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Abstract

Motivation: The fundamental challenge of modern genetic analysis is to establish gene-phenotype

correlations that are often found in the large-scale publications. Because lexical features of gene

are relatively regular in text, the main challenge of these relation extraction is phenotype recogni-

tion. Due to phenotypic descriptions are often study- or author-specific, few lexicon can be used to

effectively identify the entire phenotypic expressions in text, especially for plants.

Results: We have proposed a pipeline for extracting phenotype, gene and their relations from bio-

medical literature. Combined with abbreviation revision and sentence template extraction, we

improved the unsupervised word-embedding-to-sentence-embedding cascaded approach as rep-

resentation learning to recognize the various broad phenotypic information in literature. In add-

ition, the dictionary- and rule-based method was applied for gene recognition. Finally, we inte-

grated one of famous information extraction system OLLIE to identify gene-phenotype relations.

To demonstrate the applicability of the pipeline, we established two types of comparison experi-

ment using model organism Arabidopsis thaliana. In the comparison of state-of-the-art baselines,

our approach obtained the best performance (F1-Measure of 66.83%). We also applied the pipeline

to 481 full-articles from TAIR gene-phenotype manual relationship dataset to prove the validity.

The results showed that our proposed pipeline can cover 70.94% of the original dataset and add

373 new relations to expand it.

Availability and implementation: The source code is available at http://www.wutbiolab.cn: 82/

Gene-Phenotype-Relation-Extraction-Pipeline.zip.

Contact: pengjing@whut.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The biomedical literature is vast (Cohen and Hersh, 2005), and there

is an urgent need to process publications automatically and mine

embedded knowledge in the literature to create research hypotheses.

Recently, biomedical relationship extraction has gained attention for

many downstream text-mining applications, such as event extraction,

database creation, knowledge discovery, question answering and

decision-making. Natural language processing (NLP) systems have

been used for mining special relationships from texts as protein–protein

interactions (Papanikolaou et al., 2015; Yang et al., 2011; Zhu et al.,

2015), genes and diseases (Coulet et al., 2010; Kim et al., 2017), drug–

drug interactions (Segura Bedmar et al., 2011, 2013), as well as among

genes, drugs and mutations (Cheng et al., 2008; Rindflesch et al.,

1999). Such relationship extraction contributes to the development of

pharmacogenomics, clinical trial screening and adverse drug reaction

identification (Luo et al., 2017).

The central challenge of modern genetic analysis is to establish

genotype–phenotype correlations (Cobb et al., 2013; Fu et al., 2014),
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which are often found in the biomedical literature, but the volume

warrants an automatic and reliable system to extract these informa-

tion from the text.

Although relationships have been identified among numerous

biological entities, the system for extracting gene–phenotype rela-

tionships from the literature is very limited. Regarding species types,

the current research focuses more on the relationships between

human genes and phenotypes (Collier et al., 2015; Yang et al.,

2015). To our knowledge, there is few such studies for plants.

Regarding entity types, research on identifying specific phenotypes

such as diseases and gene relationships has received great attention

(Kim et al., 2017; Özgür et al., 2008; Singhal et al., 2016).

However, text-mining systems that can recognize various phenotype

and gene relationships are more difficult and are less robust. The

system generally involves annotating raw text with named entities

and extracting relationships between these entities. (Luo et al.,

2017) Named entity recognition (NER) is the foundation of rela-

tionship extraction and the effect of entity recognition greatly affects

relationship extraction results. (Chun et al., 2006) With gene–

phenotype relationship extraction, gene and phenotype should be

identified. Because lexical features are relatively regular, there are

many methods to identify genes in the text. (Campos et al., 2012;

Wei et al., 2015) However, although research on NER has been

improved (Gaizauskas et al., 2003; Horn et al., 2004; Segura-

Bedmar et al., 2008), phenotype identification is still challenging

and this negatively influences relationship extraction.

First, a phenotype is usually composed of multiple words, such

as ‘calcium sensitivity’ or ‘genic male sterility-photoperiod sensitive’.

Thus, name boundaries are complex. Second, phenotypic descrip-

tions are often study- or author-specific due to a lack of standard

expressions, complicating this search. For example, in the two sen-

tences ‘. . .resulting in root growth inhibition, smaller rosettes, and

leaf curling’. (PMID: 26734017) and ‘. . .leading to early flowering

and curly leaves phenotypes’. (PMID: 25693187), the same leaf

morphology has two different descriptions, i.e. ‘leaf curling’, ‘curly

leaves’. In addition, while there are specialized lexicons in many

areas, no lexicon can be directly used to identify overall phenotypic

descriptions in text, especially for plants. For example, the Unified

Medical Language System (UMLS) MetaThesaurus (Humphreys

et al., 1998) is a vocabulary database that includes numerous seman-

tic types, except for Phenotype type. In the plant domain, the con-

trolled vocabulary plant trait ontology (PTO) (http://bioportal.

bioontology.org/ontologies/PTO ) is too general, so it may not in-

clude all species traits. The Arabidopsis Information Resource

(TAIR) (Lamesch et al., 2012) is curated by manually summarizing

published literature so it is limited and difficult to organize for fu-

ture use. The AraPheno (Seren et al., 2017) database is an organiza-

tion of the Genome-Wide Association Study (GWAS) phenotypic

results in only six published studies, so the data are few. These man-

ual curation processes are time-consuming and cannot keep up with

rapidly increasing literature.

Here, we propose a novel gene–phenotype relationship extrac-

tion pipeline using model plant Arabidopsis thaliana. First we

improved the word-embedding-to-sentence-embedding cascaded

approach (Xing et al., 2017) as representation learning to recognize

various broad phenotypic descriptions in large-scale biomolecular

literature. Then, genes from the same phenotype-containing sentence

were found, using the dictionary-based method. Next, a relationship

extraction system Open Language Learning for Information

Extraction (OLLIE) was applied to extract gene–phenotype

relationships.

The proposed pipeline improves relationship extractions by iden-

tifying more phenotypic descriptions in the text. We identified many

types of phenotypic descriptions based on their boundary delimita-

tion: phenotypic phrases and phenotypic long/short sentences. To lo-

cate sentences that include the phenotype, we use word embedding

to learn distributed representations for words and phrases. Then,

we can extract phenotypic phrases missed by ontology, thus extract-

ing more sentences containing phenotypes. Then we cascade the

sentence-embedding method for specific phenotype-containing sen-

tences. Due to numerous candidate phenotypic sentences, expert

verification is time-consuming. According to the similarity mechan-

ism, we find that sentences with high similarity to the phenotype-

containing sentences have similar sentence structures. This

prompted us to design a Phenotypic Sentence Template Extraction

arChitecture (PSTEC) algorithm that automatically extracts pheno-

type sentence templates. With these templates, we can extract com-

plex non-phrase forms of long/short phenotypic sentences.

Ultimately, we evaluated the proposed pipeline from two

aspects. (i) We designed three baselines to compare with our

proposed relationship extraction pipeline. From the results, we iden-

tified more phenotypes (expanding the original ontology almost

3-fold), which significantly improved recall value (improving

24.05% compared to the traditional ontology-based method).

Meanwhile, identifying phenotypic descriptions from multiple per-

spectives also increased the precision of whole recognition. Using

the OLLIE system based on machine learning method, we effectively

improved F1-Measure compared with traditional relation extraction

approach. Thus, our pipeline had a F1-Measure of 66.83%, the

greatest of all baselines. (ii) We applied the pipeline to 481 full

articles from the TAIR gene–phenotype relationship dataset, and the

coverage was 70.94%. Moreover, we added 373 relationships to ex-

pand this dataset. Our pipeline automatically identified new rela-

tionships with a growing body of literature showing strong

scalability. The proposed pipeline is versatile and can be used not

only for extraction of relationships in Arabidopsis but also for other

plant species such as soybean and cotton.

2 Our gene–phenotype relationship pipeline

2.1 The overview of our pipeline
The pipeline starts with scanning abstracts in PubMed using the key-

word ‘A.thaliana’ and the Entrez Programming Utilities (E-utilities)

web service (https://www.ncbi.nlm.nih.gov/books/NBK25501). We

clean irrelevant author information and acquire 63 459 abstracts

that mention A.thaliana.

Next, we improve the proposed cascaded representation learning

approach (Xing et al., 2017) to recognize various broad phenotypes

in the literature. Our representation learning approach, combined

with the syntactic and semantic analysis of texts, identifies pheno-

types in multiple directions from phenotypic phrases to complex

short/long phenotypic sentences. Using ontology terms as input, our

approach greatly expands the recognition of ontology term syno-

nyms in the literature and establishes a bridge from ontology to lit-

erature description, so that study- or author-specific terms can be

identified.

Then we use the results of phenotypic identification to extract

gene–phenotype relationships. We use dictionary- and rule-based

methods to identify Arabidopsis genes in the literature. Then, we

combine the workflow of the Open Information Extraction (IE) sys-

tem with our entity recognition to extract and establish an

Arabidopsis gene–phenotype binary relationship. The pipeline was

A gene–phenotype relationship extraction pipeline i387
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implemented and run on a 24 2.4 GHz Xeon core server running on

Ubuntu Linux 16.04. Figure 1 shows the overview of the pipeline.

2.2 Cascaded approach for phenotype extraction
Before entity recognition, we used domain-resource ontology to es-

tablish the original phenotypic dataset. We extracted phenotypic

descriptions from phenotypic phrases and sentences based on differ-

ent boundaries. We used the parse tree combined with the word

embedding method to extract phenotypic phrases, the majority of

which were described by noun phrases. Because some synonyms in

ontology are not described as phenotype in the text, the previous ap-

proach did not consider it leading to some errors. Therefore, we

added abbreviation recognition and revision algorithm into the

improved cascaded approach.

Because some special phenotypes are non-phrase forms or long/

short sentence descriptions, we used phenotypic sentences from

word embedding results as positive samples to cascade the sentence

embedding method for finding phenotype sentences. We trans-

formed the unsupervised sentence-embedding model into a weakly

supervised model. Due to the lack of training of positive and nega-

tive samples, we use the Negative Class Label Enhanced (NCLE) al-

gorithm (Xing et al., 2017) to label negative samples and train the

sentence-embedding model in combination with the positive samples

of the word-embedding results. We analyzed results of sentence

embedding, finding that phenotypic sentences gathered by the simi-

larity mechanism had similar structures. However, the previous ap-

proach estimated these results through expert verification, which is

time-consuming. Therefore, we extracted sentence templates that

described the phenotype by improving the algorithm of the statistic-

al combination to expand phenotype recognition.

2.2.1 Constructing the phenotype dataset

First, we use two ontologies to create the original phenotype dataset

P, i.e. PTO and Arabidopsis Hormone Database 2.0 (http://ahd.cbi.

pku.edu.cn/cgi-bin/phenotypeBrowse.pl .) (Jiang et al., 2011). PTO is

an important controlled vocabulary that describes phenotypic traits in

plants. Each trait is a distinguishable, characteristic, quality or pheno-

typic feature of a developing or mature plant or a plant part.

Arabidopsis Hormone Database 2.0 provides a systematic and com-

prehensive view of genes participating in plant hormonal regulation

of the model organism A. thaliana. Its phenotypic ontology was devel-

oped to describe precisely myriad hormone-regulated morphological

processes with standardized vocabularies in Arabidopsis.

When processing PTO, we extract ‘name’ and ‘synonym’ from

every term in the ontology. Approximately 84% of these names are

associated with synonyms; on average, each name has 1.07 syno-

nyms. For example, the phenotype ‘alkali soil sensitivity’ has two

synonyms: ‘AlkS’ and ‘alkali sensitivity’. Not all of terms in these

ontologies appear in the literature. We found 805 terms in abstracts

after removing duplicate entries. We combined these into a complete

phenotype dataset P.

2.2.2 Word embedding

We followed the word embedding method published in (Xing et al.,

2017). First, we used the collected PubMed texts to train the word-

embedding model, which gave each word or phrase a distributed

representation in low and dense dimensional vector space. By find-

ing phrases with high similarity to phenotypic entities in P, the ori-

ginal ontology of the phenotype is expanded as Pupdate. Therefore,

we can obtain more sentences containing phenotypic information.

Because some phenotypic synonyms contained in P are abbrevi-

ated forms, they may not represent as phenotype in the text and are

incorrectly identified. For example, the abbreviation ‘AC’ in the

ontology corresponds to the full name of ‘leaf sheath auricle color’.

However, in the sentence ‘Many of these proteins have complex do-

main architectures with AC or GC centers . . .’ (PMID: 26721677),

‘AC’ is not a phenotype. The previous method did not consider ab-

breviation recognition such as this, so we required post-processing

of word-embedding results. After obtaining a high similarity pheno-

type phrase, we recognized and revised the abbreviation.

Fig. 1. The overview of our gene–phenotype relationships extraction pipeline
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We used (Xu et al., 2009) algorithms for identifying abbrevia-

tions in the biological literature, matching pairs of all abbreviations

and full names in the processed texts. When we used an updated

phenotype dataset Pupdate to reidentify the phenotype in the litera-

ture, if there was an abbreviated form, it was first matched with a

full name. Only the full name of the abbreviation also in Pupdate,

remained as a phenotype, otherwise it was deleted. The abbreviation

recognition and revision can increase pipeline precision value and

identify phenotypes more accurately.

2.2.3 Sentence embedding

Using the word-embedding results, we classified and tagged

PubMed texts as input for the sentence-embedding (Le and

Mikolov, 2014) method. The trained model can find sentences con-

taining phenotypic information, acquiring new phenotypic senten-

ces. To improve diversity of phenotype recognition, we transformed

the unsupervised sentence-embedding model into a weakly super-

vised model. We used the results of word-embedding as positive

samples, Spos, and combined the NCLE algorithm for negative sam-

ples, Sneg, for the training of the Sen2Vec model.

Sentence embedding can aggregate similar phenotypic expres-

sions. We found that large-scale gathered sentences have a similar

sentence context structure. For example, the more similar sentences

with ‘Solute import across the pollen plasma membrane, which

occurs via proteinaceous transporters, is required to support

pollen development and also for subsequent germination and

pollen tube growth’ always have the same structure ‘be required

{prep_*}þ [phenotype]’, such as:

• ‘During pollination, constant communication between male

pollen and the female stigma is required for pollen adhesion,

germination, and tube growth’.
• ‘Two A.thaliana genes, QRT1 and QRT2, are required for pollen

separation during normal development’.

Due to many similar sentences, it is time-consuming to identify

all phenotypic sentences and analyze their phenotype with expert

evaluation. Therefore, we used sentence structure to automate ex-

traction of complicated long/short phenotypic sentences of non-

phrase types. These structures may contain complex phenotypic

descriptions, likely with punctuation, prepositions, and conjunc-

tions. We designed an automated algorithm to find frequently occur-

ring sentence templates and with this, we extracted relatively

complex descriptions of phenotypic long/short sentences from many

sentence-embedding results.

At present, there are few studies about automatic generation of

sentence templates in NLP. We borrowed the idea of modular algo-

rithms from Sentence Pattern Extraction arChitecturte (SPEC) sys-

tems in (Michal et al., 2011) and proposed our own solution for

combinatorial explosion problem.

With the SPEC algorithm, a ‘sentence template’ is considered as

n-element ordered combination of sentence elements. It generates all

possible combinations of patterns from a sentence and selects the

frequency occurrence combination as a sentence pattern. However,

we focused on the phenotype-containing structure and created the

algorithm Phenotypic Sentence Template Extraction arChitecture

(PSTEC) which consists of three components:

1. Preprocessing

2. Generation of all ordered combinations from sentence elements

3. Insertion of a wildcard

Preprocessing: We tokenized all positive sentences Spos of sen-

tence embedding. Because we must extract phenotype-containing

sentence structures, we treated phenotypic phrases as a whole and

replaced phenotypic descriptions appearing in the sentence with

‘PHE’.

Generation ordered combinations: In every n-element sentence,

there is k-number of ordered combination groups (1�k�max).

After processing all sentences in corpora, we choose a combination

of frequencies greater than a threshold fre as a k-length template.

Because the phenotype-containing template is not too long, so we

set max as the length of the element threshold. We set two restric-

tions to prevent the combination explosions:

• Combination of the k-element must include the specific word

‘PHE’
• Any ‘PHE’ contained (k-1)-element subset of k-element combin-

ation must be in the (k-1)-element template.

After iteration processing, we obtained all ordered, not dupli-

cated, high frequency combinations for all values of k from the

range of {1, . . ., max} as k-element sentence templates.

Insertion of a wildcard: During combination, we combined the

original word order. To improve the applicability of templates, we

specified whether the elements appeared next to each other or were

separated. Therefore, we placed a wildcard between all non-

subsequent elements using one heuristic rule. If an absolute differ-

ence of word order assigned to the two subsequent elements of a

combination >1, we added a wildcard between them. An example

of PSTEC algorithm appears in Figure 2.

When we obtained the high-frequency max-element sentence

templates, we applied these templates to the results of a large num-

ber of sentence embeddings. Extracting the description of the more

complex phenotypes in sentences that are highly similar to the posi-

tive samples improved phenotype recognition.

2.3 Gene–phenotype relationship extraction
For gene–phenotype relationship extraction, the gene is required

and gene lexical features are relatively regular in texts, gene IDs or

gene names may be used to represent them. Therefore, we used a

dictionary- and rule-based method to identify genes.

After entity recognition was complete, our pipeline extracted the

relationship with the open information extraction (IE) system.

Fig. 2. The procedure for sentence template extraction using high frequency

three-element combinations to generate four-element template

A gene–phenotype relationship extraction pipeline i389
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Results of the relationship extraction are expressed as triplets

(arg1; r; arg2). The r (relationship phrase) represents arg1 and arg2

entity relationships.

2.3.1 Gene extraction

First, we searched all related genes in the UniProt database (http://

www.uniprot.org ) using ‘A.thaliana’ as a key word and obtained

129 648 records. Each record contained the fields ‘Organism’,

‘Gene locus’, ‘Gene name’. Although we use Arabidopsis as a key-

word, the results included other species, such as ‘Oryza sativa subsp.

japonica (Rice)’. After processing, we obtained 89 287Arabidopsis

gene ID and gene name pairs and these were used as a dictionary to

identify genes.

Due to the large number of gene names and not a gene locus in

the literature, part of the gene name is not in the dictionary.

Therefore, we use gene lexical rules and semantic description rules

in the text to improve gene recognition. Gene name spelling had

some character-level rules as follows:

1. All capital letters.

2. A combination of uppercase and lowercase letters.

3. A combination of numbers, uppercase and lowercase letters.

4. Those containing hyphens.

Therefore, we used two rule types, mixed character-levels

and contextual-levels, to identify the gene. When an input sentence

contained these expressions: Expression of, Accumulation of,

Expression levels/patterns of, Targets of, mRNA abundance of,

Transcript profiles/levels of, and the ‘NNP’ (Proper noun, singular)

tagged parts in the part-of-speech (POS) tagged sentence complies

with our character-level rules, we extracted this special expression

as a gene. For example, with the POS tagged sentence:

“. . .HTR4K27Q (‘NNP’) overexpression (‘NN’) lines (‘NNS’)

exhibited (‘VBD’) deregulated (‘JJ’) expression (‘NN’) of (‘IN’)

H3K27me3-enriched (‘NNP’) genes (‘NNS’).” (PMID: 27926813)

contains the specific contextual-level description ‘Expression of ’,

and the ‘NNP’ tagged words satisfy the third and fourth character-

level rules. Thus, we can identify gene ‘H3K27me3-enriched’.

Then, we used all sentences that contained the phenotype as in-

put, and the output is two entities that cooccur in sentences. These

sentences were used as input to subsequent relationship extraction.

2.3.2 Relationship extraction

To the best of our knowledge, there is a limited document annota-

tion corpus of gene–phenotype relationships in Arabidopsis species.

Currently we are only concerned with gene–phenotype relationships

in single sentences. Most relationship recognition systems are not

generic and portable so we used the open information extraction

(OpenIE) system for this specific relationship identification. OpenIE

can extract assertions from massive corpora without a specified vo-

cabulary (Fader et al., 2011) from open-domain corpora, such as the

Internet and Wikipedia, but in recent years, OpenIE has used bio-

logical literature for systematic testing.

We used an existing OpenIE system, OLLIE (Schmitz et al.,

2012) as a relationship phrase recognition tool. OLLIE improved

several shortcomings of the state-of-the-art system, extracting only

relationships mediated by verbs and ignoring context, extracting

tuples not asserted as factual. OLLIE is popular for information ex-

traction and used in many fields, such as Question-Answer (Berant

et al., 2013), knowledge graphs (Nickel et al., 2016), and named

entities’ network (Tariq et al., 2017). OLLIE uses high-precision

results of the previous generation OpenIE system i.e. REVERB

(Fader et al., 2011). With many syntactic analyses of sentences that

contain relationships, learning relationship patterns can be extended

to find relationships of new input sentences.

We input the co-occurring sentences into the OLLIE system and

extracted relationship sentences and their corresponding relation-

ships. OLLIE automatically gives NP pairs of sentences as argu-

ments in the relationship. However, these NP pairs contain too

much noise, and the partially extracted arguments are not genes or

phenotypes. Therefore, we limited our screening to eligible relation-

ship groups. For the first (agr1) and third (agr2) parts of one triple,

we need map them to the previous phenotype and gene entity list.

When one or some genes and phenotypes are in each of the two

arguments, we consider the relationship as a gene–phenotype rela-

tionship and stored such a relationship.

3 Results and discussion

3.1 Phenotype extraction results
3.1.1 Word-embedding results

We used Word2Vec (https://code.google.com/p/word2vec ) to train

a skip-gram model with a 4 D size, i.e. 300, 500, 700 and 900. Due

to a lack of standards for this topic, we needed expert evaluation

and annotation. Therefore, the results of word embedding first were

semi-automatically classified and then manually evaluated by one

expert and confirmed by another. Ultimately, the word-embedding

method can extend original phenotype datasets P, increasing 1303

new phenotype data by up to 161.86%. We used the extended data-

set Pupdate to match the phenotypic descriptions in the abstracts.

Mapping sentences numbered 88 243. After abbreviations were

identified and revised, 87 613 sentences containing phenotypes were

obtained.

Some examples of phenotypes recognized by the word-

embedding method appear in Table 1. ‘Ontology term’ as the

original input, using the similarity mechanism to get ‘Phenotype’

Table 1. Examples of word-embedding results

Ontology term Phenotype Similarity

Score

Class

Cell

elongation

Cell expansion 0.671 TO: 0000357

Cell enlargement 0.531

Organ expansion 0.528

Cell proliferation 0.526

Chlorophyll

content

Lower ion leakage 0.625 TO: 0000277

Photosystem II activity 0.557

Photosynthetic quantum yield 0.550

Higher relative water content 0.531

Chloroplast

structure

Photosynthetic phenotype 0.498 TO: 0000017

Thylakoid structure 0.495

Leaf chloroplast ultrastructure 0.484

Pale green leaves 0.479

Leaf curling Dark green leaves 0.613 TO: 0000357

Altered leaf shape 0.581

Curly leaves 0.576

Serrated leaves 0.558

Drought

sensitivity

Reduced water loss 0.550 TO: 0000164

Enhanced drought resistance 0.544

Drought stress tolerance 0.539

Reduced drought tolerance 0.535

Note: According to the original ‘Ontology term’, we use similarity mecha-

nisms to extract ‘Phenotype’ and its corresponding ‘Similarity Score’. ‘Class’

represents the corresponding categories in the PTO 10 basic categories.
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and the corresponding ‘Similarity Score’. ‘Class’ represents the cor-

responding categories in the PTO 10 basic categories (10 basic cate-

gories are: TO: 0000277 biochemical trait; TO: 0000283 biological

process trait; TO: 0000183 other miscellaneous trait; TO: 0000357

plant growth and development trait; TO: 0000017 plant morph-

ology trait; TO: 0000597 quality trait; TO: 0000133 stature or

vigor trait; TO: 0000392 sterility or fertility trait; TO: 0000164

stress trait; TO: 0000371 yield trait).

As shown in Table 1, the word-embedding method can find a

phenotypic description according to the syntax and context of the

text. For example, for the same ontology term ‘leaf curling’ (TO:

0002681), the method can extract similar words by considering

syntax (‘leaf curling’—‘curly leaves’) and context semantics (‘leaf

curling’—‘altered leaf shape’). Some new phenotypes are not syno-

nyms of their corresponding original ontology terms. For example,

the new phenotype ‘serrated leaves’ is not synonymous with ‘leaf

curling’. This may because the contextual environment that

describes the new phenotype and the original term is similar, but the

semantics of expression are not the same.

3.1.2 Sentence-embedding results

We used Doc2Vec (http://radimrehurek.com/gensim/models/doc2

vec.html ) to train the PV-DBOW model, and the trained corpora

are positive/negative labeled abstracts. Then, we used the results of

word embedding Spos as inputs and acquired candidate sentences

with similarities greater than Sim after calculating for cosine dis-

tance with Spub. A reasonable Sim value greatly influenced the

results. After testing, if Sim was too high (>0.4), high similarity sen-

tences were too few and an average of 1.2 high-similarity sentences

was obtained for each original sentence. If Sim was too low (¡0.2),

we get a lot of dissimilar sentences. Therefore, we set Sim as 0.3,

and an average of 4.5 high-similarity sentences was obtained for

each original sentence.

The sentence-embedding method can find many candidate

phenotypic sentences, which contain many non-phrase, complex

long/short phenotypic sentences. For example, the phenotypic struc-

ture ‘response to . . .stress’ in the sentence ‘GmaPHO1 genes had

altered expression in response to salt, osmotic, and inorganic phos-

phate stresses’. Such phenotypic descriptions are special and numer-

ous and can improve relationship identification. Therefore, we

designed a PSTEC algorithm to automatically generate phenotypic

sentence templates for extracting them.

We tested and selected template length max and template fre-

quency fre of the PSTEC algorithm. When max is too long (>6), the

template will contain a lot of noise, such as too many prepositions

and stop words. When max is too short (<4), the template cannot

contain complete template structure information. Thus, we set

max as 5. The size of fre directly affects the efficiency and uptime of

the algorithm. After testing, we set fre as 100 and only kept tem-

plates that appeared more often than 100 in the corpus. Ultimately,

we obtained 250 sentence templates. There are many types of dupli-

cate templates and high frequency but not intention-containing tem-

plates, such as ‘Show/Suggestþprep_*’. Therefore, we merged and

selected these results. Table 2 shows 5 high frequency sentence tem-

plates that can recognize combination type phenotypes (‘Tolerance

to salt/drought/methyl viologen stress in Arabidopsis’), with envir-

onmental or time factors (‘Hypocotyl growth in response to unilat-

eral blue-light illumination’) and are rich in diversity of phenotypes.

Meanwhile, we noticed that phenotypes recognized by different tem-

plates may differ. For example, the ‘Respond’ template can identify

more ‘stress trait’ types.

We can extend 1314 phenotypic descriptions using the sentence

template. After merged results of word-embedding, we expanded

2409 phenotypic expressions and increased them 2.99-fold com-

pared to the original phenotype dataset P.

3.2 Gene–phenotype relationship results
We evaluated results of gene–phenotype extraction from two

perspectives.

1. According to different phenotype recognition and relation ex-

traction methods, we compared with baselines.

2. We used the entire pipeline in the TAIR database, which manu-

ally extracted gene–phenotype relationships from 555 full

papers.

3.2.1 Performance comparison with baselines

Using the phenotype recognition cascaded approach can improve

the identification of phenotypes in the literature and improve

relationship identification. To illustrate the importance of phenotyp-

ic recognition in relationship extraction and to verify the accuracy

of our approach, we establish two baselines for performance

comparison.

• B1: Using the traditional ontology-based method (Müller et al.,

2004) to recognize phenotype and extracting the gene and rela-

tionship using method described in this article.
• B2: Using the ontology-based with word embedding method

(Mikolov et al., 2013) to recognize phenotype and extracting the

gene and relationship using method described in this article.

we also compare with another baseline that use traditional rela-

tion extraction methods.

Table 2. Examples of sentence templates

Sentence template Example of phenotype Number of phenotype

Inhibition of þ (PHE) Root growth the root-swelling phenotype; Germination and elongation of

Arabidopsis seedling

127

Involve(d) in þ (PHE) Host cell death in the hypersensitive disease-resistance response; A. thaliana seedling

root to a rapid change in salinity

532

(Play a/an adj./n.) Role in þ (PHE) Coordinate the directional growth of plant tissue; Tolerance to salt/drought/methyl

viologen stress in Arabidopsis

243

Regulator/regulation of þ (PHE) Secondary wall synthesis in fiber of A.thaliana stem; Stomatal clustering and density

early in Arabidopsis leaf development

197

(In) Response to þ (PHE) Both high- and low-temperature stress; Signal emanate from cell undergo pathogen-

induced hypersensitive cell death

215

Note: PHE represents phenotype, parentheses indicate optional parts.

A gene–phenotype relationship extraction pipeline i391

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/13/i386/5045803 by guest on 19 April 2024

http://radimrehurek.com/gensim/models/doc2vec.html
http://radimrehurek.com/gensim/models/doc2vec.html


• B3: Using method described in this article to extract phenotype

and gene, the relation extraction method is based on syntatic

rules (Coulet et al., 2010) which uses the collapsed dependencies

graph representation.

We randomly selected 100 abstracts to identify the relationships

by expert verification and to calculate Precision, Recall, F1-

Measure. Results are shown in Table 3.

Among the different methods on phenotype recognition, the ef-

fect of recognizing the gene–phenotype relationship using only

ontology-based efforts is the poorest. Because of loss of many phe-

notypes, recall value in relationship recognition is low. For example,

the phenotype ‘NaCl stress-sensitive phenotype’ is not in ontology,

so the relationship (MCK1; complemented; NaCl stress-sensitive

phenotype) cannot be found. However, we can identify this pheno-

type using the proposed approach and obtain relationships with the

best recall. This is because we recognized the phenotypic phrase and

the more complex phenotypic long/short sentences based on the sen-

tence template. As the integrity of the phenotype increased, the pre-

cision is improved. For this sentence, ‘. . .a structurally related

Arabidopsis MADS-box gene involved in the negative control of

Arabidopsis flowering time, . . .’ (PMID: 15539492), due to the tem-

plate: ‘(gene) involveþ {prep.}þPHE’, we can identify the whole

phenotypic description ‘negative control of Arabidopsis flowering

time’, and get the relationship (MADS-box gene; involved in; nega-

tive control of Arabidopsis flowering time). However, the first two

baselines only extracted part of the whole expression ‘flowering

time’ and missed the complete relationships. Thus, our approach

can extend relationship extraction by improving phenotype

recognition.

Compared with the B3 baselines, which only change the relation

extraction method, our pipleline also has the best performance.

Because the syntactic rule method misses many results and only get-

ting 26.58% recall value, its F1-Measure is about 36.00%.

We have considered to use generic tools such as GNormPlus

(Wei et al., 2015), GenNorm (Wei and Kao, 2011) and so on for

gene identification but found that these tools identify the gene of all

species that appear in the text. Therefore, noise information is mixed

in the targeted identification of Arabidopsis gene information,

which requires expert screening. So, we finally chose a more tar-

geted rule- and dictionary-based approach and obtained 88.76%

precision value in the above test dataset. This is slightly higher than

the results given in the article (Wei et al., 2015) by GNormPlus (pre-

cision 87.1%) and GenNorm (precision 78.9%).

Although the proposed pipeline can improve the effectiveness of

final relationship identification compared with baselines, there are

misidentifications and omissions due to the following reasons:

1. Error of relationship recognition. The OLLIE system is limited

as it can only identify the relationship in a single sentence, and

the length of the sentence cannot be too long. Sentences

>20 words have increased errors for relationship analysis

(Schmitz et al., 2012). For example, the sentence ‘Hence, the

narrow organ shape, reduced plant height, and reduced whorl 4

organ primordia are consistent with a general reduction of cell

number, and, perhaps, reflect a role of SEU in promoting cell

proliferation’ can be assessed by OLLIE to get this relationship

(whorl 4 organ primordia; perhaps reflect; a role SEU in promot-

ing cell proliferation). The wrong relationship association results

in inaccurate identification of it.

2. Inaccurate phenotypic boundary. Although we can identify

phenotype from phrases and long/short sentences, more complex

phenotypes cause errors or incomplete identification. For ex-

ample ‘The AGAMOUS gene of Arabidopsis is necessary for the

proper development of stamens and carpels and the prevention

of indeterminate growth of the floral meristem’. We did not rec-

ognize this sentence structure, resulting in incomplete recogni-

tion of relationships.

3. Problem of gene recognition. Although we use a relatively com-

plete Arabidopsis gene database as a dictionary for gene ID and

gene name identification, and get high precition value of

88.76%, the database may still missing some gene name as well

as the corresponding relationship for it.

These errors reduce precision and recall because each case results

in an incorrect or incomplete relationship extraction.

3.2.2 Comparison with TAIR

The TAIR database (Lamesch et al., 2012) is one of the most in-

formative databases for storing Arabidopsis information, which

contains a gene–phenotype relationships dataset. This information

was manually extracted from 555 full texts. To verify pipeline ef-

fectiveness, we calculated coverage of relationship for these papers.

Because some documents cannot be downloaded, we retrieved only

481 full papers. Preprocessing the TAIR dataset by deleting irrele-

vant fields, i.e. ‘Phenotype not described’ and ‘No visible phenotype’

was done and we retrieved 1397 sets of gene–phenotype relation-

ships. We noticed that there are duplicate types of relationships in

the dataset. For example, the gene ‘MSSP1’ is related with:

• Under normal growth temperature conditions, the double mu-

tant leaves’ content in glucose and fructose is slightly reduced

(30%) in a similar fashion to that observed with the tmt1 single

mutants.
• Under normal temperature conditions, a substantial reduction in

glucose and fructose contents in leaves is observed compared to

wild type, and even the single tmt1 and double tmt1/tmt2

mutants.

As they are the same type, we treat them as the identical relation-

ships. We applied our pipeline to this dataset, extracted data were

compared with processed TAIR datasets by four experts and offered

coverage of 70.94%. Moreover, our pipeline can identify 373 new

relationships, which the TAIR dataset does not include. The results

Table 3. Performance of baselines compared with our pipeline

Type Phenotype extraction Relation extraction Precision (%) Recall (%) F1-Measure (%)

B1 Ontology-based (Müller et al., 2004) OLLIE 52.98 33.76 41.24

B2 Ontology-based þ word embedding

(Mikolov et al., 2013)

OLLIE 73.91 50.21 59.80

B3 Representation learning approach Syntatic rules

(Coulet et al., 2010)

55.75 26.58 36.00

Our pipeline Representation learning approach OLLIE 79.19 57.81 66.83
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are shown in Supplementary Material. We had limited coverage for

a few reasons:

1. Many relationships in TAIR come from cross-sentence or even

cross-paragraph relationships. Such relationships are unrecog-

nizable to our pipeline that only extracts from a single sentence,

so there is the main reason of limited coverage. However, due to

redundancy of much information, our pipeline use repetitive

relationships extracted from many studies to compensate extrac-

tion of the relationship representations in small samples. Such

work cannot be done manually.

2. Many phenotypes in TAIR have not been described in the origin-

al literature after subsequent manual processing and summary

and this will influence coverage.

3. There is only a gene locus name in the TAIR dataset, but most

documents only describe the gene name. Some gene loci in the gene

database do not have corresponding names. Thus, our pipeline

cannot recognize these genes or any corresponding relationships.

After analysis, we found that articles in the TAIR dataset are

relatively old (most prior to 2000). Due to limitations to manual

reading, this dataset failed to update gene–phenotype relationships

as the literature grew, so scalability was poor. However, with our

pipeline we can quickly find relationships for updated literature,

greatly improving efficiency for summarizing data.

4 Conclusion and future works

Much plant gene–phenotypic information exists in the biomedical

literature, and it continues to grow. Thus, we propose a pipeline

to extract relationships between genes and phenotypes using

A.thaliana as an experimental object. Our pipeline can expand the

expression of original phenotype ontology terms in the literature

using an improved cascaded representation learning approach of

phenotype recognition. This can enhance relationship extraction.

Our pipeline obtained an F1-score (66.83%) that outperformed

other baselines. Applying the pipeline to the TAIR dataset, we can

complement 373 new relationships.

Future studies may include considering environmental influences

and phenotypic conditions for constructing gene–phenotype event

extraction instead of binary relationships. If the division of pheno-

type and relationship boundaries is more detailed, performance will

be improved.
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