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Abstract

Motivation: Cellular Electron CryoTomography (CECT) is an emerging 3D imaging technique that

visualizes subcellular organization of single cells at sub-molecular resolution and in near-native state.

CECT captures large numbers of macromolecular complexes of highly diverse structures and abun-

dances. However, the structural complexity and imaging limits complicate the systematic de novo

structural recovery and recognition of these macromolecular complexes. Efficient and accurate

reference-free subtomogram averaging and classification represent the most critical tasks for such

analysis. Existing subtomogram alignment based methods are prone to the missing wedge effects

and low signal-to-noise ratio (SNR). Moreover, existing maximum-likelihood based methods rely on

integration operations, which are in principle computationally infeasible for accurate calculation.

Results: Built on existing works, we propose an integrated method, Fast Alignment Maximum

Likelihood method (FAML), which uses fast subtomogram alignment to sample sub-optimal rigid

transformations. The transformations are then used to approximate integrals for maximum-

likelihood update of subtomogram averages through expectation–maximization algorithm. Our tests

on simulated and experimental subtomograms showed that, compared to our previously developed

fast alignment method (FA), FAML is significantly more robust to noise and missing wedge effects

with moderate increases of computation cost. Besides, FAML performs well with significantly fewer

input subtomograms when the FA method fails. Therefore, FAML can serve as a key component for

improved construction of initial structural models from macromolecules captured by CECT.

Availability and implementation: http://www.cs.cmu.edu/mxu1

Contact: mxu1@cs.cmu.edu

1 Introduction

Biological pathways rely on the functioning of macromolecular com-

plexes, whose structures and spatial organizations are critical for the

function and dysfunction of the pathways. The native structure informa-

tion of macromolecular complexes has been extremely difficult to obtain

due to the limitations of data acquisition techniques. Recent advances in

Cellular Electron CryoTomography (CECT) imaging technique enables

3D visualization of subcellular structures at sub-molecular resolution

and at near-native state, which makes the extraction of such information

possible (Lu�ci�c et al., 2013). However, the imaging limits and high de-

gree of structural complexity make the systematic analysis of a CECT

3D image (i.e. a tomogram) highly challenging. The cellular tomograms

are normally of very low signal-to-noise ratio (SNR) that few macromol-

ecular complexes can be identified by simple visual inspection. In add-

ition, a tomogram has missing values (i.e. missing wedge effect) due to

the limited imaging tilt angle range during the data acquisition process,

which induces anisotropic resolution. Moreover, the relative size of a

macromolecular complex is typically small compared to the image reso-

lution. The abundances of macromolecular structures also vary widely

(Beck et al., 2014). The structural identification and recovery of macro-

molecular complexes of low abundance are significantly more difficult

than those of high abundance.

Due to the above challenges, the structural recovery of an

individual macromolecular complex captured by CECT often requires
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the inference of its structure (represented by image signals) from large

numbers (thousands) of observed subtomograms of identical structures.

Such inference is called subtomogram averaging. A subtomogram is a

sub-volume of a tomogram that is likely to contain only one macromol-

ecule. There are two main types of subtomogram averaging methods.

The first is through calculating the average of image intensity of mul-

tiple aligned subtomograms containing the same structure with the

same orientation and displacement (e.g. Amat et al., 2010; Bartesaghi

et al., 2008; Chen et al., 2013; Förster et al., 2008; Xu et al., 2012).

Given that the input subtomograms normally contain structures of dif-

ferent orientations and displacements, they need to be aligned to reduce

the resolution decrease resulted from orientation and translation differ-

ence. Alignment of 3D subtomograms (typical size � 643 voxels) is by

nature computationally intensive. Therefore in practice, the alignment

based averaging of thousands of subtomograms relies on fast alignment

techniques (e.g. Bartesaghi et al., 2008; Chen et al., 2013; Xu et al.,

2012) which use approximations to achieve sub-optimal alignment sol-

utions (Section 2.1). Such subtomogram alignment methods (e.g. Xu

et al., 2012) were able to achieve three magnitudes of speed increase

compared with orientation scanning based exhaustive methods (e.g.

Förster et al., 2008). Nevertheless, subtomogram alignment methods

are parsimony: they only output a single optimal rigid transformation

between a subtomogram and subtomogram average, which is likely to

be biased by noise and missing wedge effects. As a result, compared

to the maximum-likelihood methods (see the following paragraph),

the alignment based subtomogram averaging methods are more prone

to noise and missing wedge (Section 3.2).

The second type of averaging methods are maximum-likelihood

based (e.g. Bharat et al., 2015; Scheres et al., 2009) (Section 2.3).

Compared with alignment based methods, maximum-likelihood

methods are, in principle, more robust to noise and to missing wedge

effects because the signal at each location is inferred not only from

across multiple subtomograms (as in alignment based methods), but

also from multiple rigid transforms of each subtomogram through

‘data augmentation’ (Section 2.3). Maximum-likelihood based

methods are based on integrating over all rigid transformations. An

accurate calculation of such integral in principle requires the ex-

haustive scanning over a 6D space that parameterizes 3D rigid trans-

formations, which is computationally infeasible.

The macromolecular complexes extracted from cellular tomograms

are normally highly heterogeneous. First, crowded cellular

environment (Best et al., 2007; Frangakis et al., 2002) has macromole-

cules that adopt different conformations to serve their particular func-

tion. They can also dynamically interact with other macromolecules to

form different complexes across time. The structural recovery of hetero-

geneous macromolecules requires separation of the macromolecules

into structurally homogeneous sets so that the averaging of each set can

more accurately represent the true underlying structures of the set. Such

process is called (unsupervised) subtomogram classification. The above

alignment and maximum-likelihood based subtomogram averaging

methods have been extended for simultaneously averaging and classify-

ing the structurally heterogeneous subtomograms (e.g. Bartesaghi et al.,

2008; Bharat et al., 2015; Chen et al., 2014; Scheres et al., 2009; Xu

et al., 2012) by integrating with clustering. The limitations of the aver-

aging methods are also carried to the extended classification tasks. To

reduce the heterogeneity of millions of structurally highly diverse mac-

romolecules, we have developed deep learning based unsupervised clas-

sification method (Zeng et al., 2017) that can coarsely group

subtomograms into more homogeneous clusters without accurate align-

ment. Clusters of interest can be selected for further analysis.

To complement the above methods, based on existing work, here

we propose a new method that integrates the above alignment and

maximum-likelihood methods. The new method is termed as inte-

grated Fast Alignment Maximum Likelihood method (FAML).

Similar to other subtomogram averaging methods (e.g. Scheres et al.,

2009; Xu et al., 2012), our new method is an expectation–maximiza-

tion process that iteratively updates the subtomogram averages.

However, the updates involve both fast alignment (Xu et al., 2012)

and maximum-likelihood estimation (Scheres et al., 2009).

Specifically, our integrated method consists of three main steps

(Algorithm 1): (i) We first calculate a set of the rigid transformations

that achieve suboptimal alignments between given subtomograms and

subtomogram averages through adapting our previously developed

fast alignment method (Xu et al., 2012) (Section 2.1); (ii) We then use

these suboptimal rigid transformations to approximate integrals over

the entire 6D parametric space of possible 3D rigid transformations

(Section 2.2); (iii) The approximate integrals are used to update the

subtomogram averages through expectation–maximization algorithm

similar to (Scheres et al., 2009) (Section 2.3).

Our experiments on simulated and experimental subtomograms

show that, compared to our previously developed fast alignment

based method (FA) (Frazier et al., 2017; Xu et al., 2012), FAML is

significantly more robust to noise and missing wedge bias with only

a moderate increase in computational costs. FAML also performs

well with a low number of input subtomograms when FA fails.

2 Materials and methods

An overview of the FAML method is given in Algorithm 1.

2.1 Step 1: Calculate suboptimal rigid transformations

through fast alignment
Adapted from our previous work (Xu et al., 2012), we define an

alignment score between a subtomogram X and a subtomogram

average A as

c /ro;/trð Þ ¼
P

j w2
j Xj exp 2pin>j /tr

� �
R/ro A
� �

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j w2

j R/ro A � �A
�� �

�
q

j

(1)

The score is essentially a Pearson correlation (up to a constant)

restricted only to observed regions of X. It is a Fourier space equiva-

lent of a popular alignment score (Förster et al., 2008). In

Equation 1, X 2 C
J is a J dimensional vector of complex values cor-

responding to the Fourier representation of a subtomogram. Each

element Xj corresponds to the jth Fourier component at location

nj 2 R3 in Fourier space. Due to the limited tilt angle range in the

CECT imaging process (i.e. missing wedge effect), not all compo-

nents of X can be observed. X is divided into observed and missing

components, indicated by a J-dimensional indicator vector w (i.e.

missing wedge mask), such that wj¼1 if Xj is observed, and wj¼0

if Xj is unobserved. Similarly, the subtomogram average A 2 C
J is

also a J dimensional vector of complex values. R/ro is the 3D rotation

operator parameterized by three Euler angles /rot ¼ qa; qb; qc
� �

in

ZYZ convention. /tr ¼ qx;qy; qz

� �> 2 R3 is a vector that corresponds

to 3D real-space translation of A. � denotes entry-wise product.

The alignment of X and A is a process of finding the optimal ro-

tation /ro and translation /tr that maximizes R cð Þ, which is the real

part of c. The direct optimization of R cð Þ requires scanning through

all sampled rotation and use Fast Fourier Transform (FFT) to ex-

haustively search through all sampled translation for each rotation.

Such exhaustive scanning based optimization is highly computation-

ally intensive (Xu et al., 2012) and has very limited scalability.
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Therefore, we compute a set of suboptimal rigid transforms using a

translation-invariant upper-bound ~c /roð Þ ¼ jc /ro;/trð Þj of R cð Þ.
Specifically, we express ~c as a fraction of two rotational correlation

functions ~c0 and ~c1:

~c /roð Þ ¼ ~c0 /roð Þ
~c1 /roð Þ ¼

P
j p0ð Þj R/ro q0

� �
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j p1ð Þj R/ro q1

� �
j

q (2)

where p0 ¼ w �w �X; q0 ¼ A; p1 ¼ w �w; q1 ¼ A � �A. After repre-

senting p and q using spherical harmonics expansion, these rotation-

al correlation functions are efficiently and simultaneously calculated

over all rotations (Kovacs and Wriggers, 2002) using the Fast

Fourier Transform (FFT) through re-parameterization. The set �ro

of suboptimal rotations is then obtained according to the local max-

ima of ~c in the 3D parameter space of /ro. The corresponding sub-

optimal translation /tr /roð Þ for each /ro 2 �ro is then calculated

using FFT in a similar way as in (Förster et al., 2008; Xu et al.,

2012). We denote � :¼ f /ro;/tr /roð Þð Þ;8/ro 2 �rog as the final set

of suboptimal rigid transformations. In practice, the size of � is nor-

mally smaller than 50.

2.2 Step 2: Approximate integration by summation over

suboptimal rigid transformations
In the maximum-likelihood based subtomogram averaging methods

(e.g. Scheres et al., 2009) (Section 2.3), the updating of subtomo-

gram averages are based on the calculation of the integrals of the fol-

lowing form

ð
/
f /;X;Að Þ d/ (3)

for a function f of rigid transformation /, subtomogram X, and

subtomogram average A. However, the accurate calculation of

Equation 3 in principle requires exhaustively scanning through all rigid

transformations in a 6D parameter space that consists both rotational

/ro and translational /tr parameters. Such exhaustive scanning is com-

putationally infeasible (Section 3.4). In this paper, we approximate the

integral in Equation 3 over all rigid transformations with a small set �

of sub-optimal transformations obtained from Section 2.1:

ð
/
f /;X;Að Þd/ �

X
/2�

f /;X;Að Þ~t /;�ð Þ ; (4)

where ~t /;�ð Þ :¼ jt /;�ð ÞjP
/02�

jt /0 ;�ð Þj is the normalized hypervolume of /,

and jt /;�ð Þj is the hypervolume of the Voronoi region t /;�ð Þ of

/ 2 � on the manifold ! � R6 that parameterize all rigid transfor-

mations. For those / 2 �, the
PJo

i

j¼1 jj R/Ak

� �
j
�Xo

ijjj
2 term in

Equation 15 tend to be small. Therefore in Equation 14 the corre-

sponding e /; kð Þ tend to have large contribution to the calculation

of the probability.

Each rigid transformation corresponds to a point in !. To calcu-

late the hypervolume jt /;�ð Þj, we use a Monte-Carlo sampling

method (Fig. 1) that is similar to (Bader and Zitzler, 2010). For the

three position coordinates qx; qy; qz

� �
of /, we set the sampling

boundaries to the minimum and maximum values among the set of

points along each axis. For the three rotational coordinates

qa; qb;qc
� �

of /, we treat them as independent coordinates that

wrap around after 2p. We randomly sample a point /0 2 !, and

compute its nearest neighbor

/� /0ð Þ ¼ arg min
/2�

s /0;/ð Þ : (5)

In such case, /0 will belong to t /� /0ð Þ;�ð Þ. After sampling a set �0

of a large number (e.g. 10 000) of points in ! uniformly, we

approximate

jt /;�ð Þj � jf/
0 2 �0 j/� /0ð Þ ¼ /gj

j�0j
; 8/ 2 � : (6)

For any two points /1;/2 2 !, we define their distance as

s /1;/2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjI� R>1 R2jj2F þ atrdjj/tr

1 � /tr
2 jj

2
2

q
, where R is the corre-

sponding rotation matrix of /rot; jj 	 jjF is the Frobenius norm

Fig. 1. The basic idea of hypervolume calculation. The white dots are the sub-

optimal rigid transformations / 2 � obtained by fast alignment (Section 2.1),

and the colored dots are the sampled points /0 2 �0. The Voronoi region tð/i ;

�Þ is defined as the set of all points /0 2 ! such that it is closer to /i 2 � than

any /j 2 � when i 6¼ j under the distance metric s. The number of points in a

Voronoi region becomes a good estimation of its hypervolume when a large

number of points are sampled

Algorithm 1 Integrated Fast Alignment Maximum Likelihood

1: procedure FAML(X ¼ fXi; i ¼ 1; . . . ;Ng)
2: Initialize model parameters H ¼ ðA; a; r; nÞ from the distribution of data X (Section 2.4).

3: iter 0

4: for iter 
 maxIters do

5: ~� ¼ f�ik  fastAlignðXi;AkÞ; 8i ¼ i; . . . ;N; k ¼ 1; . . . ;Kg " Compute suboptimal rigid transformations (Section 2.1)

6: N ¼ f~tð/;�ikÞ  voronoiWeightsð/;�ikÞ; 8i ¼ i; . . . ;N; k ¼ 1; . . . ;K; / 2 �ikg " Compute Voronoi weights (Section 2.2)

7: anew  updateAlphaðX;H; ~�;NÞ " Equation 11

8: rnew  updateSigmaðX;H; ~�;NÞ " Equation 12

9: fnew  updateXiðX;H; ~�;NÞ " Equation 13

10: Anew  updateAðX;H; ~�;NÞ " Equation 10

11: H ðAnew; anew; rnew; fnewÞ " Update model parameters

Fast alignment maximum-likelihood subtomogram averaging i229
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(Huynh, 2009), and atrd is a coefficient parameter used to balance

the value scales between rotation and translation. In our experi-

ments (Section 3), we set atrd ¼ 1 for simplicity.

2.3 Step 3: Maximum-likelihood based updating of

subtomogram averages using expectation–maximization
We follow the data model and notations defined in Scheres et al.

(2009):

Xi ¼ R/i
Aji
þGi 8i ¼ 1; . . . ;N ; (7)

where

• N is total number of input subtomograms
• Xi 2 C

J is the ith subtomogram in the form of a J-dimensional

vector of complex values Xið Þj (or Xij in short), which is divided

into a vector Xo
i of observed components Xo

ij and a vector Xm
i

missing components Xm
ij .

• The observed and missing components of Xi are formalized

by defining a J-dimensional missing data indicator vector

wi 2 f0; 1gJ, such that wið Þj ¼ 1 if Xið Þj is observed, and

wið Þj ¼ 0 if Xið Þj is missing.
• Aji

is one of K unknown 3D structures represented by subtomo-

gram averages in Fourier space. A1; . . . ;AK 2 C
J. These are the

objects to estimate from the data. The data model is used for sub-

tomogram averaging when setting K ¼ 1, and subtomogram clas-

sification and averaging when setting K > 1.
• ji 2 f1; 2; . . . ;Kg is an unknown, random integer, indicating

which of the unknown structures corresponded to Xi.
• R/i

is a rigid transformation operator which maps the unknown

structure Aji
onto Xi. The actual transformation /i for particle

Xi are unknown. Same as in Section 2.1, this transformation is

parameterized by /, a 6D vector (corresponding to three Euler

angles /rot ¼ qa; qb;qc
� �

in ZYZ convention, and three real-

space translation coordinates, /tr ¼ qx; qy;qz

� �
); In such case,

the rigid transformation operator R/ is decomposed into a com-

bination of rotation and translation operators R/ :¼ R/tr R/ro .
• Gi 2 C

J is a J-dimensional vector of unknown, independent

Gaussian noise with zero mean and unknown standard

deviation r.

Given this model, the complete data set corresponds to

Xo
i ;X

m
i ;/i; ji

� �
8 i ¼ 1; . . . ;N (8)

Subtomogram classification and averaging based on the data

model in Equation 7 can be treated as an extension of model-based

clustering process (Fraley and Raftery, 2002) that aims to find

parameters that maximize the approximate log-joint probability of

observing the entire set of observed data with the data model

defined in Equation 7 (Scheres et al., 2009):

L Hð Þ

¼
XN
i¼1

log
XK

k¼1

ð
/

ð
Mi

P Xo
i jk;/;Xm

i ;H
� �

P k;/;Xm
i jH

� �
d/ dMi ;

(9)

where the probabilities are modeled in the same way as in Scheres

et al. (2009).
Ð
Mi

dMi is a shorthand notation for the integrals for

every missing Fourier component in Xm
i (Scheres et al., 2009).

In this paper, we maximize L Hð Þ by Expectation–Maximization

through similar derivation as (Scheres et al., 2009), but with ap-

proximate integrals according to Section 2.2. The derived equations

for updating the averages and other parameters are as follows:

Anew
kj ¼

1

Nanew
k

XN
i¼1

X
/2�ik

P k;/jXo
i ;H

� �

R�1
/ wi

h i
j

R�1
/ Xo

i

� �
j
þ 1� R�1

/ wi

� �
j

� 	
Akj


 �
~t /;�ikð Þ

(10)

anew
k ¼ 1

N

XN
i¼1

X
/2�ik

P k;/jXo
i ;H

� �
~t /;�ikð Þ (11)

ðr
newÞ2 ¼ 1

NJ

XN
i¼1

XJ

j¼1

XK

k¼1

X
/2�ik

Pðk;/jXo
i ;HÞ

fwijjjðR/AkÞj �Xo
ijjj

2 þ ð1�wijÞðrÞ2g~tð/;�ikÞ

(12)

fnewð Þ2 ¼ 1

3N

XN
i¼1

XK

k¼1

X
/2�ik

P k;/jXo
i ;H

� �
q2

x þ q2
y þ q2

z

n o
~t /;�ikð Þ

(13)

P k;/jXo
i ;H

� �
¼ e /;kð ÞP

k0
P

/02�ik0
e /0; k0ð Þ~t /0;�ik0ð Þ (14)

e /; kð Þ :¼ ak exp

PJo
i

j¼1

jj R/Ak

� �
j
�Xo

ijjj
2

�2r2
þ

q2
x þ q2

y þ q2
z

�2f2

8>>>><
>>>>:

9>>>>=
>>>>;

(15)

Optionally, regularization of the similarities between averages

can also be applied in a similar way as in (Scheres et al., 2009).

2.4 Parameter initialization
The way we initialize the model parameters is as follows. We set the

ai for every class to be equal to 1=K. We divide all subtomograms

evenly into K sets at random and let the average of each set be the

class average Ai. The initial value of r2 is obtained by picking a ran-

dom subtomogram and class average and computing the square

voxel intensity difference averaged over all observed parts, and f is

initially set to be equal to the size of the image.

2.5 Implementation details
A modified version of the Tomominer library (Frazier et al., 2017)

was used for fast alignment, 3D rigid transformation, and other

processing. EMAN2 (Galaz-Montoya et al., 2015) library was used

for constructing simulated subtomograms. The methods were paral-

lelized on multiple CPU cores. The tests were performed on two

computers. The first computer has two Intel Xeon E5-2687W CPUs

at 3.0 GHz frequency and 256GB memory, allowing simultaneous

running 48 parallel processes. The second computer has one Intel

Core i7-6800K CPU at 3.4 GHz frequency and 128 GB memory,

allowing simultaneous running 12 parallel processes. The isosurfa-

ces and atomic models were plotted using UCSF Chimera (Pettersen

et al., 2004). In all tests, both FAML and FA methods were executed

for 20 iterations and converged within 20 iterations.

3 Results

3.1 Generation of realistically simulated subtomograms
In order to assess the performance of the FAML method, we

simulated realistic subtomograms by mimicking the tomogram re-

construction process as described previously (Beck et al., 2009;

i230 Y.Zhao et al.
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Förster et al., 2008; Nickell et al., 2005). Missing wedge, image

noise, and electron optical factors, including the Modulation

Transfer Function (MTF) and the Contrast Transfer Function

(CTF), were properly included. Electron optical density of macro-

molecular complexes was set to be proportional to the electrostatic

potential. Volume electron density maps were generated by the Situs

(Wriggers et al., 1999) PDB2VOL program, which was used to

simulate electron micrograph images through a sequence of tilt-

angles. Random noise was added to the images (Förster et al., 2008)

to reach the target SNR levels, which were similar to the SNRs esti-

mated from experimental data (Section 3.2.2). Electron micrograph

images were convolved with the MTF and CTF to produce electron

optical effects (Frank, 2006; Nickell et al., 2005). Data acquisition

parameters in the simulation were determined by the experimental

data acquisition parameters in Section 3.2.2, with spherical aberra-

tion of 2.7 mm, defocus of -6 l m, and voltage of 300 kV. The MTF

is defined as ðpx=2Þ, where x is the fraction of the Nyquist fre-

quency, corresponding to a detector (McMullan et al., 2009). To re-

construct the simulated subtomogram from the tilt series, a direct

Fourier inversion reconstruction algorithm [from the EMAN2 li-

brary (Galaz-Montoya et al., 2015)] was applied.

To determine the SNR of experimental subtomograms, we meas-

ured the SNR of the selected 859 ribosome subtomograms from a

tomogram of primary rat neuron culture (Section 3.2.2). We selected

1000 random pairs of subtomograms that were already aligned to

the corresponding ribosome template (PDB ID: 5T2C). The SNR of

each subtomograms pairs was computed according to (Frank and

Al-Ali, 1975). The mean SNR is 0.01035. We measured the SNR of

TMV subtomograms (Section 3.2.3) in a similar way by aligning

them to their FAML average. The mean SNR is 0.002313. The

measured SNRs serve as a reference range to determine the SNR of

simulated subtomograms. All simulated subtomograms are of size

643 with voxel size 0.6 nm and resolution 0.6 nm.

Figure 2 shows central slices of simulated GroEL (PDB ID: 1KP8)

subtomograms (size: 643) of different level of SNRs and tilt angles.

Compared with noise-free subtomograms (i.e. templates), subtomo-

grams of lower SNR and smaller tilt angle range show more distortions.

3.2 Reference-free averaging tests
When we assume all input subtomograms contain the same structure

with random orientations and displacements, we choose K¼1.

FAML is used for refining a single average, known as reference-free

averaging.

3.2.1 Averaging of simulated GroEL subtomograms

Due to the crowded cellular environments and imaging limits,

CECT data is usually of low SNR. Low SNR is a major challenge

for reference-free subtomogram averaging. To test the performance

of the FAML averaging with respect to a high noise level, we chose a

low SNR 0.003, and simulated 100 GroEL (PDB ID: 1KP8) at that

SNR level with tilt angle range 660�. All 100 GroEL structures

were randomly rotated and translated before constructing the simu-

lated subtomograms.

The averaging results were plotted with fitted atomic model

alongside a true GroEL structure (Fig. 3). The fitted atomic model

with FAML GroEL average achieved cross-correlation coefficient of

0.77 whereas the fitted atomic model with FA GroEL average

achieved cross-correlation coefficient of 0.19. Figure 3C showed

that at such a low SNR level, the FA method failed to recover the

GroEL structure, resulting in a subtomogram average of a collection

of ‘torn pieces’. Figure 3B showed that FAML method successfully

recovered the GroEL structure. The top view (Fig. 3B top) showed

that the sevenfold rotational symmetry of GroEL was recovered.

The advantage of FAML over FA on low SNR experimental subto-

mograms was further demonstrated in Section 3.2.2.

Another CECT imaging distortion is the missing wedge effect.

Many tomograms are processed at a small tilt angle range such as

640� or 650� to prevent excessive electron beam damage to the spe-

cimen. As the same structure may adopt different orientations inside

a subtomogram, the missing wedge bias could be partly compen-

sated and corrected by aligning and averaging multiple identical

structures of different orientations during the structural recovery

process. However, in some cases, such as small numbers of input

subtomograms, small tilt angle ranges (i.e. large missing wedge

angles), and having preferred orientations, correcting the missing

wedge bias in the averaging process is substantially more challeng-

ing. In fact, a recent study shows that having preferred orientation is

often a problem in single particle cryo-electron microscopy imaging

(Glaeser and Han, 2017).

To test the performance of the FAML method on reference-free

averaging of subtomograms with the above limits, we simulated a

small number of 50 GroEL (PDB ID: 1KP8) subtomograms, at SNR

level 0.01 with tilt angle range 640�. Preferred orientation was also

simulated by only allowing the structure to rotate about the Y axis.

The principal axis of the structure is constrained to be parallel to the

Y axis. All the GroEL structures were randomly rotated with con-

straints and translated before constructing simulated subtomograms.

The averaging results were plotted with fitted atomic model

alongside a true GroEL structure (Fig. 4). The fitted atomic model

with FAML GroEL average achieved cross-correlation coefficient of

0.78 whereas the fitted atomic model with FA GroEL average

achieved cross-correlation coefficient of only 0.49. Figure 4C

showed that the FA method is heavily biased by the missing wedge

Fig. 3. Averaging of low SNR simulation GroEL subtomograms: (A) Isosurface

of true GroEL structure (PDB ID: 1KP8, filtered at 0.6 nm resolution) with fitted

atomic model. (B) FAML subtomogram average with fitted atomic model

(r¼0.77). (C) FA subtomogram average with fitted atomic model (r¼0.19)

Fig. 2. Center slices (x–z plane) of simulated subtomograms of specified level

of SNRs and tilt angle ranges
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effect. The averaged structure is distorted and elongated along the Y

direction with a sizable missing region along the Z direction. In

comparison, the FAML method fully corrected the missing wedge ef-

fect (Fig. 4B). No missing regions nor significant distortions are ob-

servable from the FAML average. The top view (Fig. 4B top)

showed that FAML method recovered the GroEL structure with the

sevenfold rotational symmetry. The advantage of FAML over FA on

reducing missing wedge bias was further demonstrated on the ex-

perimental TMV subtomograms in Section 3.2.3.

3.2.2 Averaging of experimental ribosome subtomograms extracted

from a tomogram of primary rat neuron culture

Reference-free averaging was also tested on a dataset of 859 ribo-

some subtomograms extracted and purified from a tomogram of pri-

mary rat neuron culture (Guo et al., 2018). The tomogram was

captured with a tilt angle range of �50� to þ70�. It was then binned

twice to a voxel size of 1.368 nm. 58 549 subtomograms of size 403

were extracted from the tomogram using the Difference of Gaussian

particle picking method (Pei et al., 2016). The extracted subtomo-

grams are highly heterogeneous. Therefore, we used a convolutional

autoencoder (Zeng et al., 2017) to perform unsupervised clustering

of the extracted subtomograms and selected only the clusters with

large globular features because they are more likely to be ribosomes.

This filtering process selected about 10% subtomograms for further

analysis. Template search (Frazier et al., 2017) was applied to iden-

tify the top 1000 subtomograms with high structural correlation to

the ribosome template. We manually inspected the 1000 subtomo-

grams, and filtered out 141 of them which contained obvious non-

ribosome structure such as fiducial.

Both FAML and FA method were tested on this ribosome subto-

mogram dataset. The averaging results were plotted with fitted

atomic models alongside a true ribosome structure filtered at low

resolution (10 nm). The fitted atomic model with FAML ribosome

average achieved cross-correlation coefficient of 0.61 whereas the

fitted atomic model with FA ribosome average achieved cross-

correlation coefficient of 0.66. Figure 5C showed that FA subtomo-

gram average converged to a general shape resembling a ribosome

structure consisting of the 40S and 60S subunits with a major glove

feature in between. Although the cross-correlation coefficient for FA

average is slightly higher, the finer structural details (circled region),

such as those connecting the two subunits, were lost as compared to

the true structure. FAML method, on the other hand, recovered not

only the general shape of a ribosome with two subunits but also

with significantly more structural details of both subunits and their

connection.

3.2.3 Averaging of experimental tobacco mosaic virus

subtomograms

The performance of FAML in correcting missing wedge effects was

further tested using a subtomogram dataset of tobacco mosaic virus

(TMV), a type of helical virus (Kunz et al., 2015). The dataset con-

sists of 2742 TMV subtomograms of size 1283. They were two times

binned to size 643. The tilt angle range is 660� and the voxel size is

0.54 nm after binning.

Without taking advantage of rotational symmetry information,

the FA subtomogram averaging resulted in large missing regions

(Fig. 6B bottom part) and appears to be a stack of ring structures

rather than a single helical structure (Fig. 6D). The top and bottom

view regions of the FA averages are significantly distorted (Fig. 6B).

Compared to the FA average, the FAML average is significantly

more similar to the known helical structure of TMV, although

the parts that are located at top and bottom views are not

perfectly smooth (Fig. 6A). No significant missing regions are ob-

servable and a symmetric helical structure was roughly recovered

(Fig. 6C).

It is known the TMV has seventeenfold symmetry. We measured

the symmetry of FA and FAML averages. The symmetry was meas-

ured by the pair-wise correlation between the structure and its rota-

tion along the principal axis with an angle corresponding to the

seventeenfold symmetry. For each average, seventeen rotated struc-

tures were generated and the average pairwise correlation was

computed.

FAML achieved an average pairwise correlation of 0.47. FA

achieved an average pairwise correlation of 0.25. Therefore, the

FAML average recovered better TMV symmetric features.

Fig. 5. Averaging of experimental ribosome subtomograms (circled regions

show that FAML recovers more structural details): (A) Isosurface of true ribo-

some structure (PDB ID: 5T2C, filtered at 10 nm resolution) with fitted atomic

model. (B) FAML subtomogram average with fitted atomic model (r¼ 0.61).

(C) FA subtomogram average with fitted atomic model (r¼0.66)

Fig. 6. Averaging of experimental TMV subtomograms: (A) Isosurface of

FAML subtomogram average (symmetry: 0.47). (B) FA subtomogram average

(symmetry: 0.25)

Fig. 4. Averaging of simulated GroEL subtomograms with small tilt angle

range: (A) Isosurface of true GroEL structure (PDB ID: 1KP8, filtered at 0.6 nm

resolution) with fitted atomic model. (B) FAML subtomogram average with fit-

ted atomic model (r¼0.78). (C) FA subtomogram average with fitted atomic

model (r¼ 0.49)
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3.3 Reference-free classification and averaging tests
Frequently, subtomogram datasets contain heterogeneous struc-

tures. Simple averaging will result in recovering a mixed structure.

In such case, unsupervised classification should be performed

simultaneously with the subtomogram averaging process to recover

multiple averages of different structures. Structural recovery

accuracy, as well as classification accuracy, are both important for

these tasks.

3.3.1 Classification and averaging of simulated GroEL and

ribosome subtomograms

To test the performance of FAML on reference-free classification

and averaging tasks, we simulated 100 GroEL (PDB ID: 1KP8) and

100 ribosome (PDB ID: 4V4A) subtomograms at SNR level 0.01

with tilt angle range 660�. All 200 structures were randomly

rotated and translated inside the subtomogram.

This dataset of 200 subtomograms was classified and averaged

by both FAML and FA methods with K¼2. FAML method success-

fully classified the 200 subtomogram into 2 classes, of which class 1

contains 100 GroEL subtomograms and class 2 contains 100 ribo-

some subtomograms. No subtomogram was misclassified. The aver-

aging results of the two classes were plotted alongside a true GroEL

structure and a true ribosome structure (Fig. 7). The characteristic

sevenfold symmetry feature of the GroEL structure was successfully

recovered (Fig. 7B top). The ribosome average resembles the true

structure in terms of structural details to a good extent (Fig. 7E).

By contrast, FA method classified the 200 subtomogram into 2

classes, of which class 1 contains 98 GroEL subtomograms and class

2 contains 100 ribosome subtomograms and 2 GroEL subtomo-

grams. Two subtomograms were misclassified. The averaging results

of the two classes were plotted alongside a true GroEL structure and

a true ribosome structure (Fig. 7). The sevenfold symmetry of the

GroEL structure was successfully recovered because the classified

GroEL class contains 98 homogeneous GroEL structures (Fig. 7C

top). However, additional structures were falsely generated in the

top region of ribosome average (Fig. 7F). This is mainly due to the

two GroEL subtomograms mixed into the ribosome subtomogram

class. The fitted atomic model with FAML GroEL and ribosome

averages achieved cross-correlation coefficients of 0.88 and 0.85, re-

spectively whereas the fitted atomic model with FA GroEL and

ribosome averages achieved cross-correlation coefficients of 0.84

and 0.75, respectively.

We measured the classification accuracy in terms of F1 score,

which is the harmonic mean of precision and recall. Overall, the

FAML method achieved an average F1 score of 1 and the FA

method achieved an average F1 score of 0.99. The FAML method

outperforms the FA method regarding both classification accuracy

and structural recovery accuracy.

3.3.2 Averaging and classification of experimental capped

proteasome and TRiC subtomograms extracted from a tomogram

of rat neuron with expression of poly-GA aggregate

Furthermore, reference-free classification and averaging were tested

on a dataset consisting of 125 TCP-1 ring complex (TRiC) subtomo-

grams and 200 capped proteasome subtomograms extracted from a

tomogram of rat neuron with expression of poly-GA aggregate (Guo

et al., 2018). All subtomograms were two times binned to size 403

(voxel size: 1.368 nm). The tilt angle range was �50� to þ70�.

The reference-free classification and averaging tasks were sub-

stantially more challenging due to the small number of input subto-

mograms. The TRiC&proteasome dataset was classified and

averaged by both FAML and FA methods with K¼2.

The averaging results of the two classes were plotted alongside a

true TRiC structure and a true capped proteasome structure (Fig. 8).

The fitted atomic model with FAML TRiC and capped proteasome

averages achieved cross-correlation coefficients of 0.41 and 0.45, re-

spectively whereas the fitted atomic model with FA TRiC and

capped proteasome averages achieved cross-correlation coefficients

of 0.08 and 0.16, respectively.

FAML method classified the 325 subtomogram into 2 classes, of

which class 1 contains 91 TRiC subtomograms and 6 capped prote-

asome subtomograms, and class 2 contains 194 capped proteasome

subtomograms and 34 TRiC subtomograms. 40 subtomograms

were misclassified. FAML recovered the spherical shape of TRiC to

a similar size (Fig. 8B). The capped proteasome average resembles

the true structure in terms of its cylindrical shape and the cap on the

top (Fig. 8E).

On the other hand, the FA method classified the 325 subtomo-

gram into 2 classes, of which class 1 contains 10 TRiC subtomo-

grams, and class 2 contains 200 capped subtomograms and 115

TRiC subtomograms. 115 subtomograms were misclassified. The

averaging results of the two classes were plotted alongside a true

Fig. 8. Averaging and classification of experimental capped proteasome and

TRiC subtomograms: (A) True TRiC structure (PDB ID: 4V94, filtered at 6 nm).

(B) FAML subtomogram average (r¼0.41). (C) FA subtomogram average

(r¼0.08). (D) True capped proteasome structure (PDB ID: 5MPA, filtered at

6 nm). (E) FAML subtomogram average (r¼0.45). (F) FA subtomogram aver-

age (r¼0.16)

Fig. 7. Classification and averaging of simulated GroEL and ribosome subto-

mograms: (A) Isosurface of true GroEL structure (PDB ID: 1KP8, filtered at

0.6 nm). (B) FAML average of GroEL subtomogram (r¼0.88). (C) FA average

of GroEL subtomogram (r¼0.84). (D) True ribosome structure (PDB ID: 4V4A,

filtered at 0.6 nm). (E) FAML average of ribosome subtomogram (r¼0.85). (F)

FA average of ribosome subtomogram (r¼ 0.75)
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TRiC structure and a true capped proteasome structure (Fig. 8). The

spherical shape of the TRiC structure was not recovered due to the

low number of TRiC subtomograms classified in class 1. The capped

proteasome structure was also not correctly recovered mainly due to

the high number of TRiC subtomograms misclassified to class 2

(Fig. 8F).

Overall, the FAML method achieved an average F1 score of

0.863 and the FA method achieved an average F1 score of 0.462.

The FAML method significantly outperformed the FA method in

terms of accuracy.

3.3.3 Averaging and classification of experimental GroEL and

GroEL-GroES subtomograms

We tested the performance of FAML method on classifying

and averaging subtomograms with high structural similarity.

Reference-free averaging and classification were tested using a data-

set of experimental GroEL and GroEL-GroES subtomograms cap-

tured in (Förster et al., 2008). The dataset consists of 780

subtomograms belonging to two class: GroEL and GroEL-GroES.

To show that the FAML method can achieve successful averaging

and classification with a small number of input subtomograms,

we substantially decreased the size of the GroEL/GroEL-GroES

dataset by randomly selecting 400 subtomograms. All the 400 sub-

tomograms are of size 323 with voxel size 1.2 nm and tilt angle

range 665�.

Both FAML and FA methods were applied to the selected subto-

mograms. The averaging results of the two classes were plotted

alongside a true GroEL structure and a true GroEL-GroES structure

(Fig. 9). Though the FA method was tested previously on the origin-

al dataset of 780 subtomograms and successfully recovered the

GroEL and GroEL-GroES structure (Frazier et al., 2017), when

decreasing the input subtomogram number to 400, the FA method

could not fully recover either the GroEL structure (Fig. 9C) or the

GroEL-GroES structure (Fig. 9F). Both structures are heavily dis-

torted compared to the true structures.

By contrast, the FAML method recovered both GroEL (Fig. 9B)

and GroEL-GroES (Fig. 9E) structures as compared to the true struc-

tures regarding their size and symmetric shape. The averaged

GroEL-GroES structure can be distinguished from the averaged

GroEL structure by its characteristic enlarged chamber at its top

(Fig. 9E bottom).

The fitted atomic model with FAML GroEL and GroEL-GroES

averages achieved cross-correlation coefficient of 0.87 and 0.78, re-

spectively whereas the fitted atomic model with FA GroEL and

GroEL-GroES averages achieved cross-correlation coefficients of

0.40 and 0.24, respectively. The previously reported performance

for method (Scheres et al., 2009) on the whole 780 subtomograms is

0.88 and 0.81 for GroEL and GroEL-GroES averages, which is only

slightly higher than ours obtained from a significantly smaller num-

ber of only 400 subtomograms.

Therefore, the FAML method significantly outperformed the FA

method in classification and averaging of similar structure with a

substantially smaller number of input subtomograms. The FAML

method achieved comparable averaging results to method (Scheres

et al., 2009) on substantially fewer input subtomograms.

3.4 Computation time analysis
Similar to FA, the computational cost for all the components of

FAML scales linearly with the number of voxels in the input subto-

mograms. The cost for the maximum-likelihood update functions is

linear to the size of sampled rigid transformations � taken to ap-

proximate the integrals. To give an estimation of how our method

compares with those with exhaustive integration, we performed

time profiling during execution of FAML. As we can see in the graph

(Fig. 10), the steps for maximum-likelihood update in FAML cost

66% of the time. Using a uniform grid sampling to obtain � instead

of using fast alignment and aim for no more than a 10x increase of

computational cost, we can at most afford to increase the size of �

by a factor of 20. Given that our method normally uses at most 50

samples for each integration, this gives a total of 1000 sample

points, which is equivalent to a very sparse 6D sample grid of fewer

than 4 points in each spacial translation, and an angular sampling

interval of more than 90�. Such a sampling rate is too low for any

competitive results, but about ten times slower than our FAML algo-

rithm. The trade-off for computing fast alignment over more sample

points is a highly efficient one.

In general, the scanning based accurate calculation of the integral

in Equation 3 is in principle computationally infeasible, as the cost

scales cubically with both the angular and translational sampling

rates. For example, a sampling with a rotation angle interval of 2:5�,

and a translational offset of 610 voxels with a step of 1 voxel will

Fig. 9. Averaging and classification of experimental GroEL and GroEL-GroES

subtomograms: (A) Isosurface of true GroEL structure (PDB ID: 1KP8, filtered

at 6 nm). (B) FAML subtomogram average (r¼ 0.87). (C) FA subtomogram

average. (r¼0.40) (D) True GroEL-GroES structure (PDB ID: 2C7C, filtered at

6 nm). (E) FAML subtomogram average (r¼0.78). (F) FA subtomogram aver-

age (r¼0.24)

Fig. 10. Pie chart of time cost proportions for major FAML steps for the aver-

aging of subtomograms of size 1283 voxels in Table 1
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take more than 7:4� 1010 sampled rigid transformations on the

manifold !. To our knowledge, in practice, adaptive oversampling

similar to (Scheres, 2012) has been used for approximating such

integrals. In the later stages of the iterative averaging process, local

orientation searches are used, which may degenerate such methods

to the alignment based method by only sampling in the vicinity of a

single rigid transformation between a subtomogram and a subtomo-

gram average. The limits of alignment based subtomogram averaging

methods may carry to such adaptive oversampling based maximum-

likelihood subtomogram averaging methods. Theoretically, the

multiple rigid transformations produced by our global search

(Section 2.1) would prevent the averaging process from sticking at

such local optima.

The computational time is not directly comparable because FA is

implemented mainly in Cþþ and FAML (maximum-likelihood

updating steps) is implemented in python. However, from a utility

perspective, we compared the computation time used for FA and

FAML averaging tasks. For each task, 20 simulated ribosome subto-

mograms (PDB ID: 4V4A) of specified sizes were averaged by both

methods (the practical input subtomogram size limit is 2563 for cur-

rent typical computer hardware settings). All simulated subtomo-

grams are of SNR 0.02. Ribosome structures were randomly rotated

and translated before they were used to construct the simulated sub-

tomograms. We also include computation time cost using RELION

(implemented in Cþþ), the most popular subtomogram classifica-

tion and averaging software which implements method (Scheres

et al., 2009). RELION was tested using its default sampling parame-

ters: 7:5� angular sampling interval without adaptive oversampling

or local searches, and 5 pixels offset search range with 1 pixel search

step. Using the default parameters gave us a rough estimation of the

computation time cost. Note that in practice these sampling parame-

ters should be modified accordingly with larger input subtomo-

grams, which will further increase the computation time of the

RELION method. All three methods were tested on the Intel Core I7

computer with 12 parallel computing processes.

We recorded in Table 1 the number of iterations it took to con-

verge, time per iteration, and the total time it took to converge for

each task. From Table 1, we found that though the FA method took

less time per iteration, FAML generally took fewer iterations to con-

verge. If the steps for maximum-likelihood update in FAML were

implemented with Cþþ, it would be expected to achieve several

folds of speedup. Therefore, there is only a moderate increase of

computation time of FAML compared to FA. Given that FA has

achieved three magnitudes of speedup (Xu et al., 2012) compared to

the orientation scanning exhaustive search based method (Förster

et al., 2008), and that FAML requires a substantially smaller num-

ber of subtomograms with a faster convergence for successful

structural recovery than FA does, we believe a moderate increase in

time cost of FAML will not affect its efficacy for the systematic de

novel recovery of large numbers of macromolecules with highly di-

verse structures and abundances captured by CECT.

4 Conclusion

CECT is a very promising tool for the systematic visualization of na-

tive structures and spatial organizations of large macromolecules in-

side single cells. Nevertheless, it remains one of the bottlenecks

the efficient and accurate reference-free recovery and separation of

large numbers of diverse macromolecular structures systematically

through subtomogram averaging and classification. In this paper,

building on existing work, we proposed a new method (FAML) that

integrates fast subtomogram alignment (Xu et al., 2012) with

maximum-likelihood (Scheres et al., 2009) methods to improve the

recognition and recovery of initial structural models from input sub-

tomograms. Our experiments showed a significant improvement

compared with our previous methods (Frazier et al., 2017; Xu et al.,

2012) in terms of i) the number of subtomograms needed for suc-

cessful recovery and classification, and ii) robustness to the noise

and missing wedge effects. FAML is favored especially with subto-

mogram datasets of low SNR or tilt angle range.

Due to its high scalability and accuracy, FAML is a very useful

component for improved systematic structural pattern mining in

CECT, thereby bridging the gap from microscopy to structure. A po-

tential use of FAML is to combine it with other reference-free struc-

tural pattern mining techniques. For example, given millions of

subtomograms extracted from cellular tomograms using reference-

free particle picking (e.g. Voss et al., 2009), these macromolecules

can be first filtered using our recently developed deep learning based

coarse structural separation method (Section 3.2.2) (Zeng et al.,

2017), then be classified and averaged using FAML. The resulting

averages can be further refined by maximum-likelihood methods

that take into account Contrast Transfer Functions (Bharat et al.,

2015) or high-precision alignment (Xu and Alber, 2012) method.

Besides CECT, FAML can be applied to similar data analysis tasks

from cryo-tomograms of purified complexes or cell lysate.
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