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Abstract

Motivation: The rapid drop in sequencing costs has produced many more (predicted) protein

sequences than can feasibly be functionally annotated with wet-lab experiments. Thus, many com-

putational methods have been developed for this purpose. Most of these methods employ

homology-based inference, approximated via sequence alignments, to transfer functional annota-

tions between proteins. The increase in the number of available sequences, however, has drastical-

ly increased the search space, thus significantly slowing down alignment methods.

Results: Here we describe homology-derived functional similarity of proteins (HFSP), a novel com-

putational method that uses results of a high-speed alignment algorithm, MMseqs2, to infer func-

tional similarity of proteins on the basis of their alignment length and sequence identity. We show

that our method is accurate (85% precision) and fast (more than 40-fold speed increase over state-

of-the-art). HFSP can help correct at least a 16% error in legacy curations, even for a resource of as

high quality as Swiss-Prot. These findings suggest HFSP as an ideal resource for large-scale func-

tional annotation efforts.

Contact: ymahlich@bromberglab.org or yanab@rci.rutgers.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The recent rapid drop in the cost of DNA-sequencing has produced

a large number of fully sequenced genomes. For prokaryotes, for ex-

ample, this represents a more than 6-fold growth (1400–9000 in

GenBank (Benson et al., 2013)) in the last 5 years alone. While

this increase in data enables many types of research, experimental

annotation lags far behind. In particular, the speed (or lack thereof)

of experimental evaluation and validation of protein molecular

functionality clearly necessitates computational approaches. In fact,

many methods (Jiang et al., 2016; Radivojac et al., 2013) have al-

ready been developed for this purpose, the vast majority of which

rely on transfer of functional annotation by homology (Loewenstein

et al., 2009). Mistakes in available annotations (Schnoes et al.,

2009), inconsistencies in experiments as well as simply missing or

yet unknown functions make these sequence similarity-based

methods error-prone (Clark and Radivojac, 2011). Furthermore,

organism-focused research interests result in more detailed annota-

tions for a non-random subset of proteins, where homologous pro-

teins of identical functionality in another species are often annotated

significantly less thoroughly. Evaluating the performance of compu-

tational annotation methods is complicated by the absence of large,

well curated and ‘evenly’ functionally annotated protein sets, repre-

senting the entire breadth of available biomolecular functionality.

Protein sets that are used as benchmarks of prediction employ an-

notation ontologies, i.e. standardized terms and their relationships.

One such benchmark set is enzymes with Enzyme Commission

(Bairoch, 2000) (EC) numbers. EC numbers reflect a four level hier-

archy, where each consecutive level is a more precise specification of
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the annotation on the previous level. For example, enzymes classified

as EC: 1.1.1.- are oxidoreductases (first level), acting on the CH-OH

group of electron donors (second level), with NADþ or NADPþ as an

electron acceptor (third level). The fourth and most specific level

might then annotate an enzyme as alcohol dehydrogenase (EC:

1.1.1.1), i.e. reducing the aldehyde group of the molecule. Note that

dashes (‘-’) in EC numbers indicate lack of specificity of functional an-

notation at that level. While EC numbers facilitate comparison of

functions across enzymes, the annotation specificity at the same EC

level varies; e.g. the class of serine/threonine protein kinases (EC:

2.7.11.-) contains a category EC: 2.7.11.1 (fourth level

annotation ¼ 1) that collects all kinases that are non-specific or whose

specificity has not been analyzed to date. On the other hand, serine/

threonine protein kinases with the fourth level annotations between 2

and 32 are very specifically annotated, with each category limited to

proteins that act on a particular substrate. Using EC annotations as a

benchmark, thus, comes at the expense of variability in annotations

even at the same level of the hierarchy. This, in turn, complicates

establishing functional similarity of two proteins in a precise and bal-

anced manner across the entire enzymatic activity spectrum.

By definition, using EC annotations also means missing out on

non-enzymatic functionality. Other ontologies, like the molecular

function branch of Gene ontology (Ashburner et al., 2000) (GO) do

not have this limitation. GO, however, employs a different, even

more detailed, strategy in defining function than EC. The number of

GO annotation levels varies by ontology sub-branch. Moreover, one

protein can (and likely does) have multiple functional GO terms

assigned to it (e.g. both copper ion binding and DNA binding terms

describe the function of P53; AmiGo 2.4.6; PMID: 15358771,

PMID: 7824276). Thus, comparing GO annotations may lead to

much stronger distortions of similarity than skewed or even incom-

plete EC numbers. Note that moonlighting (Khan et al., 2014) pro-

teins, i.e. proteins that can be assigned multiple specific functions,

further confuse functional similarity metrics.

As a consequence of the drastic increase in genomic and protein

sequences in need of annotation, the search space for all computa-

tional function assignment methods has also increased. A center-

piece of much of sequence analysis efforts is the Basic Local

Alignment Search Tool (BLAST) (Altschul et al., 1990; Altschul

et al., 1997) family. We note that with the quasi exponential growth

in search space, while PSI-BLAST (Altschul et al., 1997) may still re-

main viable for the analysis of a single protein, large scale evalua-

tions are not time-feasible. Many methods that reduce runtime

while retaining or increasing alignment accuracy have been devel-

oped over the last years, including caBLASTp (Daniels et al., 2013),

HHblits (Remmert et al., 2012) and MMseqs2 (Steinegger and

Soding, 2017). However, replacing (PSI-) BLAST in any bioinfor-

matics pipeline with another alignment method requires parameter

re-optimization or even a complete method overhaul.

Existing function prediction methods are very sophisticated,

using a variety of inputs (e.g. structure and literature mining) and

computational techniques (e.g. machine learning). However, here

we focused on Homology-derived Secondary Structure of Proteins

(HSSP) (Rost, 1999; Rost, 2002; Sander and Schneider, 1991)—a

simple distance metric that infers protein function and structure

similarity from sequence identity and alignment length. We opti-

mized HSSP parameters to classify protein pairs as functionally iden-

tical or different using the results of MMseqs2, a lightning-fast

alignment method. We found that our newly developed Homology-

derived Functional Similarity of Proteins (HFSP) method is 40-fold

faster than HSSP, while retaining HSSP precision in annotating en-

zymatic functionality of proteins (85% precision; Fig. 1).

Analyzing existing protein databases with our method, we

showed that currently available computationally determined anno-

tations in even the manually curated Swiss-Prot (The UniProt, 2017)

database are incorrect for at least a sixth of the cases. We suggest

that these errors are likely due to loosely defined rules of homology-

based propagation of functional annotations. With the number of

protein sequences in public databases bordering on 100 million and

growing, HFSP is well suited to help improve the quality of existing

and newly assigned functional annotations.

2 Materials and methods

2.1 Extraction of datasets
We extracted a set of reviewed proteins from Swiss-Prot with only

one, EC (Bairoch, 2000) annotation per protein (complete at all four

levels; 214 000 proteins; Swiss-Prot set). The 2002 (latest) formula

for computing the HSSP (Rost, 1999; Rost, 2002) distances was

developed on a combined set of Swiss-Prot (The UniProt, 2017) and

Protein Data Bank (Berman et al., 2002) proteins. To validate the

performance of HSSP reported in Rost (1999) and Rost (2002), we

extracted proteins from the Swiss-Prot set that had experimental evi-

dence of protein existence (e.g. crystal structure, protein detection

by antibodies, etc.) and an EC annotation in BRENDA (Placzek

et al., 2017). The resulting proteins (Swiss-Prot 2017 set; 7022 pro-

teins) were further filtered to retain entries appearing in the database

before January 2002 (Swiss-Prot 2002, 3, 908 proteins). Both Swiss-

Prot 2017 and 2002 datasets were extracted in October 2017

(Uniprot release 2017_09) and redundancy reduced to 98% se-

quence similarity and 98% target sequence coverage with CD-HIT

(Fu et al., 2012; Li and Godzik, 2006). Swiss-Prot 2002 contained

3801 proteins with 1481 unique EC annotations and Swiss-Prot

2017 containing 6835 proteins with 2552 unique EC annotations

(Supplementary Material).

Swiss-Prot 2017 was further split into sets containing only pro-

karyotic (Swiss-Protpro 2017, 2572 proteins) or eukaryotic (Swiss-

Proteuk 2017, 4263 proteins) proteins. Finally, we extracted two

more Swiss-Prot subsets from: (i) proteins that did not have an EC

annotation (293 058 proteins) and (ii) proteins with incomplete or

multiple EC annotations (48 536 proteins).

2.2 Aligning proteins
To augment the homology profiles used in alignments [by both PSI-

BLAST (Altschul et al., 1997) and MMseqs2], we computed align-

ments of all proteins in our datasets (Swiss-Prot 2002, Swiss-Prot

2017, Swiss-Protpro 2017 and Swiss-Proteuk 2017) against proteins

in the full (non-reduced) Swiss-Prot (Uniprot release 2017_09). For

each specific dataset, we then extracted only those alignments,

where both proteins were present in that set (e.g. both query and tar-

get protein in Swiss-Prot 2002).

PSI-BLAST alignments where created with NCBI-BLAST version

2.2.29þ. We ran three iterations of PSI-BLAST (-num_iterations 3).

In each iteration, the top 500 hits (E-value 10�10, -inclusion_ethresh

1e-10) were included into the profile. After the third round all align-

ments that satisfied the E-value �10�3 threshold (-evalue 1e-3) were

considered for evaluation of performance.

MMseqs2 (Steinegger and Soding, 2017) parameters were chosen

to mirror the PSI-BLAST runs. The alignment-mode (––alignment-

mode 3) was set to calculate sequence identity between query and tar-

get over the full alignment length, i.e. analogous to BLAST. We ran

three iterations (––num-iterations 3) of alignments including hits with

an E-value �10�10 into the generated profile (––e-profile 1e-10).
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Only alignments of protein pairs with and E-value �10�3 were

reported in the final result (-e 1e-3). The sensitivity (-s) cutoff for

MMseqs2 prefiltering step was set to 5.6 (default value).

It had taken MMseqs2 1228 CPU hours to complete the align-

ment of our Swiss-Prot enzyme set (214 000 proteins) to the full

(non-reduced) Swiss-Prot (555 594 proteins). Although MMSeqs2

was exceedingly fast for this set, note that it has been optimized to

deal with much larger databases and, thus, it did not reach its full

potential in speed. In earlier testing (Zhu et al., 2015; Zhu et al.,

2018) with a dataset of �4.2 million proteins, the all-to-all protein

alignment time for the MMseqs2 was �30 000 CPU hours

(4.2e6 � 4.2e6 ¼ �1.8e13 comparisons in roughly 4 days on 12

compute nodes with 24 CPUs each). In comparison, creating the

same PSI-BLAST alignments took �1.3 million CPU hours

(�3 months on 78 compute nodes with 8 CPUs each). From these

numbers, the HFSP speed-up (using MMseqs2) over HSSP (using

PSI-BLAST) was estimated at over 40-fold and expected to grow sig-

nificantly with database size.

2.3 Defining functional identity
Proteins sharing the same EC annotation at chosen (third or fourth

level) were assigned functional identity. For example, L-lactate de-

hydrogenase and D-lactate dehydrogenase have EC assignments

1.1.1.27 and 1.1.1.28, respectively. Thus, at EC level 4, the proteins

are different, but at EC level 3 they are the same, 1.1.1.

2.4 Retraining HSSP curve with MMseqs2
We used the Swiss-Prot 2002 proteins and their third EC level anno-

tations to develop the HFSP measure. Investigating the protein dis-

tribution of EC categories at the third EC level, we realized a strong

distortion toward a few EC categories with exceptionally many

associated proteins (Fig. 2C). This is in addition to other differences

between EC categories (Fig. 2A and B). To compensate for this cat-

egory bias, we limited the size of EC categories to no more than 50

proteins (randomly chosen for the 19 larger categories,

Supplementary Table S1). We then extracted all MMseqs2 align-

ments for all Swiss-Prot 2002 protein pairs in our set.

It has been previously shown that using class-balanced training

sets is beneficial in the development of data driven classification mod-

els (Rost and Sander, 1993; Wei and Dunbrack, 2013). We therefore

balanced the results in training to contain equal numbers of protein

pairs with the same versus different third level EC annotations.

We first used cross-validation for training/testing our method; i.e.

we split the data into 10 sets such that no sequence in one set shared

more than 40% identity with a sequence in another set (CD-HIT clus-

ters). In each of in 10 rounds of training, 1 set was retained for testing

and the other 9 were used for training. Note that in each round of

Fig. 1. HFSP precisely predicts functional identity. All Swiss-Prot 2002 protein pairwise alignments were mapped into the sequence identity versus ungapped

alignment length space. In (A) protein pairs were differentiated according to identity of their EC level 3 (same EC annotation are green circles; different annota-

tions are red triangles). The HFSP curve (HFSP¼ 0, light blue solid line) is shown relative to the HSSP curve (black dashed line). Protein pairs above the curve are

predicted to be of same function, pairs below the curve of different function. In (B, C) precision (circles) and recall (triangles) in predicting functional identity, at

third (blue, solid curve) and fourth (red, dashed curve) EC level for Swiss-Prot 2002. Arrows indicate performance at default cutoff of HFSP¼ 0. In (B) prediction

was done using the highest HFSP scoring alignment per protein. In (C) all alignments were used, resulting in significantly worse performance
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cross-validation, we reintroduced into the testing set those proteins,

which were originally removed for class balancing purposes. We opti-

mized the parameters [originally factor ¼ 480 and exponent¼ �0.32;

Equation. (1), Supplementary Table S2] of the 2002 HSSP formula

(Rost, 2002) to fit a new curve separating protein pairs of identical

function from those of different functions in the two-dimensional

space of sequence identity (y-axis) and ungapped alignment length

(alignment length�number of gaps; x-axis). Pairs of same function

proteins (identical annotation for EC) and a given threshold distance

away from the curve along the y-axis were true positives (TP). Pairs

that did not have the same function but were also above the threshold

were false positives (FP). False negatives (FN) were pairs of same

function but scoring below the threshold. We optimized for F1 score

[Equation (3)] using R’s implementation of the Nelder–Mead method

(Nelder and Mead, 1965), searching for a local optimal F1 score,

using combinations of exponents from �0.3 to �0.9 in steps of 0.05,

and factor from 300 to 1500 in steps of 50.

HSSP¼PIDE�

100; for L � 11

480 �L
�0:32 � 1þe

�
L

1000

0
@

1
A
; for 11 < L � 450

19:5; for L>450

8>>>>>>><
>>>>>>>:

(1)

PIDE ¼ Percent sequence identity of the alignment

L ¼ ungapped alignment length

precision ¼ TP

TPþ FP
; recall ¼ TP

TPþ FN
(2)

F1 score ¼ 2� precision� recall

precisionþ recall
(3)

HFSP values for protein pairs were calculated using MMseqs2

results; Pearson correlation coefficient of HFSP to the HSSP values

computed using PSI-BLAST results for same pairs. For each dataset, we

calculated precision (i.e. how often a prediction of identical function is

correct), recall (i.e. how many identical function pairs were correctly

identified) and the F1 score [Equations (2) and (3)] using HSSP and

HFSP distance thresholds to determine true/false positives/negatives.

After evaluation was completed, we retrained as described

above, but without testing, one HFSP curve on the complete bal-

anced set of Swiss-Prot 2002 protein pairs for all further use.

2.5 Using HFSP to make function predictions
We used the 6835 experimentally annotated proteins with 2552

unique EC annotations of Swiss-Prot 2017 as the reference database

for all further function predictions. For every protein, only the high-

est HFSP-scoring protein match (�0; excluding self-matches) was

used to annotate function. We thus predicted functions of proteins

in the complete Swiss-Prot set of enzymes. Curiously, some EC num-

bers used in Swiss-Prot protein annotation did not have any mem-

bers in the experimentally annotated Swiss-Prot 2017 reference set.

The proteins annotated with these EC numbers (32 201 proteins at

fourth and 381 proteins at third EC level, respectively) were consid-

ered false positives by default. Note that we are still unclear about

the origins and experimental support of these annotations.

Additionally, some proteins did not produce any alignments, and for

others the highest hits did not reach our HFSP cutoff ¼ 0. For these,

no functional assignment could be made.

3 Results

3.1 HFSP scores correlate with HSSP, but are produced

more than 40-fold faster
We trained, evaluated, and defined the HFSP [Homology-derived

Functional Similarity of Proteins; Equation (4)] as described in

Materials and Methods.

Fig. 2. Strong bias in EC distribution. Different EC categories contain different numbers of proteins with both general (A) EC level 1 and (B) more specific EC anno-

tations. (C) This bias is particularly obvious for third level EC categories, with 2.7.11.-, 2.7.10.- and 1.1.1.- being the most prominent (first three bars from right; all

ECs with more than 50 proteins are red)
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HFSP¼PIDE�

100; for L � 11

770 �L
�0:33 � 1þe

�
L

1000

0
@

1
A
; for 11 < L � 450

28:4; for L>450

8>>>>>>><
>>>>>>>:

(4)

HFSP uses MMseqs2 iterative profiles as they have three major

advantages over PSI-BLAST: (i) compositional bias correction to

suppress high scoring non-homologous alignments, (ii) profile com-

putation by only considering the 1000 most diverse sequences (PSI-

BLAST uses the n BEST scoring hits) and (iii) realignment to reduce

over-extension (Frith et al., 2008); over-extension includes sequen-

ces into the profile at the edges of the alignment threshold in con-

secutive iterations. Thus, MMseqs2 alignments of smaller and more

distant proteins tend to be more compact, favoring higher sequence

identity, and thus leading to slightly higher HSSP scores calculated

using the original equation [Equation (1)]. These differences in

alignment methods, however, do not significantly affect the HSSP

scores across the entire spectrum, especially for high sequence iden-

tity alignments (Pearson correlation coefficient between BLAST-

based and MMseqs2-based HSSP scores ¼ 0.95; Fig. 3).

3.2 HFSP precisely identifies the third, but not fourth,

level of EC annotations
In identifying pairs of proteins sharing the same function at the fourth

level of EC (Materials and Methods), HFSP attained precision of

44.1% 6 3.6 at HFSP 0 and recall of 71.5% 6 1.6 (in cross-

validation). This disappointing performance suggests that the increas-

ing resolution/fine-tuning of experimental molecular function annota-

tion is prohibitive for large-scale computational analyses of proteins;

i.e. for any given alignment scoring HFSP � 0, it is more likely that

the proteins in the alignment are not functionally identical.

In exploring this problem, we found that many highly sequence

similar protein pairs of different EC annotations contained homolo-

gous proteins that were assigned slightly different functionality in

different organisms. For example, proteins from the squalene cyclase

family (Interpro: IPR018333, Pfam: PF13243 and PF13249) were

annotated with different ECs; e.g. GERS_RHISY, a germanicol syn-

thase in the red mangrove, is assigned EC: 5.4.99.34 and has 93%

sequence identity (alignment length ¼ 758) to BAS_BRUGY, a Beta-

amyrin synthase of the Burma mangrove, which is annotated as EC:

5.4.99.39. This combination of sequence identity and alignment

length produces an HFSP score of 64.6. At this HFSP level protein

pairs are predicted to share the same EC annotation at fourth EC

level with a precision of>99%. Note that GERS_RHISY is the only

EC 5.4.99.34 protein to date. The publication describing its catalytic

activity (Basyuni et al., 2007), suggests that GERS_RHISY activity

warrants a brand new EC number (germanicol synthase), because it

primarily catalyzes germanicol synthesis. From our perspective,

GERS_RHISY should additionally carry the beta-amyrin synthase

annotation, since beta-amyrin (and lupeol) are synthesized in add-

ition to germanicol albeit at a lower rate. Note that this example

also recalls the problem of moonlighting proteins.

The above example reflects the general problem of unbalanced

annotation detail of different EC categories at the same level of an-

notation. For example, EC: 5.4.99.- is by choice of the EC meant to

temporarily ‘house’ a collection of enzyme reactions that have yet to

be more thoroughly categorized. Many members of EC: 5.4.99.- fall

into the same PFAM families, while catalyzing the conversion of the

same reactant into similar chemical compounds; i.e. the fourth level

EC annotations of these proteins convey only a small amount of

functional difference. However, 5.4.99.- also contains significantly

different proteins catalyzing different reactions, where fourth level

annotations convey very large differences. Note that in this scheme,

automated protein function annotation is significantly limited by

lack of awareness of what individual EC numbers represent; i.e. it is

incorrect to assume that the fourth, most precise, level EC annota-

tions, across the entire EC system, are similarly defined in terms of

depth of functional understanding and/or functional distances be-

tween proteins of the same third level EC. Note, however, that

increasing the HFSP threshold for calling protein functions identical

leads to significantly improved precision (if at significant cost to re-

call). For example, at HFSP cutoff¼20, 93% of the protein pairs

are correctly annotated to share functionality. In other words, pro-

tein pairs with higher HFSP score represent more reliable predic-

tions. This improvement is unsurprising as it is due in large part to

increasing sequence identity and is very likely reflective of closer

evolutionary relationships between proteins.

In identifying pairs of proteins sharing the same function at the

third level of EC, we found that performance improved drastically

at the default HFSP cutoff¼0. Here, our method attained precision

of 96% 6 1.2 at HFSP 0 and recall of 64% 6 1.6 (in cross-

validation, Fig. 1). These results suggest that in the absence of add-

itional knowledge about an aligned protein pair, it is prudent to

only accept higher scoring HFSP alignments (for fourth digit annota-

tions) or to move up in the required resolution of functional annota-

tion (i.e. to third EC level).

Finally, we tested HFSP precision and recall on proteins in Swiss-

Prot 2017 that were NOT in Swiss-Prot 2002 (which was used for

training of the HFSP curve), i.e. proteins that were added to Swiss-

Prot after January 2002. We found that performance for this subset

was similar to the expected performance at both the third and fourth

EC levels (Fig. 4), suggesting that our measure remains applicable

for newly added proteins AND enzyme classes (EC numbers).

Fig. 3. HSSP scores derived from MMSeqs2 and PSI-BLAST alignments

strongly correlate. HSSP scores derived from PSI-BLAST alignments (x-axis)

and MMSeqs2 (y-axis), respectively. The histograms display the number of

protein pairs in the respective ranges of HSSP scores. HSSP scores for both

methods highly correlate (Pearson correlation coefficient¼0.95)
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3.3 HFSP performance differs in annotating prokaryotic

versus eukaryotic proteins
We additionally evaluated the HFSP performance in annotating the eu-

karyotic versus prokaryotic proteins of the entire Swiss-Prot 2017 set

(Methods, Fig. 5A) at the third EC level. At our default cutoff of

HFSP ¼ 0, eukaryotic protein pairs were assigned functional similarity

correctly more often than prokaryotic ones (precision/recall 96 6 1.5/

62% versus 91 6 1.5/47%, respectively). Note that there were more eu-

karyotic proteins in our data than prokaryotic ones, which may have

contributed to this disparity during HFSP curve optimization. This

larger number of proteins can be explained by the eukaryotes (i) trend-

ing toward bigger proteomes and, perhaps more importantly, (ii) mak-

ing up a bigger fraction of model organisms, which are better studied.

Curiously, at the fourth EC level this trend was reversed, i.e. precision

was better for prokaryotes than for eukaryotes (precision/recall 62/55%

versus 42/79%, respectively, Fig. 5B). This observation may potentially

be due to a smaller number of homology-confusing multi-domain pro-

teins in prokaryotes. It may also reflect a lower enzymatic diversity of

prokaryotic proteins in our set: 1522 distinct EC annotations in eukar-

yotes versus 1403 in prokaryotes. Whether this difference is due to ac-

tual diversity or a result of experimental bias remains unclear.

3.4 HFSP accurately predicts unknown protein function

at all EC levels
There is a conceptual difference between annotating functionality of

an unknown protein and measuring functional similarity of two

proteins. That is, in assigning ONE specific protein function to a

newly obtained amino acid sequence is not the same as relying on

homology to identify proteins sharing the similar functionality in a

particular database. To use HFSP as a method of function prediction

we proposed simply relying on the ‘highest hit’; we have previously

shown that this approach is best for transferring functional annota-

tions with HSSP (Zhu et al., 2018) and suggest that similar logic

should apply here.

By mapping the highest HFSP match (at cutoff¼0 and exclud-

ing self-hits) for the experimentally annotated proteins of the

Swiss-Prot 2017 set, we were able to correctly identify the fourth

level EC function of 4668 (�83% of 5647) proteins. As expected,

the numbers were higher for the third level EC (5425 of 5647 pro-

teins, 96%). Note that this performance is the upper limit of actual

HFSP performance, as Swiss-Prot 2002, on which our method was

developed, is a subset of Swiss-Prot 2017. Also note that (i) 625

proteins in our Swiss-Prot 2017 set did not reach our HFSP

cutoff¼0 and (ii) 563 proteins did not align to any others in our

set. Of these, 645 proteins (291 and 354, respectively) proteins

were unique in our set; i.e. there was no other protein with the

same EC number at fourth EC level. Thus, 1188 proteins in our set

(�17% of 6835 in the set) could not be assigned function at all—

�8% due to HFSP limitations and �9% due to the absence of

homologs.

Fig. 4. HFSP performs as expected on newly added proteins. Precision and re-

call of function prediction at (A) third (dark blue) EC level of proteins in Swiss-

Prot 2002 and of those added since 2002 (Swiss-Prot 2002–2017; light blue)

are similar. However, for the fourth EC level, the (B) performance on newly

added proteins (dark red) is worse than for older ones (light red)

Fig. 5. Differing annotation performance for prokaryotic and eukaryotic pro-

teins at third and fourth EC level. (A) For the third EC level at default cutoff of

HFSP¼0, eukaryotic protein pairs are assigned functional similarity correctly

more often than prokaryotic ones. However, for high thresholds, i.e. higher

precision at the expense of recovered protein pairs, performance is similar.

(B) Performance is better for prokaryotes than eukaryotes at the fourth EC

level
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3.5 Functional annotations even in manually curated

databases are often incorrect
We applied the highest HFSP hit measure to evaluate EC annota-

tions in the entire Swiss-Prot set (Materials and Methods) on the

basis of their alignment to our experimentally annotated Swiss-prot

2017 set. We estimate that 142 831 of the 214 000 Swiss-Prot

enzymes (67%) are correctly annotated at the fourth level of EC

(Fig. 6). Curiously, 32 201 (15%) of the enzymes in Swiss-Prot had

no corresponding fourth level ECs (381 third level ECs) in Swiss-

Prot 2017, raising questions as to the accuracy of these annotations.

Another 4937 are deemed wrongly annotated (highest hit at

HFSP � 0 has a different EC number). While these proteins may in-

deed be assigned wrong functionality, this may also be due to error

in HFSP assignments at this level (17% false positives at this cutoff,

as described above for the Swiss-Prot 2017 experimentally-

annotated set). A more interesting finding, however, is that 34 031

(19%) of the proteins in this set could not be annotated at all by

HFSP, whether due to lack of alignments (17 519 proteins) or HFSP

highest hits unable to reach the cutoff (16 512 proteins). These 19%

of proteins that could not be annotated represent a more than 2-fold

higher number than expected (�8% as described above for the

Swiss-Prot 2017 set). We, thus, suggest that the Swiss-Prot EC anno-

tations of many of these 34 031 proteins, a sixth of the total number

of annotations, are incorrect.

3.6 Identifying proteins of new functionality is

simplified with HFSP
One problem of function transfer by homology methods is their in-

ability to identify proteins of completely novel, i.e. not found in the

reference database, functionality. Note that sequence similar pro-

teins are also likely functionally similar, but are clearly not necessar-

ily functionally identical. To evaluate how HFSP deals with proteins

of novel functionality, we extracted a set of proteins from Swiss-

Prot 2017, where no other protein in our set had the same fourth

EC level annotation (‘unknown’ functionality). These ‘unknown’

proteins, i.e. assigned to a fourth EC level category, which appear

just once in our set, are a minority (19%; 1317 of 6835 proteins), al-

beit a significant one. We asked if we could in advance identify these

‘unknown’ proteins, for which prediction of function could not be

made, rather than making incorrect predictions.

We separated function predictions for the 6835 proteins in

Swiss-Prot 2017 into three subsets (i) ‘unknown’, as described

above, and (ii) correctly and (iii) incorrectly predicted ‘known’, i.e.

proteins with fourth EC level annotations containing more than one

protein. We then compared the highest hit HFSP score distributions

for all three sets (Fig. 7). HFSP scores for correctly annotated pro-

teins with known functionality appear to come from a mixture of

two distributions. These are likely to be evolutionarily distant

(peak of the distribution at HFSP ¼ �20) versus close (peak at

HFSP ¼ �65) homologs. The peak of the distribution of ‘unknown’

protein scores is obviously different from either (HFSP ¼ �2).

However, the distribution of incorrect predictions for ‘known’

Fig. 6. More proteins in Swiss-Prot enzyme could not be assigned to function

than expected. Function predictions for proteins in Swiss-Prot 2017 with

unique (light purple) and non-unique (dark purple) fourth level EC annotation

and all proteins in Swiss-Prot with EC annotation complete on all four levels

that either share an EC with proteins in Reference (light teal) or not (dark teal)

Fig. 7. HFSP is robust to previously unseen enzymatic functionality. (A)

Proteins with no known homologs—approximated by investigating experi-

mentally annotated proteins which fall into a EC category unique to the pro-

tein (orange)—show on average smaller highest scoring HFSP hits than

proteins with existing homologs (green—correct predictions, blue—incorrect

predictions). Of all predictions at HFSP score�14, <10% of proteins with ‘un-

known’ and ‘known’ but falsely predicted function where observed (B, bottom

panel): highest HFSP score predictions for different protein subsets of the

non-reduced Swiss-Prot: (i) experimentally verified enzymes (reference—pur-

ple), (ii) enzymes with EC annotation complete on all four levels that are not

experimentally verified (complete EC—teal), (iii) enzymes with incomplete EC

annotation or multiple EC annotations (incomplete & multiple EC—black) and

(iv) proteins that are not annotated as enzymes (no EC—red); note that for

most proteins with no EC annotation there were no matched to the reference

database (268 857 proteins, 91%; B, top panel)
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proteins closely follows the ‘unknowns’ (Fig. 7A and Supplementary

Fig. S2A and B). Combined, ‘known incorrect’ and ‘unknown’,

make up less than 10% of all predictions at HFSP � 14 (false dis-

cover rate, FDR ¼ 9.6%), whereas between the default cutoff and

HFSP ¼ 14 (0 � HFSP < 14) this fraction is nearly 40%. Despite

the fact, that at this threshold only �6% of all predictions are of

‘unknown’ origin, these are still 30% of all ‘unknown’ proteins;

similarly �3% of all predictions, but 29% of all ‘known incorrect’

proteins are at HFSP � 14. These observations suggest that while we

cannot differentiate incorrect predictions from missing-reference

ones, HFSP handles new protein function, as well as that which it

has already seen, with higher scores indicating more reliable/correct

annotations.

Given the vast number of proteins that yet have to be functional-

ly annotated (e.g. TrEMBL is currently approaching 109 million

proteins), the number of potential EC functionalities missing from

our reference set, as well as the understanding that the total number

of enzymes among the unannotated proteins may not mirror the

Swiss-Prot distribution (where �47% of all proteins are annotated

enzymes including those with incomplete and multiple EC annota-

tions), we suspect that accurately estimating the HFSP cutoff at

which the FDR would fall below some threshold, e.g. 5% (currently

at HFSP � 28), is not possible. For example, given the current distri-

bution of scores, 29% of 1384 ‘unknowns’ and incorrect ‘knowns’

present at HFSP � 14 make up only 407 proteins. If we were anno-

tating tens of millions of proteins, however, this error rate can be

expected to produce hundreds of thousands of annotations. On the

other hand, given the limited size of our reference database, we can-

not necessarily expect that the true positive findings would grow

accordingly.

We further predicted EC annotation for all Swiss-Prot (555 594

proteins in October 2017, Fig. 7B). Importantly, the majority (91%)

of the non-enzymes (no EC annotations; 293 058 proteins) did not

generate any matches to our reference database. Of the remaining

non-enzymes, 21% (4987 proteins) scored at HFSP � 0, making up

3% of all predictions (false positives, 1% for all predictions at

HFSP � 14). Predictions could be made for 57% of the enzymes

with multiple or incomplete EC annotations (27 717 of 48 536 pro-

teins); 53% (14 668 proteins) of these scored at HFSP � 0 and 13%

above HFSP � 14 (3653 proteins). If these proteins were like our

‘unknowns’, we would expect at least twice as many with a match

at HFSP � 14. Thus, we suspect, that the enzymes in this set are not

especially novel and can likely be annotated using HFSP and our ref-

erence dataset. This further suggests that at least 73% (43% no hits

and 30% below HFSP ¼ 0) of proteins with incomplete or multiple

EC annotations could be proteins with no homologous sequence in

our reference database.

In light of our findings, we note that without further experimen-

tal work to elaborate on the functions of the yet-unannotated pro-

teins, even the best function prediction methods will soon reach

their limits. We suggest that using HFSP cutoffs can help in both

more accurately annotating protein function and, arguably even

more importantly, in identifying new frontiers of molecular function

exploration.

4 Conclusion

While experimental function annotation of proteins is more ac-

curate, computational methods are more readily available for the

vast amount of sequences currently in our databases. Here we

demonstrated that our newly developed HFSP is a fast an

accurate method applicable to this task. Applying HFSP to evalu-

ate existing annotations we also highlighted inconsistencies in

existing annotations of enzymatic activity reported in Swiss-Prot.

We thus suggest that HFSP provides both a way to (i) enrich func-

tional annotation analysis on a large scale, as well as to (ii) nar-

row down the space of proteins of interest for further

experimental analysis.
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