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Abstract

Motivation: Modern problems of concept annotation associate an object of interest (gene, individ-

ual, text document) with a set of interrelated textual descriptors (functions, diseases, topics), often

organized in concept hierarchies or ontologies. Most ontology can be seen as directed acyclic

graphs (DAGs), where nodes represent concepts and edges represent relational ties between these

concepts. Given an ontology graph, each object can only be annotated by a consistent sub-graph;

that is, a sub-graph such that if an object is annotated by a particular concept, it must also be anno-

tated by all other concepts that generalize it. Ontologies therefore provide a compact representa-

tion of a large space of possible consistent sub-graphs; however, until now we have not been

aware of a practical algorithm that can enumerate such annotation spaces for a given ontology.

Results: We propose an algorithm for enumerating consistent sub-graphs of DAGs. The algorithm

recursively partitions the graph into strictly smaller graphs until the resulting graph becomes a

rooted tree (forest), for which a linear-time solution is computed. It then combines the tallies from

graphs created in the recursion to obtain the final count. We prove the correctness of this algo-

rithm, propose several practical accelerations, evaluate it on random graphs and then apply it to

characterize four major biomedical ontologies. We believe this work provides valuable insights

into the complexity of concept annotation spaces and its potential influence on the predictability of

ontological annotation.

Availability and implementation: https://github.com/shawn-peng/counting-consistent-sub-DAG

Contact: predrag@indiana.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Ontologies have become a common means of concept annotation in

computational biology and related fields (Robinson and Bauer,

2011). A protein’s molecular function (Ashburner et al., 2000), an

effect of a genetic variant (Vihinen, 2014), or a patient’s diagnosis

(Robinson and Mundlos, 2010) are typical examples wherein bio-

medical entities such as macromolecules, mutations, or individuals

are associated with sets of mutually dependent descriptors. The

dependencies between these descriptors are often hierarchical, lead-

ing to the use of directed acyclic graphs (DAGs) as concept space

representations.

A DAG is a pair (V, E), where V is a set of vertices (nodes) and E

is a set of directed edges (links) between vertices such that no cycles

can be formed. Each vertex in the graph is associated with a unique

concept (term, description) and each edge is associated with a

particular type of relational tie. For example, when annotating pro-

teins as biomedical entities using the Gene Ontology (GO) graph

(Ashburner et al., 2000), the terms ‘nucleic acid binding’ and ‘DNA

binding’ are linked by edges of the type is-a asserting that DNA

binding is a more specific form of nucleic acid binding. Other types

of relational ties include part-of, regulates and so on.

A typical biomedical entity is associated with a set of terms

determined experimentally such as through a molecular assay or a

diagnostic procedure. A protein, for example, may be assigned terms

‘DNA binding’ and ‘RNA binding’, neither of which is a generaliza-

tion of the other. To avoid annotation inconsistencies, this protein

must also be annotated by the terms such as ‘nucleic acid binding’

and all others that generalize either of the experimentally deter-

mined terms. More broadly, this implies that a biomedical object

can only be annotated by a set of terms that respect the hierarchy––a
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consistent sub-graph of the ontology. Unfortunately, (manual) ex-

perimental annotation is resource-intensive and often incomplete

(Poux and Gaudet, 2017), giving rise to an entire field of computa-

tional prediction (Jiang et al., 2016; Radivojac et al., 2013).

The development of computational prediction methods presents

its own challenges. Although it can be performed by building a separ-

ate binary classifier for each concept in the ontology, this approach is

currently competitive only for specialized ranking tasks; e.g. disease-

gene prioritization (Moreau and Tranchevent, 2012), since it does not

exploit relationships between the terms. On the other hand, a more

complete characterization is via learning structured outputs (Sokolov

and Ben-Hur, 2010) in which a method takes an object (e.g. a protein)

and is asked to provide the totality of concepts with which this

object might be associated (i.e. a consistent sub-graph). However, the

structured-output formulation generally falls under the extreme classi-

fication umbrella because the size of the output space is often exceed-

ingly large. This poses problems in measuring similarity between

annotations, evaluating accuracy of classification models and opti-

mization when solving the ‘argmax problem’ (Clark and Radivojac,

2013; Joachims et al., 2009; Joslyn et al., 2004; Lord et al., 2003;

Pesquita, 2017; Verspoor et al., 2006).

We identify now what we believe is an open problem in compu-

tational biology and computer science; that is, efficiently determin-

ing the exact number of consistent sub-graphs in a given ontology.

This problem has a linear-time solution for rooted trees (Ruskey,

1981), but to our knowledge no such algorithm exists for DAGs.

This paper therefore proposes a practical solution to this enumer-

ation problem, proves its correctness, analyzes run-time complexity

and introduces various computational speedups. Using this new ap-

proach, we analyze four often-used ontologies from the biomedical

domain and explore the space of possible annotations. We believe

that the algorithms, software and analysis carried out in this work

will lead to better insights into concept annotation spaces and facili-

tate ontology quality assurance.

2 A motivating example

A growing number of concept annotation problems are formulated

as the manual or computational assignment of a set of mutually

related textual descriptors to some objects of interest. One of such

problems is the computational prediction of protein function

(Friedberg and Radivojac, 2017), which can be broadly operational-

ized as follows:

Given: (i) an amino acid sequence with auxiliary data such as

structure, expression, interactions, etc. of a protein p with un-

known or incomplete function; (ii) training data that includes

sequences, structures, or systems data corresponding to a (large)

set of proteins, some of which have their true biological functions

available; (iii) a GO; i.e. a concept hierarchy used to represent

biological functions of proteins in a structured and easy-to-

compute-on form.

Objective: provide a set of GO terms that are most likely to be

the true (experimental) annotation of p.

The objects of interest here are proteins and the set of textual

descriptors of protein function is given by GO––an ontology with a

DAG structure where each node represents a textual descriptor and

each edge represents a particular type of a relational tie between two

descriptors (Ashburner et al., 2000).

An example of such an annotation is shown in Figure 1, where

eight terms from the molecular function domain have been assigned

to this protein. Due to the hierarchical organization of GO, both the

set of experimentally determined terms and the set of computationally

predicted terms must respect this hierarchy. As shown in this example,

the annotation by the term ‘DNA binding’, implies the annotation by

all the other GO terms that conceptually generalize it; e.g. ‘nucleic

acid binding’, ‘binding’, etc. Similarly, ‘sequence-specific DNA bind-

ing TF activity’ further adds ‘nucleic acid binding TF activity’ to its

annotation graph. Typically, the ontology used to represent the anno-

tation space of proteins contains thousands to tens of thousands of

terms, whereas the true annotation of a protein consists of tens to at

most hundreds of terms. Because the task of a prediction algorithm is

to find the most likely annotation, it must devise an efficient proced-

ure to search through the space of all possible annotations.

Most biomedical ontologies have grown over the years to con-

tain a large number of terms. Computationally selecting a single

‘winning’ annotation; i.e. a set of terms, or providing a short list of

most likely annotations, is a significant challenge (Joachims et al.,

2009; Sokolov and Ben-Hur, 2010). This prediction problem

belongs to a so-called extreme classification scenario because the

number of possible (discrete) annotations the algorithm must con-

sider is astronomically large. In fact, we noticed that it is not pos-

sible to give an exact number of annotations available for a protein,

even when the ontology is restricted to a fixed low depth. Therefore,

an answer to a simple question ‘What is the number of possible GO

annotations a protein can be assigned?’ requires the development of

a practical counting algorithm. The resulting counts can, in turn,

give insight into the nature and the difficulty of the computational

function annotation of biological macromolecules (Reasonable

approximations can be provided by calculating the lower and upper

bounds, as we have done later in Section 6. Neither of those, how-

ever, provides a full intellectual satisfaction when an exact count

can be computed).

It is important to mention that the annotation of biological mac-

romolecules is one of the most interesting examples of concept anno-

tation, primarily because of its biomedical significance but also

because of the sizes and the complexity of the available ontologies.

Similar situations, however, arise beyond computational biology, as

in the fields of text mining (Grosshans et al., 2014) and computer vi-

sion (Movshovitz-Attias et al., 2015).

3 Preliminaries

3.1 Basic concepts and notation
Let G ¼ V;Eð Þ be a directed graph, where V is a set of vertices repre-

senting concepts and E � V � V is a collection of ordered pairs

Fig. 1. The functional annotation (September 2014) of the friend leukemia in-

tegration 1 transcription factor isoform 1 [FLI1; Homo sapiens] (RefSeq ID:

NP_002008.2) with experimental evidence codes (including TAS and IC) as a

consistent sub-graph of the Molecular Function ontology. The arrows in this

graph indicate an is-a relationship and are drawn in the reverse direction
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(u, v) representing directional relationships, u! v, between two

concepts. A sequence of vertices u1;u2; . . . ; uk is called a walk if

ui; uiþ1ð Þ 2 E for i ¼ 1;2; . . . ; k� 1. A walk of distinct vertices ex-

cept for the identical starting and ending vertices is called a cycle. A

directed graph that does not contain cycles is referred to as DAG.

Given two vertices u; v 2 V in a DAG, u is said to be an ancestor

of v and v is said to be a descendant of u if there exists a walk from

u to v. We denote a set of all ancestors of v as A vð Þ and a set of all

descendants of u as D uð Þ. We next define Aþ vð Þ ¼ fvg [ A vð Þ as the

set of extended ancestors of v and Dþ uð Þ ¼ fug [ D uð Þ as the set of

extended descendants of u. Finally, if u; vð Þ 2 E, the vertex u is said

to be a parent of v, whereas v is said to be a child of u. We denote the

set of all parents of v as P vð Þ and the set of all children of u as C uð Þ.

3.2 Transitivity of relational ties
When an object is annotated with ontological concepts, it is often

considered that all ancestors of those annotated concepts should be

automatically assigned to the object. For example, annotating the

function of a protein with ‘enzyme binding’ also implicitly annotates

it with ‘protein binding’, ‘binding’ and, finally, the root term ‘mo-

lecular function’. This type of reasoning requires all involved rela-

tionships between concepts to be transitive.

Biomedical ontologies, however, usually contain various types of

relationships between concepts, some of which are not transitive.

Therefore, we only consider is-a and part-of relationships, both of

which maintain transitivity and permit reasoning about ancestral con-

cepts. It is also worth noting that we define the direction of edges to

be pointing from the general terms to specific so that the depth of a

node aligns with the increasing resolution of the descriptors. We show

in Section 5.2 that the directionality of edges has no impact on the

total count. Throughout this work, we consider an ontology O ¼
V;Eð Þ to be a DAG, where edges represent transitive relationships.

3.3 Consistent sub-graphs
Let O ¼ V;Eð Þ be an ontology and S � V a set of vertices. A sub-

graph S;ES
� �

is said to be induced from the original graph O by S if

ES is the largest subset of pairs (u, v) from E such that both u; v 2 S.

We denote such vertex-induced sub-graph as O S½ �. We also use

O �S½ � ¼ V � S;EV�S
� �

to denote the sub-graph induced by vertices

other than S.

Definition 3.1. A sub-graph O S½ � ¼ S;ES
� �

with respect to the

original graph O ¼ V;Eð Þ is said to be consistent if

8v 2 S; u; vð Þ 2 E) u 2 S.

4 Basic algorithms

4.1 Problem specification
Given an ontology O ¼ V;Eð Þ, our goal is to develop a practical al-

gorithm that enumerates all consistent sub-graphs of O. We allow

the graph to have more than a single root (a vertex with no incoming

edges) as well as to be disconnected. An example of the enumeration

problem is shown in Figure 2.

We generally observe that the number of consistent sub-graphs is

bounded from below by 2‘, where ‘ is the total number of leaf verti-

ces (those with no outgoing edges) and from above by 2jVj. The

structure of the graph, however, determines the exact count and its

proximity to either of the bounds. If the input graph is a chain of jVj
vertices (‘ ¼ 1), the total number of consistent sub-graphs equals

jVj þ 1. On the other hand, if the original graph is a set of jVj

disconnected vertices (‘ ¼ jVj), there are 2jVj ¼ 2‘ consistent

sub-graphs. This analysis suggests that enumerating consistent sub-

graphs has a straightforward intractable solution of listing all 2jVj

vertex-induced sub-graphs of the ontology and checking for the con-

sistency of each such sub-graph.

We use cdag Oð Þ to denote the desired function that takes a

DAG O as input and returns the number of consistent sub-graphs in

that graph. We use ctree Tð Þ and cforest Fð Þ for the special cases

where the input graph is a rooted tree T or a forest F , respectively.

4.2 Counting sub-trees of trees
We first discuss a special case where the input graph is a rooted tree;

that is, when each non-root vertex has a single parent. In this case,

there exists a linear algorithm in the number of vertices; see Lemma

1 in Ruskey (1981). We provide this solution in Algorithm 1 with a

minor modification resulting from the fact that our algorithm

includes an empty tree in the total count. This algorithm naturally

extends to collections of rooted trees. One can enumerate sub-trees

for each tree and take the product as the total count. We refer to this

extended algorithm as cforest (not shown).

Algorithm 1 recursively traverses a tree in a pre-order manner.

For any sub-tree rooted at vertex v, the number of consistent sub-

trees that contain v equals the product of all sub-counts from its

sub-trees rooted at each child. Additionally, we add 1 for the only

consistent sub-tree that does not contain v; i.e. the empty tree. The

recursion terminates at the empty tree whose count is one.

4.3 Counting consistent sub-graphs in DAGs
DAGs generalize trees in that they allow for multi-parent vertices.

Such vertices, however, break Algorithm 1 because the recursive

Fig. 2. Consistent sub-graphs of an ontology O ¼ ðV ;EÞ with jV j ¼ 7 vertices

and jEj ¼ 7 edges, shown in the upper left-hand corner. There are 15 consist-

ent sub-graphs of O, as shown by coloring the appropriate groups of vertices

in blue (the first graph represents the ontology and the empty sub-graph at

the same time). Observe that the reversal of all edges in the graph would lead

to a reversed graph with the same number of consistent sub-graphs (white

vertices; Theorem 5.1)

Algorithm 1 Counting the number of consistent sub-graphs in

rooted trees (Ruskey, 1981).
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branches are no longer independent. Algorithm 2 circumvents this

problem by recursively decomposing a graph into two strictly

smaller sub-graphs according to a selected pivot vertex. We will

show in the next section that the number of consistent sub-graphs in

the two smaller graphs adds up to be the number for the original

graph (Line 6, Algorithm 2). The algorithm continues recursive enu-

meration until the graph becomes a forest, in which case it calls

cforest. Figure 3 illustrates the process of graph decomposition

with respect to the pivot vertex u. We note that any vertex can serve

as pivot and will discuss the selection of pivots and how they impact

the run time in Sections 5.3 and 6.1.

4.4 Correctness and complexity of the algorithm
We first observe that the size of the problem in the number of vertices

is guaranteed to decrease during recursive calls, thus ensuring that the

algorithm terminates after a finite number of iterations. Next, we jus-

tify the equation corresponding to the Line 6 in Algorithm 2,

cdag Oð Þ ¼ cdag O �Dþ uð Þ½ �ð Þ þ cdag O �Aþ uð Þ
� �� �

: (1)

Lemma 4.1. Let cdag Oj:uð Þ be the number of consistent

sub-graphs in O that do not contain u. We have

cdag Oj:uð Þ ¼ cdag O �Dþ uð Þ½ �ð Þ.

Proof. The equal cardinality of the two sets of consistent sub-

graphs is demonstrated by showing that both sets are contained in

each other. For any S � V �Dþ uð Þ that induces a consistent

sub-graph of O �Dþ uð Þ½ �, it also induces a unique consistent

sub-graph in O. Also, since none of them contains u, we

have cdag O �Dþ uð Þ½ �ð Þ � cdag Oj:uð Þ. Conversely, for any con-

sistent sub-graph induced by S such that u 62 S, we have 8v 2 Dþ uð Þ;
v 62 S by the definition of consistency. Therefore, S also induces a

consistent sub-graph in O �Dþ uð Þ½ �. That is, cdag Oj:uð Þ �
cdag O �Dþ uð Þ½ �ð Þ. h

Lemma 4.2. Let cdag Ojuð Þ be the number of consistent

sub-graphs in O that contain u. We have cdag Ojuð Þ ¼
cdag O �Aþ uð Þ

� �� �
.

Proof. As in Lemma 4.1, for any S � V �Aþ uð Þ that induces a

consistent sub-graph of O �Aþ uð Þ
� �

; S [Aþ uð Þ also induces a

unique consistent sub-graph (that contains u) in the original graph.

That is, cdag O �Aþ uð Þ
� �� �

� cdag Ojuð Þ. Also, for any consistent

sub-graph induced by S and u 2 S, we have Aþ uð Þ � S by the defin-

ition of consistency. Note that the uniqueness of S implies the

uniqueness of S�Aþ uð Þ. We can see that the sub-graph induced by

S�Aþ uð Þ in O �Aþ uð Þ
� �

is consistent. Given 8w 2 S�Aþ uð Þ, and

(v, w) being an edge in O �Aþ uð Þ
� �

, we must have v 2 S�Aþ uð Þ as

well, due to the consistency of O S½ � with respect to the original

graph. That is, cdag Ojuð Þ � cdag O �Aþ uð Þ
� �� �

. h

Theorem 4.1. Given an ontology O ¼ V;Eð Þ and any u 2 V, the

number of consistent sub-graphs in O equals the sum of the numbers

of consistent sub-graphs in O �Dþ uð Þ½ � and O �Aþ uð Þ
� �

.

Proof. Equation (1) holds by combining Lemmas 4.1 and 4.2. h

To analyze complexity of the algorithm, let n be the number of

vertices in the graph and m be the number of multi-parent vertices.

Assuming a multi-parent vertex is always selected as pivot, we can

express the run time complexity T(n) via the following recurrence

T nð Þ � T n� 1ð Þ þ T n� 3ð Þ þ f nð Þ;

where f(n) incorporates the time to select the pivot, split the graph

and add two large integers. Let us further assume that the larger of

the two graphs after decomposition contains n� n=k elements,

where 2 � k � n. It is now straightforward to show that

T nð Þ ¼ O f nð Þ2min m;s kð Þð Þ
� �

, where s kð Þ ¼ O nð Þ if k ¼ O nð Þ and

s kð Þ ¼ O log nð Þ if k ¼ O 1ð Þ.
We can now see that the algorithm is exponential in the worst

case; however, it reduces to a polynomial algorithm when m ¼ O

log nð Þ or when k ¼ O 1ð Þ. Assuming linear time to conduct graph

decomposition and a constant time for addition/multiplication, we

obtain T nð Þ ¼ O n2
� �

.

5 Accelerations

The run-time of the algorithm heavily depends on the structure of

the ontology and the selection of pivots. Here, we discuss several

practical considerations aimed at accelerating Algorithm 2. Once we

conclude this discussion, the full method will be presented in

Algorithm 3 (Section 6).

5.1 Pruning branching components
It is easy to observe that when the ontology consists of multiple con-

nected components, these components can be independently and, if

needed, simultaneously processed. We take this reasoning a step fur-

ther to consider a special scenario of nearly disconnected graphs

where (i) the two components are connected via a single vertex and

(ii) all vertices in one component are descendants of this vertex.

Definition 5.1. Given a graph O ¼ V;Eð Þ and u 2 V; O D uð Þ½ �
is called a branching component if 8v 2 V �Dþ uð Þ and

8w 2 D uð Þ; v;wð Þ 62 E. Vertex u is called a branching vertex.

Figure 4a gives an example in which u is a branching vertex, since

the removal of u disconnects D uð Þ (i.e. the branching component, Obr)

from the rest of the graph. We refer to the remaining part of the graph

as the stem component, Ost. More generally, Figure 4b shows a graph

with a component-wise tree structure, where branching vertices serve as

hinges of branching component to their corresponding stems. We will

use ðOst;Obr; uÞ to denote the desired structure.

Algorithm 2 Counting the number of consistent sub-graphs in

DAGs.
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Given ðOst;Obr; uÞ, we demonstrate that cdag Oð Þ can be decoupled

into two sequential sub-problems: (i) cdagðObrÞ and (ii) cdag Ostð Þ. We

use u uð Þ for the sub-total of consistent sub-graphs in the branching com-

ponent Obr. We also notice that the entire branching component can be

pruned once u uð Þ is computed, making u a leaf vertex inOst. Therefore,

we modify the algorithm so as to allow a sub-total count u uð Þ for every

vertex as if a branching component has been pruned from u. Notice that

u uð Þ ¼ 1 for all intermediate vertices and original leaves.

With the introduction of u uð Þ, the recursive equation in

Algorithm 1 becomes

ctree T rð Þ ¼ u rð Þ þ
Y

u2C rð Þ
ctree T uð Þ: (2)

Similarly, Equation (1); i.e. Line 6 in Algorithm 2, must be modified to

cdag Ostð Þ ¼ cdag Ost �Dþ uð Þ½ �ð Þ þ u uð Þ � cdag Ost �Aþ uð Þ
� �� �

;

(3)

where u uð Þ accounts for the fact that for any consistent sub-graph Si

in the pruned Obr and any consistent sub-graph Sj in Ost �Aþ uð Þ
� �

;

O Si [ Sj [ Aþ uð Þ
� �

is a distinct consistent sub-graph in O. The ap-

proach naturally extends to multiple (hierachical) branching compo-

nents such that we compute the sub-total of consistent sub-graphs

within each component and agglomerate them in a reversed topo-

logical order.

The pruning operation is preferred before each instance of de-

composition for two main reasons: (i) it divides the problem into

smaller non-overlapping sub-problems, while a direct decompos-

ition usually results in substantial overlapping sub-problems; (ii) al-

though a full parallelization over components is restricted since stem

components have to be computed only after all of their branching

components are finished, the unordered components can be com-

puted simultaneously. For example, as in Figure 4b, Obr
1 ; Obr

3 ; Obr
4

and Obr
5 can be computed in parallel.

5.2 Reverse graphs
Let OR ¼ V;ER

� �
be the reverse graph of O, where

ER ¼ f u; vð Þj v; uð Þ 2 Eg. We show that the number of consistent

sub-graphs in O equals that in OR.

Lemma 5.1. If O S½ � is a consistent sub-graph of O; OR �S½ � is a

consistent sub-graph of OR.

Proof. We prove this Lemma by contradiction. For 8u 2 V � S

and 8v 2 AR uð Þ [We use AR uð Þ and DR uð Þ for ancestors and

descendants of u in OR; AR uð Þ ¼ D uð Þ and DR uð Þ ¼ A uð Þ], if

v 62 V � S, then u 2 A vð Þ � S due to the consistency of O S½ �. This

contradicts u 2 V � S. Therefore, the assumption v 62 V � S is false

and we have 8u 2 V � S; 8v 2 AR uð Þ � V � S. That is, OR �S½ � is

consistent.

This Lemma demonstrates that all complementary white vertices

in Figure 2 form consistent sub-graphs in the reverse graph.

Theorem 5.1. Given an ontology O; cdag Oð Þ ¼ cdag OR
� �

.

Proof. Given Lemma 5.1, we see that the mapping f O S½ �ð Þ ¼ OR

�S½ � is a bijection between the two sets of consistent sub-graphs.

Therefore, the two sets are of equal cardinality.

(a)

(b)

Fig. 4. Illustration of branching components. Panel (a) shows a branching ver-

tex u that separates the graph into a stem component Ost and a branching

component Obr. The collection of edges from u to Obr is replaced by a zigzag

arrow. Panel (b) shows a component-wise tree structure

(a) (b) (c)

Fig. 3. Illustration of graph decomposition. The enumeration problem of the original graph from panel (a) is split into two sub-problems based on the pivot vertex

u; shown in panels (b) and (c). The count in (b) corresponds to the number of consistent sub-graphs in (a) that do not include u, while the count in (c) corresponds

to the count of consistent sub-graphs in (a) that include u. In panel (a), the set of descendants of u is shaded in orange and the set of ancestors is shaded in blue.

Notice that the re-occurrence of sub-graph h-i-j in both (b) and (c) offers the possibility of speed-ups by hashing
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Theorem 5.1 permits graph reversal at any point during the algo-

rithm depending on which of the graphs is more likely to terminate

first. For example, we can always choose the one with fewer multi-

parent vertices so as to greedily reduce the upper bound of recursive

calls. It is worth noting that all the leaves become roots in the re-

verse graph. Therefore, in the final algorithm that incorporates both

pruning and reversing modules, we generalize the algorithm to allow

for u > 1 on roots (branching vertices in the reverse sense) in order

to ensure compatibility.

Having u rð Þ > 1 on a root indicates that all the ancestors of r

have been pruned out. For trees (after pruning), we have

O �Dþ rð Þ½ � ¼ O A rð Þ½ �. With Lemma 4.1 and Theorem 5.1, we have

cdag Oj:rð Þ ¼ cdag O �Dþ rð Þ½ �ð Þ ¼ cdag O A rð Þ½ �ð Þ

¼ cdag OR DR rð Þ
� �� �

¼ u rð Þ:

On the other hand, for any consistent sub-graph S containing r, S�Aþ

rð Þ induces a consistent sub-graph inO D rð Þ½ � and vice versa; thus,

cdag Ojrð Þ ¼
Y

u2C rð Þ
ctree T uð Þ:

Hence, these two sub-totals sum to be the total count and Equation

(2) remains unchanged. However, if a root r with u rð Þ > 1 is

selected to be the pivot, we have the following equation according

to Theorem 5.1 and Equation (3),

cdag Oð Þ ¼ cdag OR
� �

¼ cdag OR �DRþ rð Þ
� �� �

þ u rð Þ � cdag OR �ARþ rð Þ
� �� �

¼ cdag O �Aþ rð Þ
� �� �

þ u rð Þ � cdag O �Dþ rð Þ½ �ð Þ;

whereas Equation (3) remains unchanged for non-root vertices.

5.3 Pivot selection
As alluded to before, the selection of vertices used for partitioning

has the potential to significantly change the computation time. It is

therefore reasonable to devise a strategy for pivot selection. Besides

a random selection of multi-parent vertices (mpv’s), which aims at

directly converting DAGs into trees one step at a time, we also con-

sider three other pivot heuristics. The first strategy is to pick a vertex

with the maximum degree, with random selection in case of ties, be-

cause decomposing the graph according to such vertices may in-

crease the chance of having either disconnected components or

branching components. The second strategy selects the pivot so as to

minimize e� nþ r over the two sub-problems, where e, n and r are

the number of edges, vertices and roots in the two components. We

refer to this quantity as ‘bound’ since it is an upper bound of the

number of mpv’s in the graph (see Supplementary Material for the

proof). Note that it is closely related to the cyclomatic number of

the graph. Finally, the third strategy simulates a unit network flow

for all vertices running in the direction from leaves to the roots and

selects the ‘bottleneck’ vertex; i.e. the one that maximizes the ratio

of the flow in the vertex and the number of its descendants (see

Supplementary Material for this pivot selection algorithm). These

strategies will be empirically compared in Section 6.

5.4 Hashing
It can occur during the recursive procedure that certain sub-graphs

require repeated enumeration. In Figure 3, for example, the sub-

graph h-i-j is present in both sub-problems shown in Figure 3b–c.

Computing the count for this sub-graph would emerge in the

Figure 3b sub-problem if the ensuing decomposition were based on

vertex d, although it would not emerge if the partitioning were

based on vertex j. Interestingly, the sub-graph k-l would be counted

twice in the Figure 3b sub-problem; i.e. when both Aþ dð Þ and

Dþ dð Þ are removed, and it would then appear one more time in the

Figure 3c sub-problem.

To avoid repeated enumeration, whenever a solution to a sub-

problem is obtained, the count for this sub-problem is stored.

Then, during the recursive calls, we first check if the result is al-

ready available before further calculation. To hash a result, we use

the sorted IDs of all vertices in the sub-graph as a key. Obviously,

this key is unique because it corresponds to a vertex-induced

sub-graph of O. For the pruned sub-graph, we store the key of the

sub-graph along with the branching vertex. Whenever the ID of

the branching vertex is used to generate a key, the stored key of the

corresponding sub-graph is appended to the vertex’s ID with

parentheses around it.

6 Experiments and results

We empirically evaluate the enumeration procedure from Algorithm 3

and various practical speedups using randomly generated graphs.

Algorithm 3 The advanced version of Algorithm 2 with opti-

mization modules.
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We then apply this algorithm to four biomedical ontologies to gain in-

sight into the sizes of their concept annotation spaces.

6.1 Run-time evaluation
We generated two sets of graphs to investigate the efficacy of our al-

gorithm. Each set contained 1000 graphs with either 25 or 100 verti-

ces. To construct each graph the vertices were added sequentially,

with the proposed in-degree in-deg(v) of the k-th vertex v generated

according to a Poisson distribution with parameter k. This vertex

then became a child of min(in-deg(v), k – 1) previously generated

vertices that were themselves selected uniformly randomly. The par-

ameter k was selected according to the C 2:0; 1:0ð Þ prior for each

new graph and kept constant until the graph was completed.

With these two sets of simulated graphs, we ran our algorithm

with different modules and pivot selection strategies. In particular,

we evaluate pivot selection based on (i) random selection of vertices,

(ii) random selection of multi-parent vertices, (iii) the degree criter-

ion, (iv) the bound criterion and (v) the bottleneck criterion. For

each pivoting strategy, we subsequently add the pruning component,

then hashing and finally graph reversal. The criterion for graph re-

versal was the number of multi-parent vertices; i.e. a graph will be

reversed at any point during the recursive process if the reversed

graph contains fewer multi-parent vertices.

We report the average wall-time and average number of recursive

calls over the two sets of 1000 graphs (jVj ¼ 25 in Table 1; jVj ¼ 100

in Table 2). For the smaller graphs, we also ran a brute-force algo-

rithm that was further convenient to empirically evaluate the correct-

ness of our algorithm. The brute-force algorithm generates each of the

2jVj subsets of nodes and then performs a consistency check. We see

that simpler schemes perform better on small graphs where the num-

ber of recursive calls per graph has not exceeded a few hundreds.

On the other hand, the advanced techniques show tangible benefits

on the larger graphs reducing the number of recursive calls and total

computation time by orders of magnitude. It is possible to envision

other variations that could result in further speedups; e.g. selecting

multi-parent pivots with the highest degree. These refinements, how-

ever, were beyond the scope of this paper.

6.2 Consistent sub-graphs in biomedical ontologies
We use 02/2017 versions of GO and Human Phenotype Ontology

(HPO) as the target ontologies and compute the number of consist-

ent sub-graphs in each of them. The algorithm is applied to each of

the three domains of GO (Ashburner et al., 2000): (i) molecular

function ontology (MFO; 10 789 terms) (ii) biological process ontol-

ogy (BPO; 29 575 terms) and (iii) cellular component ontology

(CCO; 4085 terms). Together with HPO (12 167 terms), these four

ontologies are widely used in annotating functional terms of gene

products (Jiang et al., 2016; Radivojac et al., 2013). We further de-

fine the annotation level for each term in the ontology to be the

length of the longest path to the root. Starting from the root term,

we add more specific terms level-by-level to understand how the po-

tential annotation space grows with increased granularity of func-

tional concepts.

In addition to level-wise full ontologies, we also investigate the

‘used’ ontologies in which each term was retained only if at least one

protein in the UniProt-GOA (Huntley et al., 2015) and HPO

(Robinson and Mundlos, 2010) databases has been confidently

assigned that term (confident annotations include all experimental evi-

dence codes as well as ‘traceable author statement’ and ‘inferred by

curators’). Protein function annotations were extracted from the 02/

13/2017 release of the UniProt-GOA database, which contains 64 362

proteins with confident MFO annotations, 84 413 proteins with BPO

annotations and 79 630 proteins with CCO annotations. HPO annota-

tions were extracted from the 02/24/2017 release of the HPO database

where 6411 genes with confident annotations were extracted.

Figure 5 shows the completed counts for both full and used level-

wise ontologies. For each ontology, we additionally compute the

lower bound (generally the larger of 2‘ and 2r, where ‘ is the number

of leaves and r is the number of roots) and estimate the upper bound

(we convert a graph into a forest by keeping only one randomly

selected incoming edge for each multi-parent vertex and then call

cforest). The counts of consistent sub-graphs grow rapidly as

more specific terms are included and later plateau.

Although we were not surprised by the astronomical sizes of con-

cept annotation spaces; e.g. MFO terms up to the level of 9 create

2:036� 102616 consistent sub-graphs, it was rewarding to provide

Table 1. Experiments with simulated graphs with jV j ¼ 25 vertices

Brute-force Module Random Random mpv Min. bound Max. degree Bottleneck

571 ms 22.5 ms (313) 5.3 ms (39) 25.7 ms (23) 1.2 ms (28) 18.2 ms (47)

21.1 ms (97) 14.3 ms (44) 26.4 ms (25) 10.2 ms (28) 25.3 ms (44)

19.6 ms (71) 14.4 ms (39) 26.3 ms (23) 10.2 ms (26) 24.9 ms (34)

19.2 ms (67) 7.5 ms (28) 25.5 ms (23) 7.5 ms (23) 23.9 ms (31)

Notes: Each field in the table summarizes the per-graph wall-time over a set of 1000 graphs as well as the per-graph number of recursive calls, except for the

brute-force method. The columns represent pivot selection strategies: (i) random, (ii) random multi-parent vertex (mpv), (iii) minimum bound, (iv) maximum de-

gree and (v) bottleneck. The rows represent successive additions of practical modules for speedups: ( ) basic approach from Algorithm 2, ( ) pruning, ( )

pruning and hashing, ( ) pruning, hashing and graph reversal.

Table 2. Experiments with simulated graphs with jV j ¼ 100 vertices, with rows and columns identical to those in Table 1

Module Random Random mpv Min. bound Max. degree Bottleneck

*3102 s (119 745 876) 5.21 s (52 954) 114 s (25 416) 9.93 s (101 342) 122 s (526 925)

323 s (2 337 554) 8.98 s (33 271) 3.93 s (2802) 1.10 s (3066) 4.28 s (12 597)

157 s (457 075) 7.35 s (14 913) 3.67 s (1111) 0.92 s (1107) 3.08 s (2052)

165 s (508 521) 4.68 s (9721) 3.22 s (1103) 0.84 s (1079) 2.79 s (2133)

Notes: The entry with an asterisk indicates that a sample of three graphs was considered (instead of a full set of 1000) due to the long run-time. The brute-force

algorithm was not considered as it was not feasible to compute the count for even a single graph.
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exact counts whenever feasible as well as to observe an increasing

difference between lower and upper bounds (in the 100 s to 1000 s

of orders of magnitude) with the level of the ontology. We also find

it interesting that a large number of ontological terms have never

been used to annotate a gene or a protein; i.e. 31% of terms in GO

and 44% of terms in HPO (Supplementary Material). Finally, using

the number of recursive calls of our algorithm (Supplementary

Material) as a measure of graph complexity, we observe an inverse

relationship between the graph complexity and the accuracy of the

top function prediction algorithms in the Critical Assessment of

Functional Annotation experiments (Jiang et al., 2016; Radivojac

et al., 2013). Although some complexity of the available ontologies

can be attributed to the level of biological abstraction they are

intended to describe (e.g. Biological Process), it is reasonable to con-

sider that the structure of the ontology itself is a contributing factor

to a lower prediction accuracy. As an example, we note that both

Molecular Function and Cellular Component annotations corres-

pond to relatively straightforward biological concepts, yet MFO is

significantly simpler than CCO; e.g. it contains a smaller fraction of

multi-parent vertices, it has lower graph edge density and, corres-

pondingly, it had fewer recursive calls by our algorithm. In agree-

ment with this consideration, the accuracy of concept prediction in

MFO exceeds the accuracy currently observed in CCO, even when

data biases are accounted for (Jiang et al., 2016).

6.3 Entropy of concept annotation spaces
The ability to enumerate sub-graphs in relatively large ontologies

presents an opportunity to contrast the space of actual ontological

annotations in biological databases with the space of possible onto-

logical annotations. To investigate this, we first computed the en-

tropy of actual annotations at different levels in the ontology,

H Olvlð Þ ¼ �
X

i

P Olvl Si½ �ð Þ log2P Olvl Si½ �ð Þ;

where Olvl is the truncated ontology as in Section 6.2, Olvl Si½ � corre-

sponds to a distinct consistent sub-graph annotation observed at

that level and P Olvl Si½ �ð Þ is the probability that a protein is assigned

annotation Olvl Si½ �. We first enumerated all observed sub-graphs

from the UniProt-GOA or HPO database truncated to a particular

level, calculated their relative frequencies, and then plugged these

relative frequencies into the entropy formula above. On the other

hand, the maximum entropy was computed as log2cdag Olvlð Þ by

assuming equal probability for every possible consistent sub-graph.

Figure 6 shows the ratio between the two quantities for levels

greater than 1, suggesting that the world of protein functions, despite

great diversity, has low entropy relative to the possible maximum.

Although the currently observed functional annotations are incom-

plete, noisy and biased (Jiang et al., 2014; Schnoes et al., 2009, 2013),

this suggests considerable departure from the uniform distribution.

Fig. 5. Number of consistent sub-graphs in level-wise GO and HPO (see Supplementary Table S1 for exact counts). In each panel, blackþ symbols mark the exact

counts for ‘full’ sub-graphs and grey� symbols mark the exact counts for ‘used’ sub-graphs. Colored boxes indicate the estimated upper/lower bounds of the ac-

tual counts, with darker boxes corresponding to ‘full’ ontologies and lighted boxes corresponding to ‘used’ ontologies at a particular level. The exact integer

counts are available upon request

Fig. 6. Ratio of entropies in the four ontologies. Colored circles show the ratio

of the observed entropy to the maximum entropy for each level in the eval-

uated ontologies. Dotted lines correspond to the estimated ratios as the aver-

age of the two ratios calculated by lower/upper bound of the counts. The

error bars suggest a possible placement for the actual ratio
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7 Related work

There exists a body of literature in enumerative combinatorics related

to our work. One of the most relevant problems is the enumeration of

DAGs with n distinct (labeled) nodes (Robinson, 1971). The resulting

count reflects the size of the structure space of Bayesian networks

with n random variables and, surprisingly, also corresponds to the

number of matrices in 0;1f gn�n with all eigenvalues real and positive

(McKay et al., 2004). The number of labeled DAGs with n nodes

does not have a closed-form solution and is instead available as the

A003024 sequence in the On-Line Encyclopedia of Integer Sequences

(OEIS); https://oeis.org/A003024. The construction was originally

proposed by Robinson (1971) and was further investigated by others

(Gessel, 1996; Rodionov, 1992; Stanley, 1973).

Previous findings on rooted labeled trees include both the enu-

meration of possible number of trees and also the enumeration of

sub-trees for a given tree. There are nn�1 labeled rooted trees with n

nodes (Gross and Yellen, 2004) that provide the integer sequence

A000169 in OEIS; https://oeis.org/A000169. The expansion to for-

ests gives nþ 1ð Þn�1 using Cayley’s formula (Cayley, 1889), as a sin-

gle root can be added to connect a forest of unrooted labeled trees

into a rooted labeled tree. The recurrence for the number of sub-

trees of a given tree was proposed by Ruskey (1981); see Algorithm

1. The generalization to weighted sub-trees was given by Yan and

Yeh (2006). Both algorithms are linear in n assuming constant time

addition and multiplication.

The research in ontology quality assurance is another related

problem. These efforts typically include the analysis of irregularities

and redundancy in concept descriptors and graph structure

(Bodenreider, 2003; Verspoor et al., 2009; Xing et al., 2016). Our

work, primarily the software we developed, contributes to this area

by facilitating the analysis of the annotation space.

8 Conclusions

This work presents a practical algorithm for enumerating

consistent sub-graphs of DAGs. We build upon the work of

Ruskey (1981) and Yan and Yeh (2006), who solved the sub-

structure enumeration problems in trees, by providing a non-

trivial extension to DAGs. However, we also believe that our

algorithm has practical utility for the studies of ontological anno-

tation spaces that have recently gained popularity in structured-

output learning in computational biology and other fields

(Grosshans et al., 2014; Joachims et al., 2009; Movshovitz-Attias

et al., 2015; Radivojac et al., 2013; Sokolov and Ben-Hur, 2010).

Another related problem is workflow enumeration that may have

implications on code analysis and debugging in distributed com-

puting environments (Sadiq and Orlowska, 2000; Zaharia et al.,

2010).

The observed outcomes on biomedical ontologies raise import-

ant questions regarding the predictability of ontological annota-

tions because most modern algorithms are asked to provide

accurate deep annotations to have practical utility. However, an-

notation spaces become exceedingly large almost instantaneously

with the depth of the ontology, which presents an immense compu-

tational and statistical challenge for any prediction algorithm.

We therefore believe that the balance between ontology size/com-

plexity and term granularity should become an important topic for

future discussions among biocurators and function prediction

researchers.
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