deriva-

tives of the objective function.

2.3 Profile likelihood calculation
Since experimental data are limited, parameter estimates are subject

to uncertainties. Profile likelihood (or short profile) calculation,

introduced in (Raue et al., 2009), is a common method to

assess these uncertainties (Kreutz et al., 2013). It has shown to be a

robust method for uncertainty analysis also in the presence of struc-

tural non-identifiabilities (Fröhlich et al., 2014). A profile is a max-

imum projection of the likelihood to a chosen parameter axis: for

hk; k 2 f1; . . . ;nhg, the profile value at hk ¼ c this given by
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PLhk
cð Þ ¼ max

hk ¼ c
h 2 X

LD hð Þ: (7)

Profiles have to be computed separately for each parameter

hk; k ¼ 1; . . . ; nh, for which currently two approaches exist.

The optimization-based approaches [as implemented in (Raue

et al., 2015)] computes the profile for hk via a sequence of optimiza-

tion problems (Raue et al., 2009). In each step, all parameters besides

hk are optimized and hk is fixed to a value c. For each new step, c ei-

ther increased or decreased (depending on the profile calculation dir-

ection) and the new optimization is initialized based on the previously

found parameter values. As long as the function PLhk
ðcÞ is smooth,

this initial point will be close to the optimum and the optimization

will converge within few iterations. Yet, as many optimizations have

to be performed to obtain a full profile and usually all profiles have to

be computed, this process is computationally demanding.

An efficient alternative to the optimization-based is the

integration-based approach (Boiger et al., 2016; Chen and Jennrich,

1996) [as implemented in (Kaschek et al., 2016)], which circumvents

the repeated optimization by using a dynamical system which

evolves along the optimal path of the constraint optimization prob-

lem Equation (7). For a constraint g hð Þ ¼ c, in which g : X! R is

the constraint function [in our case g hð Þ ¼ hk], the dynamical system

is obtained by differentiating the optimality condition.

rhJ hð Þ þ krhg hð Þ ¼ 0; (8)

with respect to the value of the constraint, c, where k is a Lagrange

multiplier. This yields the differential algebraic equation

r2
hJ hð Þ þ r2

hg hð Þ rhg hð Þ

rhg hð Þ 0

 ! dh
dc

dk
dc

0
BB@

1
CCA ¼ 0

1

 !
(9)

which can be multiplied with the inverse of the mass matrix on the

left hand side to obtain an ODE formulation, given that the inverse

exists. The resulting ODE can in principle be integrated with estab-

lished differential equation solvers given the Hessian r2
hJ or an

approximation thereof (Chen and Jennrich, 2002). However, integrat-

ing this ODE is non-trivial, as the mass matrix may have singularities,

which may lead to discontinuities in the profile path. This results in

small step sizes during ODE integration. Moreover, the trajectory of

the ODE solver may deviate from the true profile path of Equation

(7) due to numerical errors or approximations being used.

In this study, we introduce a hybrid optimization- and integration-

based approach to handle discontinuities and to ensure optimality.

Our hybrid approach employs by default the integration-based ap-

proach using a high-order Adams–Bashforth scheme (Shampine and

Reichelt, 1997). A pseudo-inverse is used if the matrix in Equation (9)

is degenerated. If the step size falls below a previously defined thresh-

old, integration will be stopped and a few optimization-based steps

are carried out to circumvent numerical integration problems and to

accelerate the calculation. Then, integration is re-initialized at the pro-

file path. Moreover, the remaining gradient is monitored during pro-

file integration. If it exceeds a certain value, an optimization will be

started and integration re-initialized at the profile path.

2.4 Computation of objective function gradient and

Hessian
Providing accurate derivative information is favourable for

optimization and profile computation. Yet, due to the high compu-

tational complexity, gradients are sometimes not computed and

Hessians even less frequently. In this section, we recapitulate avail-

able forward and adjoint sensitivity analysis methods to, subse-

quently, introduce second order adjoint sensitivity analysis for the

efficient computation of the Hessian for ODE models.

Remark: In the following, the dependencies of f, x, h and

their derivatives on t; h and x are not stated explicitly. For a

detailed mathematical description of all approaches, we refer to

Supplementary Section S1.

2.4.1 Computation of the objective function gradient

Many state-of-the-art toolboxes compute objective function gra-

dients using forward sensitivity analysis. When differentiating

Equation (6) with respect to hk, the gradient is obtained:

@J
@hk
¼
Xny

i¼1

Xnt

j¼1

�yij � hi tj

� �
r2

ij

syi

k (10)

in which sy
k denotes the sensitivity of observable yi with respect to

parameter hk. The observable sensitivities are calculated from the

state sensitivities sx
k ¼ @x

@hk
as

syi

k ¼ rxhið Þsx
k þ

@hi

@hk
: (11)

The state sensitivities need to be computed by integrating the corre-

sponding ODE, which is obtained from differentiating Equation (1):

_sx
k ¼ rxfð Þsx

k þ
@f

@hk
: (12)

In forward sensitivities analysis, the error in the state sensitivities

can be controlled together with the error of the state variables when

integrating both ODEs Equations (1) and (12) together, which

makes it possible to obtain accurate gradients (Hindmarsh et al.,

2005). However, using this method for a system with nx state varia-

bles and nh parameters requires solving an ODE of the size

nx nh þ 1ð Þ. First order forward sensitivity analysis hence scales lin-

early in the number of parameters and in the number of state varia-

bles, which is computationally demanding for large nx and nh.

Adjoint sensitivity analysis circumvents the integration of the state

sensitivities. In this approach, only the original ODE system Equation

(1) is integrated forward in time and subsequently the ODE for the

adjoint state p(t) is integrated backward in time, starting at tnt
:

_p ¼ � rxf T
� �

p (13)

p tnt
ð Þ ¼

Xny

i¼1

rxhi

�yint
� hi tnt
ð Þ

r2
int

(14)

For time-discrete data, p(t) has to be re-initialized for each

measurement:

p tj

� �
¼ lim

t!tþ
j

p tð Þ þ
Xny

i¼1

rxhi

�yij � hi tj

� �
r2

ij

: (15)

In the end, the gradient can be computed as

@J
@hk
¼ �

Xny

i¼1

Xnt

j¼1

�yij � hi tj

� �
r2

ij

@hi tj

� �
@hk

�
ðtnt

t0

pT @f

@hk
dt � p t0ð ÞT

@x0

@hk
:

(16)

where nh one dimensional quadratures have to be computed

during the backward integration. In practice, these quadratures are

Optimization and profile calculation of ODE models using second order adjoint sensitivity analysis i153

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/13/i151/5045760 by guest on 23 April 2024

Deleted Text: (
Deleted Text: )
Deleted Text: <xref ref-type=
Deleted Text: (
Deleted Text: )
Deleted Text: (
Deleted Text: )
Deleted Text: -
Deleted Text: H
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty230#supplementary-data


typically computationally less expensive, so the linear dependence of

the computation time on nh for adjoint sensitivity analysis can be

considered to be weak, as pointed out in (Özyurt and Barton, 2005).

This yields the gradient for little more than the cost of integrating

two differential equations of the size nx. As these scaling properties

were shown to also hold true in practice (Fröhlich et al., 2017c), ad-

joint sensitivity analysis is so far probably the most efficient method

for the computation of gradients for large systems.

2.4.2 Computation and approximation of the objective function

Hessian

In this study, we consider two approximations of the Hessian:

i. The Fisher Information Matrix (FIM; Fisher, 1922).

ii. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme

(Goldfarb, 1970).

and employ three approaches to compute the Hessian itself

i. Central finite differences, based on gradients from adjoint

sensitivities (Andrei, 2009).

ii. Second order forward sensitivity analysis (Vassiliadis et al., 1999).

iii. Second order adjoint sensitivity analysis.

The FIM is related to the asymptotic covariance of maximum likeli-

hood estimates (Swameye et al., 2003) and provides an approxima-

tion to the Hessian of the negative log-likelihood function. The

approximation converges quadratically in the size of the residuals

�yij � hi tj

� �� �
=rij (Raue, 2013). Although, the FIM provides only an

approximation, it is used in optimization, as it can be computed

using first order forward sensitivities:

FIMk;‘ hð Þ ¼
X
i¼1

X
j¼1

1

r2
ij

syi

k tj

� �
syi

k tj

� �T
(17)

The BFGS scheme is an algorithm, which computes a positive-

definite approximation to the Hessian sequentially during an

optimization process using gradients, which are computed in each

optimization step. Different variants of this algorithm are imple-

mented in many state-of-the-art optimization toolboxes, like, e.g.

IPOpt (Wächter and Biegler, 2006).

Central finite differences compute the Hessian-based on pertur-

bations in each parameter direction by a small step d:

@2J hð Þ
@hk@h‘

�
@J hþde‘ð Þ

@hk
� @J h�de‘ð Þ

@hk

2d
(18)

where e‘ is the unit vector with 1 at the ‘-th position. The accuracy of

this method depends on the step size d. Good choices of d depend in

turn on the error tolerances of the ODE solver and are thus not easy

to determine [(Hanke and Scherzer, 2001) and the references therein].

Second order forward sensitivity analysis extends, similar to first

order forward sensitivity analysis, the considered ODE system, now

including first order and second order derivatives of the state varia-

bles [Supplementary Material, Equation (9)]. If the symmetry of the

Hessian is exploited, this leads to an ODE system of the size

nh nh þ 1ð Þnx=2. Hence, the computational complexity of the prob-

lem scales quadratically in the number of parameters and linearly in

the number of state variables, which limits this method to low-

dimensional applications. Yet, second order forward sensitivity ana-

lysis yields accurate Hessians, since the error of the second order

state sensitivities can be controlled during ODE integration.

To the best of our knowledge, second order adjoint sensitivity

analysis has so far not been applied in the field of systems and

computational biology and we are not aware of any ready-to-use im-

plementation thereof. Along the lines of first order adjoint sensitivity

analysis, second order adjoint sensitivity analysis gives Hessians

with better scaling properties than second order forward sensitivity

analysis. Again, the error of the Hessian can be controlled during

ODE integration, yielding as accurate results as those from second

order forward sensitivity analysis. To compute Hessians, the idea of

the adjoint method is applied to Equation (12) instead of Equation

(1). In a first step, the system defined by Equation (12) is integrated

forward in time. Subsequently, the corresponding adjoint system is

integrated backwards in time, using the information from the for-

ward simulation. This system consists of the original adjoint system

plus the nh derivatives of p with respect to hk.

d

dt

@p

@h‘

� �
¼ � rxf T

� � @p

@h‘
�rx

@f

@h‘

� �T

p

� sx
‘

� �T � 11;nh

� �
rx �rxf T
� �

p;

(19)

@pðtnt
Þ

@h‘
¼
Xny

i¼1

�
�yint
� hiðtnt

Þ
r2

int

�
rT

xrxhiðtnt
Þsx
‘ ðtnt
Þ

þrx
@hiðtnt

Þ
@h‘

�
þ 1

r2
int

�
rT

x hiðtnt
Þsx
‘ ðtnt
Þ

þ @hiðtnt
Þ

@h‘

�
rxhiðtnt

Þ
�
:

(20)

Again, the system must be re-initialized at every data time point:

@p tj

� �
@h‘

¼
Xny

i¼1

�yij � hi tj

� �
r2

ij

rT
xrxhi tj

� �
sx
‘ tj

� �
þrx

@hi tj

� �
@h‘

� �

þ lim
t!tþ

j

@p tð Þ
@h‘

þ
Xny

i¼1

1

r2
ij

rT
x hi tj

� �
sx
‘ tj

� �
þ
@hi tj

� �
@h‘

� �
rxhi tj

� �
:

(21)

During this backward integration, n2
h one-dimensional quadratures,

which also depend on the forward trajectories of the state variables

and their sensitivities, have to be calculated. Finally, the Hessian ma-

trix can be assembled with the information coming from both ODE

solves and these quadratures:

@2J
@hkh‘

¼
Xnt

j¼1

Xny

i¼1

�
1

r2
ij

�
rxhiðtjÞsx

‘ ðtjÞ þ
@hiðtjÞ
@h‘

�
@hiðtjÞ
@hk

�
�yij � hiðtjÞ

r2
ij

�
@rxhiðtjÞ
@hk

sx
‘ ðtjÞ

@2hiðtjÞ
@h‘@hk

��

� @pðt0ÞT

@h‘

@xðt0Þ
@hk

� pðt0ÞT
@2xðt0Þ
@hk@h‘

�
ðtnt

t0

�
@pT

@h‘

@f

@hk

þpT @2f

@h‘@hk
þ pT @rT

x f

@hk
sx
‘

�
dt:

(22)

The computation of the Hessian by second order adjoint sensitivity

analysis requires solving two ODE systems of size nx 1þ nhð Þ and n2
h

one dimensional quadratures. Again, these quadratures are fast to

evaluate compared with the ODE systems. Hence, the scaling behav-

iour is expected to be almost linear in the number of state variables

and the number of parameters.

3 Implementation and results

To assess the potential of Hessian computation using second order

adjoint sensitivity analysis, we implemented the approach and we

compared accuracy and computation time of the computed Hessians
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to those of available methods. Furthermore, we evaluated parameter

optimization and profile calculation methods using Hessians for

published models.

3.1 Implementation
The presented algorithms for the computation of gradients and

Hessians by first and second order forward and adjoint sensitivity

analysis were made applicable in the MATLAB and Cþþbased

toolbox Advanced Matlab Interface to CVODES and IDAS (AMICI;

Fröhlich et al., 2017a), which uses the ODE solver CVODES

(Serban and Hindmarsh, 2005) from the SUNDIALS package.

AMICI generates Cþþ code for ODE integration that can be inter-

faced from MATLAB to ensure computational efficiency. This is im-

portant, since during optimization and profile calculation, ODE

integration is the computationally most expensive part, although

being carried out in a compiled language. More details on the ratio

of the computation time spent in the MATLAB and the Cþþ part of

the code are given in the Supplementary Section S5. The algorithm

for hybrid profile calculation was implemented in the MATLAB

toolbox Parameter EStimation TOolbox (PESTO, Stapor et al.,

2017). The code of both toolboxes used for this study is available

via Zenodo (AMICI version Fröhlich et al., 2018, PESTO version

Stapor et al., 2018), which is a platform to provide scientific soft-

ware in a citable way.

3.2 Application examples
For the assessment of the methods, we considered five published

models and corresponding datasets (M1–M5). The models possess 3

to 26 state variables, 9 to 116 unknown parameters and a range of

dataset sizes and identifiability properties. Four models describe sig-

nal transduction processes in mammalian cells, one describes the

central carbon metabolism of Escherichia Coli. An overview about

the model properties is provided in Table 1. A detailed description

of models and datasets is included in the Supplementary Section S6.

3.3 Scalability
To verify the theoretical scaling of the discussed methods, we eval-

uated the computation times for the model with the largest number

of state variables (M5). This evaluation revealed that the practical

scaling rates are close to their theoretical predictions, (Fig. 1A).

Second order adjoint sensitivity analysis, FIM and finite differences

based on first order adjoint sensitivity analysis exhibited a roughly

linear scaling with respect to the number of parameters. Second

order forward sensitivity analysis exhibited the predicted quadratic

scaling. The FIM showed the lowest computation time for all mod-

els. The proposed approach, second order adjoint sensitivity ana-

lysis, was the fastest method to compute the exact Hessian, taking in

average about four times as long to compute as the FIM.

We also evaluated whether the same scaling holds across models

(Fig. 1B). Interestingly, we found similar but slightly higher slopes

for all considered methods, although the number of state variables

between models differs substantially. This suggests that in practice

the number of parameters is indeed a dominating factor. Overall, se-

cond order adjoint sensitivity analysis was the most efficient method

for the evaluation of the Hessian.

3.4 Accuracy
To assess the accuracy of Hessians and their approximations pro-

vided by the different methods, we compared the results at the glo-

bal optimum. In general, we observed a good agreement of Hessians

computed using second order adjoint and forward sensitivity ana-

lysis (Fig. 2A). For the Hessian computed by finite difference, we

found—as expected—numerical errors (Fig. 2B), which depended

non-trivially on the combination of ODE solver accuracy and the

step size of the finite differences. The FIM usually differed substan-

tially from the Hessians, even though this approximation is often

considered to be good close to a local optimum (Fig. 2C).

Since most optimization algorithms internally compute a

Newton-type update Dh ¼ �H�1g, in which H is the Hessian and g

is the gradient, we also evaluated the quality of the Hessian pre-

image. For this purpose, we compared the inverses of the regularized

Hessians computed with different methods with the one computed

using second order adjoint sensitivity analysis in the operator norm.

If the Hessian was not invertible, we used the Moore-Penrose-

Pseudoinverse. This analysis revealed that the pre-images from se-

cond order forward and adjoint sensitivity analysis coincide well,

whereas those from finite differences and the FIM differed substan-

tially from the results based on second order sensitivity analysis

(Fig. 2D).

In combination, our assessment of scaling and accuracy revealed

that second order adjoint sensitivity analysis provides the most scal-

able approach to obtain accurate Hessians. Rough approximations

of the Hessian in terms of the FIM could however be computed at a

lower computational cost.

3.5 Optimization
As our results revealed a trade-off between accuracy and computa-

tion time for computating Hessians, we investigated how this affects

different optimization algorithms. To this end we compared

Newton and quasi-Newton variants of the IP algorithm and the

TR-reflective algorithm:

• Residuals and their sensitivities were computed with first order

forward sensitivity analysis and provided to the least-squares al-

gorithm lsqnonlin, which used the TR-reflective algorithm.
• Gradient and FIM were computed using first order forward

sensitivity analysis and provided to fmincon, which used the

TR-reflective algorithm.
• Gradient and Hessian were computed with second order adjoint

sensitivity analysis. A positive definite transformation of the

Hessian was provided to fmincon, using the TR-reflective algo-

rithm (which needs a positive definite Hessian to work).

Table 1. Overview of considered ODE models and their properties

ID State variables Parameters Time points Conditions Data points Modelled system Reference

M1 6 9 8 1 24 Epo receptor signalling Becker et al. (2010)

M2 3 28 7 3 72 RAF/MEK/ERK signalling Fiedler et al. (2016)

M3 9 16 16 1 46 JAK/STAT signalling Swameye et al. (2003)

M4 18 116 51 1 110 E. coli carbon metabolism Chassagnole et al. (2002)

M5 26 86 16 10 960 EGF & TNF signalling MacNamara et al. (2012)
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• Gradients were calculated using first order forward sensitivity

analysis and provided to fmincon, using the IP algorithm with a

BFGS approximation of the Hessian.
• Gradient and FIM were computed with first order forward sensi-

tivity analysis and provided to fmincon, using the IP algorithm.
• Gradients and Hessians were calculated with second order ad-

joint sensitivity analysis and provided to fmincon, using the IP

algorithm.

The optimization study was carried out using the MATLAB toolbox

PESTO for the models M2 and M3. For each of these local opti-

mization methods, we performed four multi-start local optimiza-

tions with different initializations and 200 starting points each. A

detailed list of the settings of the local optimization methods can be

found in the Supplementary Section S2.

We considered the least-squares algorithm lsqnonlin as gold

standard for the considered problem class, as this method has previ-

ously been shown to be very efficient (Raue et al., 2013b). Here, we

studied the effect of using exact Hessians on the optimization algo-

rithms TR-reflective and IP implemented in fmincon. As perform-

ance measure of the optimization methods, we considered the

computation time per converged start (i.e. starts which reached the

global optimum), the total number of converged starts and the num-

ber of optimization steps.

The least-square solver lsqnonlin outperformed, as expected,

the constraint optimization method fmincon (Fig. 3 and

Supplementary Fig. S1). Among the constraint optimization methods,

the methods using exact Hessians computed using the second order

adjoint method, performed equal or better than the alternatives

regarding overall computational efficiency (Fig. 3A). Indeed, the

methods reached a higher percentage of converged starts (Fig. 3B and

Supplementary Fig. S1) than fmincon using the FIM or the BFGS

scheme. This is important, as convergence of the local optimizer is

often the critical property (Raue et al., 2013b). In addition, the num-

ber of necessary function evaluations was reduced (Fig. 3C).

Furthermore, we found differences in convergence and computational

efficiency for fmincon, depending on the chosen algorithm.

3.6 Profile likelihood calculation
To assess the benefits of Hessians in uncertainty analysis, we

compared the performance of optimization- and integration-based

profile calculation methods for the models M2 and M3. For the

optimization-based approach, we employed the algorithm

implemented in PESTO, which uses first order proposal with adap-

tive step-length selection (Boiger et al., 2016). We compared the

local optimization strategies described in Section 3.5 (omitting the

methods based on the FIM, due to their poor performance). For

the hybrid approach, we used MATLAB default tolerances for ODE

integration. We compared the hybrid scheme using Hessians and the

FIM. All profiles were computed to a confidence level of 95%.

The comparison of the profile likelihoods calculated using differ-

ent approaches revealed substantial differences (Fig. 4B and C). The

optimization-based approaches worked fine for the JAK/STAT

model but mostly failed for the RAF/MEK/ERK model (Fig. 4A).

For the RAF/MEK/ERK model, only fmincon with the TR-reflect-

ive algorithm and exact Hessians worked reliably among the

optimization-based methods. Even lsqnonlin yielded inaccurate

A B

Fig. 1. Scaling of computation times of the four investigated methods to com-

pute or approximate the Hessian, (at global optimum for each model) includ-

ing linear fits and their slopes. All reported computation times were averaged

over 10 runs. (A) Model M5 was taken and the number of parameters was

fixed to different values. (B) The ratio of the computation times for Hessians

or their approximations over the computation time for solving the original

ODE is given for the five models from Table 1

A

B

C

D

Fig. 2. Accuracy of different methods to compute or approximate the Hessian

at the global optimum for the models M2 and M3. Each point represents the

numerical value of one Hessian entry as computed by two different methods:

(A) Second order forward analysis versus second order adjoint analysis.

(B) Finite differences (different finite difference step sizes and ODE solver tol-

erances were considered) versus second order adjoint analysis. (C) FIM ver-

sus second order adjoint analysis. All computations were carried out with

relative and absolute tolerances set to 10–11 and 10–14, respectively. For finite

differences, lower accuracies of 10–7 and 10–10 were tested, together with the

step sizes 10–5 and 10–2. (D) Operator norm of the differences in the inverse of

the regularized Hessians computed with second order adjoint sensitivity ana-

lysis compared to five considered methods (second forward sensitivity ana-

lysis, finite differences with different tolerances and step sizes, FIM)
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results for 11 out of 28 parameter profiles. A potential reason is that

the tolerances––which were previously also used for optimization––

were not sufficiently tight. Purely integration-based methods failed

due to numerical problems, e.g. jumps in the profile paths. Even ex-

tensive manual tuning and the use of different established ODE solv-

ers (including ode113, ode45, ode23 and ode15s) did not result

in reasonable approximations for all profiles. In contrast, the hybrid

approach provided accurate profiles for all parameters and all mod-

els, when provided with exact Hessians. However, when provided

with the FIM, the hybrid approach failed, when it had to perform

optimization.

In addition to the accuracy, also the computation time of the

methods differed substantially. The hybrid method using exact

Hessians was substantially faster than the remaining methods

(Fig. 4A and Supplementary Fig. S6). The second fastest method was

the optimization-based approach using the Hessian and the TR-re-

flective algorithm for optimization. lsqnonlin was slightly slower

and fmincon using the IP algorithm substantially slower (for both,

the BFGS scheme and Hessian), although they––as mentioned

above––did not provide accurate profiles.

Overall, the proposed hybrid approach using exact Hessians out-

performed all other methods. Compared to the best reliable

competitor (optimization-based profile calculation using fmincon

with the TR-reflective algorithm and exact Hessians), the computa-

tion time was reduced by more than a factor of two. This is substan-

tial for such highly optimized routines and outlines the potential of

exact Hessians for uncertainty analysis.

4 Discussion

Mechanistic ODE models in systems and computational biology rely

on parameter values, which are inferred from experimental data. In

this manuscript, we showed that the efficiency of some of the most

common methods in parameter estimation can be improved by pro-

viding exact second order derivatives. We presented second order

adjoint sensitivity analysis, a method to compute accurate Hessians

at low computational cost, i.e. the method scales linearly in the

number of model parameters and state variables. We also provide a

ready-to-use implementation thereof in the freely available toolbox

AMICI.

We showed that second order adjoint sensitivity analysis pos-

sesses better scaling properties than common methods to compute

Hessians while yielding accurate results, rendering it a promising

alternative to existing techniques. Moreover, we demonstrated that

state-of-the-art constraint optimization algorithms yield more ro-

bust results when using exact Hessians. For the computation of

profile likelihoods, we demonstrated that Hessians can improve

computation time and robustness of various state-of-the-art meth-

ods. Furthermore, we presented a hybrid method for profile compu-

tation, which can efficiently handle problems that are poorly locally

identifiable and have ill-conditioned Hessians. We also provided an

implementation of this method in the freely available PESTO.

Although being a reliable approach for uncertainty analysis

(Fröhlich et al., 2014), profile likelihoods are often disregarded due

to their high computational effort. The presented hybrid method

based on exact Hessians is an approach the tackle this problem, as

A

B

C

Fig. 3. Performance measures of different local optimization methods

[lsqnonlin with TR algorithm and fmincon with TR and IP algorithm, using

either Hessians (H), FIM, or the BFGS scheme]. The multi-start optimization

was carried out multiple times using different starting points for the local

optimizations. Mean and standard deviation for (A) the ratio of computation

time over converged optimization starts and (B) the number of converged

starts are shown. (C) Median and standard deviation of the number of opti-

mization steps over all optimization runs

A

B C

Fig. 4. Profile likelihood computation using either the optimization-based

method (lsqnonlin or fmincon with TR or IP algorithm and Hessian or

BFGS approximation), or the hybrid method with either FIM or Hessian. (A)

Total computation time for all profiles of the considered models. Three meth-

ods failed to compute profiles for the RAF/MEK/ERK model. Thus, their com-

putation times are not depicted. (B) A profile of the RAF/MEK/ERK model, the

three remaining methods in good agreement with each other, with confi-

dence intervals to a confidence level of 95% depicted below. (C) A profile of

the RAF/MEK/ERK model, for which lsqnonlin failed to compute the profile,

with confidence intervals to a confidence level of 95% depicted below
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already the rudimentary implementation used in this study outper-

formed all established approaches.

The analysis of the optimizer performance revealed that least-

squares algorithms (such as lsqnonlin), which exploit the problem

structure, are difficult to outperform. Many parameter estimation

problems considered in systems biology do however not possess this

structure. This is for instance the case for problems with additional

constraints, applications considering the chemical master equation

(Fröhlich et al., 2016), or ODE-constrained mixture models

(Hasenauer et al., 2014). For these problem classes, the constraint TR

and IP optimization algorithms as implemented in fmincon are the

state-of-the-art methods. Additionally, new algorithms, which can ex-

ploit the additional curvature information, available through exact

Hessian computation, in novel ways are steadily developed (Fröhlich

et al., 2017b). Either directions of negative curvature can be used to

escape saddle-points efficiently (Dauphin et al., 2014), or third-order

approximations of the objective functions are constructed iteratively

from the Hessians along the trajectory of optimization to improve the

convergence order (Martinez and Raydan, 2017). Another approach

would be using a quasi-Newton-method in the beginning of the opti-

mization process and switching to exact Hessians as soon as the algo-

rithm comes close to a first-order stationary point. This might

improve the computational performance, since curvature information

is typically more helpful in vicinity of a local optimum. Some of these

approaches might outperform current optimization strategies, which

are not designed to exploit e.g. directions of negative curvature that

may be present in non-convex problems. These methods will be par-

ticularly interesting subjects of further studies when being combined

with second order adjoint sensitivity analysis.

Besides optimization and profile likelihood calculation, Hessians

can also be used for local approximations of the likelihood function,

which facilitates the efficient assessment of practical identifiability prop-

erties and the approximation of the parameter confidence intervals. In

addition, the Hessian can be employed by sampling methods, which

consider uncertainties from a more Bayesian point of view. Also boot-

strapping methods profit from Hessians, as optimization is improved.

Hence, the approaches presented here may accelerate various uncer-

tainty analysis methods and make their application feasible for model

sizes, for which these methods have not been applicable before.

While this study focused on the efficient calculation of the Hessian,

second order adjoint sensitivity analysis can also be used to compute

Hessian vector products. This information can be exploited by optimiza-

tion methods such as truncated Newton (Nash, 1984) or accelerated

conjugate gradient (Andrei, 2009) algorithms, which are suited for

large-scale optimization problems. These are a few examples to illustrate

how the presented results may pave the way for future improvements.
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