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Abstract

Motivation: Somatic mutations in proto-oncogenes and tumor suppressor genes constitute a

major category of causal genetic abnormalities in tumor cells. The mutation spectra of thousands

of tumors have been generated by The Cancer Genome Atlas (TCGA) and other whole genome

(exome) sequencing projects. A promising approach to utilizing these resources for precision medi-

cine is to identify genetic similarity-based sub-types within a cancer type and relate the pinpointed

sub-types to the clinical outcomes and pathologic characteristics of patients.

Results: We propose two novel methods, ccpwModel and xGeneModel, for mutation-based clus-

tering of tumors. In the former, binary variables indicating the status of cancer driver genes in

tumors and the genes’ involvement in the core cancer pathways are treated as the features in the

clustering process. In the latter, the functional similarities of putative cancer driver genes and their

confidence scores as the ‘true’ driver genes are integrated with the mutation spectra to calculate

the genetic distances between tumors. We apply both methods to the TCGA data of 16 cancer

types. Promising results are obtained when these methods are compared to state-of-the-art

approaches as to the associations between the determined tumor clusters and patient race

(or survival time). We further extend the analysis to detect mutation-characterized transcriptomic

prognostic signatures, which are directly relevant to the etiology of carcinogenesis.

Availability and implementation: R codes and example data for ccpwModel and xGeneModel can

be obtained from http://webusers.xula.edu/kzhang/ISMB2018/ccpw_xGene_software.zip.

Contact: wzhang@xula.edu or kzhang@xula.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Precision cancer medicine relies on the precise understanding of the

biological and genetic characteristics of individual patient’s

tumor(s). Somatic mutations in proto-oncogenes and tumor suppres-

sor genes constitute a major category of causal genetic abnormalities

in tumor cells. The mutation spectra of thousands of tumor samples

have been generated by The Cancer Genome Atlas (TCGA) and

other whole genome (exome) sequencing projects. A promising ap-

proach for utilizing these sources of information is to establish gen-

etic similarity-based clusters (or sub-types) within a cancer type and

then relate the sub-types to clinical outcomes and pathologic charac-

teristics of patients.

Mutation-based clustering analysis is still in its infancy, as the

following issues have not been sufficiently addressed. First, the

mutated genes in the tumor samples of a patient cohort are usually

numerous but the mutation events present on a single gene are

generally sparse, thus conventional clustering algorithms cannot be

directly applied to such type of data. Second, unlike the case of gene

expression profiling, the functional similarity between genes cannot

be reflected in the mutation profile whose element usually takes a

binary value (i.e. 0 or 1). However, such information is crucial in

calculating the between-sample similarity and ignorance of this in-

formation could disassociate two tumors that have different muta-

tion profiles (on driver genes) but share a common or similar

mechanism of tumorigenesis. Third, the relevance of a non-

synonymous mutation to the formation and progression of tumors

intuitively depends on the confidence in its host gene as a true cancer

gene. If the confidence variability across the genes is not considered,

the contribution of a putative cancer gene to the similarity of two

tumors could be under- or over- estimated in the computation.

Lastly, in order to make the statistical results interpretable and

meaningful for precision medicine, the clustering process should be
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‘transparent’. That is, the estimation of the distance between tumor

samples should be computationally and biologically traceable, in the

sense that the implications of the used features in tumorigenesis

should be explicit and the mutation spectra of the identified sub-

types (clusters) could be genetically characterized.

Although the first two issues have been addressed by recent stud-

ies, they are still open topics that warrant further investigation. For

example, Hofree et al. proposed a Network-Based Stratification

(Hofree-NBS) method (Hofree et al., 2013), based on the assump-

tion that while two tumors may not have any mutations in common,

they may share common mutation-disturbed networks. In Hofree-

NBS, the mutation profile of each patient was firstly projected onto

a human gene (protein) interaction network, and network propaga-

tion was then adopted to spread the influence of each mutation over

its network neighborhood to generate a non-sparse feature matrix,

on which non-negative matrix factorization (NMF; Lee and Seung,

1999) and consensus clustering (Monti, 2013) were performed to

stratify tumor samples. NBS was applied to several TCGA cancer

types, and the results showed that the determined tumor sub-types

were significantly associated with patient survival and tumor hist-

ology. Similar results were reported by (Kim et al., 2015), who

established a non-sparse feature matrix by projecting the mutation

profiles of tumor samples onto highly specific gene ontology (GO)

terms prior to the implementation of NMF and orthogonal NMF.

In this paper, we propose two novel methods to cluster (or strat-

ify) tumor samples based on the somatic mutation spectra of the (pu-

tative) cancer driver genes. The four issues mentioned above are

systematically addressed in a heuristic manner. We apply these two

methods to the TCGA data of 16 cancers types and compare the

results with that of Hofree-NBS in terms of clinical implications. In

particular, we examine the associations between the determined

tumor clusters and patient race. We further extend the analysis to

identify prognostic signatures that are quantified by gene expression

levels and characterized by somatic mutation spectra of driver genes.

2 Methods and data

2.1 Data
2.1.1 TCGA data

Among the 33 cancer types with clinically-annotated multi-omic

data (http://cancergenome.nih.gov/), 16 are studied in this work by

considering the genetic diversity of patients. Each of the selected

cancer types has at least 14 patients from a minority population (i.e.

black American or Asian) besides the dominant white Americans.

The studied cancer types include bladder urothelial carcinoma

(BLCA), glioblastoma multi-forme (GBM), head and neck squamous

cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC),

lung adenocarcinoma (LUAD), lung squamous cell carcinoma

(LUSC), breast invasive carcinoma (BRCA), ovarian serous cystade-

nocarcinoma (OV), uterine corpus endometrial carcinoma (UCEC),

colon adenocarcinoma (COAD), thyroid cancer (THCA), cervical

squamous cell carcinoma and endocervical adenocarcinoma

(CESC), esophageal carcinoma (ESCA), cervical kidney renal papil-

lary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC)

and stomach adenocarcinoma (STAD). These cancer types have 168

to 967 patient samples whose somatic mutation profiles are avail-

able (Supplementary Table S1). Additional information of the used

somatic mutation data is summarized in Supplementary Table S2

and Supplementary Text S1. Synonymous mutations and those

under the categories of ‘intron’ and ‘rna’ are excluded from further

analysis.

We also download the Level-3 RNA-Seq gene expression profil-

ing (RNASeqV2 data) of BLCA and LICH to show how the results

from the clustering analysis of the mutation spectra could be used

to identify a mutation-based transcriptomic prognostic signature.

Logarithm transformation and between-tumors normalization of

the expression data using cyclic loess are performed before the

advanced analysis.

2.1.2 Gene expression data for validation

From the GEO database (accessed on June 28, 2016), we obtain

four microarray gene expression datasets to validate the prognostic

signatures pinpointed using the TCGA data. They include two data-

sets for bladder cancer, i.e. GSE31684 (N¼93; Riester et al., 2012)

and GSE13507 (N¼165; Kim et al., 2010), and two datasets for

LIHCs, i.e. GSE14520 (N¼225; Roessler et al., 2012) and

GSE54236 (N¼88; Villa et al., 2016). These datasets have been

quantile normalized and logarithm transformed, thus no further pre-

processing is performed.

2.1.3 Catalogue of cancer driver genes and the confidence scores

The driver gene catalogue was generated by (Tamborero et al.,

2013a) according to their comprehensive analysis of 12 TCGA can-

cer types. The original collection contains 435 potential cancer

driver genes. Hereafter, we call these genes the putative cancer

driver genes. Among them, 13 have not been annotated to any

highly-specific GO terms (http://geneontology.org/) by June 10,

2016 (Section 2.3), and thus are excluded from further study. As to

the confidence in a gene being a true cancer driver gene, we do not

use the partition given by Tamborero et al., who grouped the genes

into two categories (i.e. ‘high-confidence’ and ‘candidate’). Instead,

a confidence score (w) is calculated by the formula, i.e.

ðcþ
P4

i¼1 diÞ=5, where c and di are binary variables (0/1). c indi-

cates if a gene is included as a census cancer gene in the COSMIC

database (http://cancer.sanger.ac.uk/cosmic) and di indicates if the

gene is predicted by the ith computational tools as a cancer driver

gene. We consider five tools in this study and they are MuSIC (Dees

et al., 2012), OncodriveFM (Gonzalez-Perez and Lopez-Bigas,

2012), OncodriveCLUST (Tamborero et al., 2013b), ActiveDriver

(Reimand and Bader, 2013) and MutSig (Lawrence et al., 2013).

Because both MutSig and MuSIC measure mutation recurrences, we

combine their results into a single 0/1 variable in estimating the con-

fidence scores of a driver gene. This variable takes the value 1 if a

gene is identified as a tumor driver by any one of these two tools.

Otherwise, its value is zero.

2.2 Overview of the clustering methods
We propose two novel methods (i.e. ccpwModel and xGeneModel)

to cluster tumors based on the somatic mutation spectra of the puta-

tive cancer driver genes. In the applications, we compare them with

a naı̈ve method (2geneModel) and the network-based stratification

model (nbsModel). In the following, we outline the major points

of the 2GeneModel, nbsModel and ccpwModel and present

xGeneModel in Section 2.3.

2.2.1 2GeneModel

In this method, tumor samples within a cohort are partitioned into

four groups according to the genotypes (i.e. wild and mutant) of the

two most frequently mutated cancer driver genes for the specific

cancer type. This method is a naive extension of the single crucial

driver gene (such as TP53) based stratification of tumors, which has

Driver gene mutations based clustering of tumors i405
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been widely studied in previous work (Robles and Harris, 2010;

Zhang et al., 2016a).

2.2.2 nbsModel

The inputs of this method are the mutation spectra of a cancer co-

hort and the protein interaction network of the putative cancer

driver genes. The network is retrieved from the STRING database

(Szklarczyk et al., 2011). The distance between tumor samples is cal-

culated by the method in (Hofree et al., 2013) and the nbs_v0.2 soft-

ware. The final partition of tumors is obtained by the hclust()

function in the R package ‘stat’ with ward.2D as the argument.

2.2.3 ccpwModel

In this method, binary variables indicating the status (i.e. presence

or absence) of cancer driver genes in tumor samples and the involve-

ment of those genes in a dozen core cancer pathways (CCPWs) are

considered as features in the Ward’s hierarchical clustering. The

CCPW catalogue and the relevance to �200 driver genes are

retrieved from (Vogelstein et al., 2013).

2.3 xGeneModel
In this method, the functional similarities of the putative cancer

driver genes and their confidence scores as the ‘true’ driver genes are

integrated with the mutation events to calculate the genetic distance

between tumors. Like 2GeneModel, the clustering process is trans-

parent since the distance of two tumors is calculated from the geno-

types of a few pairs of cancer genes in an explicit way. The

flowchart of xGeneModel is presented in Figure 1. The inputs of this

method include three relationship matrices (M1, M2 and M3) and a

weight vector (W).

• M1 is a zero-one filled matrix, indicating the involvement of a

driver gene in the biological process (BP) or molecular function

(MF) by GO terms. It is split into two blocks. The left block rep-

resents the pre-selected BP terms and the right block represents

the pre-selected MF terms. A selected BP (or MF) term is at least

five layers away from the root term GO: 0008150 (GO:

0003674) in the structure graph.
• M2 is a block diagonal matrix. The left-top (or right-bottom)

block represents the similarity measures of the BP terms (or MF

terms) with the values ranging from 0 to1. Those values are cal-

culated by the mgoSim() function in the R package ‘GOSemSim’

(Yu et al., 2010).
• M3 is a zero-one filled matrix, indicating the mutation status of

the driver genes in the tumor samples of a cancer patient cohort.
• W is a vector containing the confidence scores of the putative can-

cer driver genes being the ‘true’ cancer driver genes (Section 2.1).

Given the pre-prepared input matrices and vector, xGeneModel

contains the following four steps.

i. Step-1 Based on M1 and M2, the similarity score (correlation)

between two genes (e.g. gi and gj) is calculated using the for-

mula s ¼ ðbþmÞ=2, where b represents the average correlation

between the BP terms of gi and BP terms of gj. m is similarly

defined for MF terms. In this way, we generate the functional

similarity matrix (M4) for all the putative cancer driver genes.

ii. Step-2 M4 is adjusted to obtain a weighted between-gene

similarity matrix (M5) by the Equation M5¼ diag Wð Þ �M4 �
diag Wð Þ: The ith row jth column element of M5,

m
ð5Þ
ij ; represents the ‘strength’ of the genes gi and gj for connect-

ing two tumor samples that have a mutation on either of them,

respectively.

iii. Step-3 Based on M3 and M5, the mutation similarity matrix

(M6) is calculated element by element for the tumors in a co-

hort. Given a pair of tumors tp and tq and their mutation profile

vectors m
ð3Þ
p and m

ð3Þ
q (i.e. the pth and qth rows of M3), M5 is

firstly diluted by assigning zeros to the entries at the non-

informative rows (R) and columns (C) to generate a ‘kernel’ ma-

trix K. R includes the rows corresponding to the zero elements

of m
ð3Þ
p , indicating the unmutated genes in tumor p. C includes

the columns corresponding to the zero elements of m
ð3Þ
q , indicat-

ing the unmutated genes in tumor q. Then, n determining ele-

ments (a1, a2,. . ., an) are selected sequentially from K, where n

is the previously specified number of gene pairs to be consid-

ered. Specifically, a1 is the maximum entry of K, a2 is the max-

imum entry of the matrix K(–1) generated by removing the

column and row of a1 from K, a3 is the maximum entry of the

matrix K(–2) generated by removing the column and row of a2

from K(–1) and so on. Finally, m
ð6Þ
pq , the mutation similarity score

of the pth and qth tumors is quantified by the average of a1,

a2, . . ., an.

iv. Step-4 Ward’s hierarchical clustering analysis is performed with

J–M6 as the input distance matrix of tumors, where J is an all-

ones matrix of the same size as M6.

2.4 Association analysis
We perform the survival analysis using the R package ‘survival’.

Except for where specifically stated in the Results Section, P-values

for the association between tumor clusters and the overall survival

months of patients is obtained by the logRank test and Cox propor-

tional hazard (Cox-PH) regression model, in which patient age is

included as a covariate to be corrected. The Kaplan–Meier survival

curves is created by the ‘survfit()’ function, with the censored obser-

vations being marked by a vertical tick. The association between

tumor clusters and patient racial groups is evaluated by the Fisher’s

exact test.

2.5 Transcriptomic prognostic signatures
Within a cancer cohort, the mutation-based clusters are combined

into two survival-characterized cluster aggregates according to the

results of the association analysis. Prognostic marker genes (PM-

genes) are individually selected by a t-test based on the difference of

the expression levels between these two aggregates. The prediction

strength of a transcriptomic signature (i.e. the expression profiles of

the PM-genes) for patient survival is tested by a clustering-based

method and a Singular Value Decomposition (SVD) based procedure

similar to that used in (Zhang et al., 2016b). In the former, tumor

samples are firstly stratified into two or three groups based on their

expression matrix of the PM-genes and then the survival curves of

these groups are compared. In the latter, a macro measure quantified

with the leading SVD left vector of the expression matrix of the

PM-genes is considered as the interested predictive variable in the

Cox-PH regression model.

3 Results

3.1 Mutation-based clusters
In Sections 2.2 and 2.3, we present the major points of four

mutation-based clustering methods. Several implementation details

are further clarified here. The first is how many clusters the tumor

samples within a cohort should be partitioned into. Theoretically,

personalized medicine prefers a partition in which the number (k) of

clusters is relatively large. However, a previous study showed that,

i406 W.Zhang et al.
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for many cancer types, setting k to be 3 or 4 could lead to the more

clinically meaningful results (Hofree et al., 2013). In this regard, we

consistently set k to be 4 to facilitate the comparison of these four

methods. The second is the number (NgpÞ of gene pairs that should

be considered in computing the genetic similarity of two tumor sam-

ples, which is a specific parameter for xGeneModel. While some

tumors in the TCGA data have over 10 mutations in the putative

cancer genes, a recent study showed that most cancer types only re-

quire 3 driver mutations (Tomasetti et al., 2015). As such, we run

the model three times for each cancer type, which corresponds to

setting Ngp at 2, 3, or 4. That is, in the three scenarios, the informa-

tion of 2–4, 3–6 or 4–8 genes is used to evaluate the similarity of a

specific tumor pair, respectively. The third is how to evaluate the as-

sociation between the cluster and patient survival. Kim et al. com-

puted a P-value by comparing the patient (tumor) cluster with the

best survival to the cluster with the worst survival (Kim et al.,

2015). Given the limited sample sizes and the death events within a

cohort in the TCGA data, this approach may exaggerate the associ-

ation. As a result, in this work, we determine the significance of an

association by comparing an individual cluster with the others or

comparing the aggregates of two clusters with the others.

A comprehensive evaluation of these clustering methods is given

in Table 1. The details are graphically demonstrated by a series of

figures in Supplementary Figure Sets S1, S2, S3 and S4, each of

which corresponds to the results of one method. In particular,

xGeneModel performs slightly better (in terms of the association be-

tween the obtained partitions of tumor samples and patient survival)

when Ngp is set at 2 rather than 3 or 4. Therefore, only the results

for Ngp ¼ 2 are reported in this study.

Regarding the association between the determined tumor clusters

and patient survival, xGeneModel performs nearly as well as

nbsModel and the results of these two methods are complementary

to each other. Statistically significant (P<0.05) results are obtained

by both methods in four cancer types, i.e. HNSC, LUAD, BRCA and

KIRP. Statistically significant (P<0.05) results in LUSC, OV,

COAD and CESC or BLCA, KIRC, UCEC, LIHC and STAD are

obtained by xGeneModel or nbsModel, respectively. The perform-

ance of 2GeneModel and ccpwModel is relatively less desired. Each

of them achieves statistically significant results (P<0.05) in six can-

cer types. Nevertheless, they still show special strength in clustering

tumor samples of some cancer types. For example, the survival

stratification of the partition obtained by ccpwModel in LIHC is

much clearer than that from nbsModel. Based on the result, we iden-

tify a robust prognostic signature for liver cancer (Sub-section 3.2).

Another example is the result that2GeneModel obtains in UCEC. It

clearly shows that the UCEC patients with tumors in which both

PTEN and PICK3A genes are mutated demonstrate a desired sur-

vival curve, a highly useful signature for predicting the prognosis of

UCEC patients (Page-15 of Supplementary Material).

Compared to other methods, xGeneModel is also superior in

that it is the only algorithm achieving survival-associated partitions

in OV and CESC samples (Page-30 and 34 of Supplementary

Material). Especially for CESC, the result shows that the tumor clus-

ter (i.e. Cluster 2) with middle-level mutation burden but without a

commonly mutated driver gene is most lethal.

As to the association between clusters and patient race, statistic-

ally significant (P<0.05) results are obtained by at least three

methods in BLCA, BRCA, UCEC, ESCA and LIHC. The racial dis-

parities of mutations are also found in KIRC by xGeneModel and

ccpwModel. The racial disparity in COAD is uniquely identified by

xGeneModel.

3.2 Extended applications
As shown in Table 1, clinically meaningful stratifications are gener-

ated by at least one clustering method in 13 (out of 16) cancer types.

The identified tumor clusters constitute a catalogue of potential can-

cer sub-types. Compared to the sub-types identified by gene expres-

sion profiling, a mutation-based sub-type may be more relevant to

the etiology of carcinogenesis and therefore, is more useful for per-

sonalized therapy. Inspired by this perception, we extend the study

to pinpoint the prognostic signatures that are not only quantified by

Fig. 1. The flowchart of xGeneModel. In the heatmaps for matrices M1 and M3, grey and black colors indicate 0 and 1 elements, respectively. In the matrices M2,

M4, M5, M6 and the vector W, the element values range from 0 to 1, indicated by a light-grey to black gradient

Driver gene mutations based clustering of tumors i407

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/13/i404/5045783 by guest on 09 April 2024

Deleted Text: three 
Deleted Text: -
Deleted Text: -
Deleted Text: -
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty232#supplementary-data
Deleted Text: ,
Deleted Text: see 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty232#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty232#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty232#supplementary-data
Deleted Text: 
Deleted Text: ,


gene expression levels but also characterized by somatic mutation

spectra of driver genes. Since numerous gene expression data of

cancer samples has been deposited in public repositories

while large-scale mutation collections are rather limited, this type

of investigation would facilitate the utilization of the available

genome-wide information in precision medicine. Hereby, as a show-

case, we report some encouraging results obtained for BLCA and

LIHC.

3.2.1 A mutation-characterized transcriptomic prognostic signature

in BLCA

Using xGeneModel, we partition the BLCA samples into four clus-

ters (Fig. 2). Among them, Cluster-3 is of our special interest be-

cause �95% of patients in this group have mutated TP53 gene and

its survival profile is poorer than that of the other clusters with a

modest significance (P¼0.07, logRank test). By comparing Cluster

3 with the aggregate of the other three clusters and setting the cutoff

of the t-test P-value at 0.00001, we select a prognostic signature

including 217 genes (Supplementary Text S3) whose expression

profiling in a cohort constitutes a transcriptomic prognostic signa-

ture. Figure 3 demonstrates the results obtained on the TCGA data

and two external microarray datasets of bladder cancer. Plot A

presents the survival curves of two transcriptomic signature-based

clusters of an enlarged TCGA BLCA set, which contains 233 sam-

ples with both mutation and expression information available and

144 samples with only expression profiling. The contrast is extreme-

ly significant (P<0.01) in both scenarios when patient age is cor-

rected (Cox-PH analysis) or is not corrected (logRank test). In order

to evaluate the robustness of the identified prognostic signature, we

generate 1000 working datasets by randomly sampling 75% of the

patients in the enlarged TCGA data 1000 times and then apply the

SVD-based survival analysis (Section 2.5) to those datasets. The QQ

plot (Plot B) of the P-values obtained from the 1000 tests demon-

strates that the distribution apparently deviates from the Uniform

(0, 1), and 87.9% of the P-values are less than 0.05. The clustering-

based results (Plots C and D) of the two external bladder cancer

datasets further validate the prediction strength of the pinpointed

prognostic signature.

It is worth noting that while applying nbsModel to BLCA data

lead to a partition (Page-55 of Supplementary Material) similar to

that obtained by xGeneModel, the result of nbsModel is less useful

for the identification of transcriptomic prognostic signature. On one

hand, there is a 67% overlap between Cluster-3 (xGn-3) in the

xGeneModel partition and the aggregate (nbs-12) of Cluster-1 and

Cluster-2 in the nbsModel partition. On the other hand, when the

same analysis as described in the previous paragraph is applied to

nbs-12, the prediction strength (for patient survival) of the selected

signature (i.e. 219 genes with t-test P<0.0002) lacks robustness

(Supplementary Fig. Set-S5).

3.2.2 A mutation-characterized transcriptomic prognostic signature

in LIHC

Using ccpwModel, we identify a lethal LIHC sub-type (Cluster 4),

in which tumor cells are characterized by the mutation-disturbed

RAS/PI3K pathways (Fig. 4). Another sub-type (Cluster-3), in

which tumor cells are characterized by the mutation-disturbed

DNA damage control and cell cycle/apoptosis mechanisms, has a

relatively low short-term (within 20 months) survival rate. By

comparing the aggregate of these two hyper-mutated sub-types

with the other tumors in the TCGA cohort and setting the cutoff

of the t-test P-values at 0.0005, we select 78 marker genes

(Supplementary Text S4) whose expression profiling in a cohort

constitutes a transcriptomic prognostic signature. Similar to the

case in BLCA, the signature’s prediction strength is confirmed and

validated by the survival analysis of an enlarged TCGA LIHC data-

set and two external microarray datasets of liver cancer (Fig. 5).

Applying nbsModel to the same LIHC data also leads to a

survival-related partition of tumors, as presented on Page-69 of

Supplementary Material, where a good-survival cluster is charac-

terized by the lack of commonly mutated driver genes. However,

the transcriptomic prognostic signature obtained by comparing the

gene expression levels of this cluster with those of the aggregate of

the other three clusters lacks robustness (Supplementary Fig. Set-

S6). This situation cannot be improved by simply changing the

signature size (i.e. gene number) based on different cutoffs of the

t-test P-values.

Table 1. Summary of cluster-survival and cluster-race associations

Cancer Cluster-survival association Cluster-race association

2GeneModel xGeneModel ccpwModel nbsModel 2GeneModel xGeneModel ccpwModel nbsModel

BLCA * ** ** **

GBM

HNSC ** ** ** **

KIRC * * * *

LUAD ** * ***

LUSC * *

BRCA ** ** * ** *** *** ** **

OV *

UCEC * * * ** * * **

COAD * * * *

THCA

CESC *

ESCA * * ***

KIRP * **

LIHC * * ** ** *

STAD *

Note: *0.01<¼P< 0.05; **0.001<¼P< 0.01 and ***P< 0.001.
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4 Discussion

A major goal of somatic mutation-based clustering analysis of tumor

samples is to identify cancer sub-types that can mediate the genetic

etiology of disease cells as well as clinical outcomes and pathologic

characteristics of patients. In this regard, biomedical evaluation of the

clustering results is more relevant to precision medicine than statistical

optimization. Due to the varied carcinogenic mechanisms, not a single

clustering method could outperform others in all cancer types, as

shown in this study. In fact, the results of various methods tend to be

complementary to each other. Those results collectively constitute a

catalogue of tumor stratification patterns, which may represent poten-

tial cancer sub-types that warrant further investigation.

The primary contributions of this study are the two newly pro-

posed methods. In the ccpwModel, the binary variables indicating

the status of cancer driver genes in tumor samples and those genes’

involvement in the CCPWs are considered as features in the un-

supervised learning process. In xGeneModel, the functional similar-

ities of the putative cancer driver genes and their confidence scores

as the ‘true’ driver genes are integrated with the mutation events to

calculate the genetic distance between tumor samples. From these

unique angles, we address the four issues faced by the mutation-

based clustering of tumors as discussed in the Introduction Section.

A remaining challenge is how to further improve the sophistication

of several operations, such as determining cancer-relevant functional

correlations between genes and calculating the confidence score of a

putative cancer driver gene.
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Fig. 2. xGeneModel results for BLCA. In all the plots of this figure, the tumor clusters (groups) are consistently represented by red, green, blue and purple.

Top-left: The dendrogram generated from the mutation-based clustering of tumors. Top-middle: the cluster-specific Kaplan–Meier survival curves. The P-value is

calculated for the comparison between the aggregate of Cluster-1 (C1) and Cluster-2 (C2) and the aggregate of other two clusters. Cluster-3 is the one of our main

interest, in which �95% of patients have a mutation in the TP53 gene and the survival profile is poorer than that of the other clusters with a modest significance

(P¼0.09, logRank test). Top-right: The association between the tumor clusters and patient race. AN, BL and WH indicate Asian, black and white Americans, re-

spectively. Beside each race ID is the corresponding number of tumor samples. Bottom: The mutation characteristics of individual clusters. The bar length

denotes the proportion of tumors (or patients) with at least one mutation in the corresponding gene

Fig. 3. Prediction strength and robustness of the prognostic signature identi-

fied from the result of xGeneModel for bladder cancer. (A, C and D)

Clustering-analysis based evaluation of the prediction strength of the signa-

ture using the enlarged TCGA dataset, Riester’s dataset and Kim’ dataset, re-

spectively. P-values are calculated for the comparisons between the good

(red) and bad (blue) survival clusters. (B) The QQ plot for the P-values

obtained from 1000 tests. In each test, the SVD-based survival analysis is per-

formed on a randomly sampled dataset that contains 75% of the patients in

the enlarged TCGA data
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Elimination of racial disparities in cancer screening, diagnosis,

treatment and mortality is an essential step toward the improvement

of health outcomes for all cancer patients (Koh, 2009). The promise

of this objective depends on addressing and identifying the underly-

ing social-economic and biological causes. In this study, we find

statistically significant associations between the mutation-based

tumor clusters and the racial groups of patients in six cancer types.

Due to the limited sizes of cancer cohorts in TCGA data, these asso-

ciations can hardly be detected by simply comparing the mutation

frequencies of a single gene between racial groups. To our know-

ledge, we are the first to investigate cancer racial disparities in such

a manner. Taking the results of bladder cancer (BLCA) as an ex-

ample, we can infer the biomedical relevance of this analysis as fol-

lows. Using xGeneModel, 233 BLCA tumor samples are partitioned

into four clusters (sub-types), which not only stratify in survival

time but are significantly associated with patient race (Fig. 2).

In particular, Cluster-3 is characterized by �95% mutation rate in

the TP53 gene. Suppose that, in the future, a therapy targeting this

cancer sub-type is developed; it would be more effective for a white

patient than for an Asian patient. This is because over 50% of white

patients are assigned to Cluster-3 but the proportion of Asian

patients in this cluster is about 25%.

Another unique aspect of this study is that it demonstrates a way

to integrate the results of mutations based tumor clustering with the

widely available gene expression data for prognostic signature

Fig. 4. ccpwModel results for LIHC. In all the plots of this figure, the tumor clusters (groups) are consistently represented by red, green, blue and purple. Top-left:

The dendrogram generated from the mutation-based clustering of tumors. Top-middle: The cluster-specific Kaplan–Meier survival curves. The P-value is calcu-

lated for the comparison between the aggregate of Cluster-2 and Cluster-4 and the aggregate of Cluster-1 (C1) and Cluster-3 (C3). Top-right: The association be-

tween tumor clusters and patient races. AN, BL and WH indicate Asian, black and white Americans, respectively. Beside each race ID is the corresponding

number of tumor samples. Bottom: The mutation characteristics of individual clusters. The bar length denotes the proportion of tumors (patients) with at least

one mutation in the member genes of the corresponding cancer pathway. Among the abbreviated terms, ‘Trans.’, ‘Regu.’, ‘Chrom.’, ‘Mod.’, ‘Apo.’, ‘Dam.’ and

‘Con.’ represent ‘Transcription’, ‘Regulation’, ‘Chromatin’, ‘Modification’, ‘Apoptosis’, ‘Damage’ and ‘Control’, respectively

Fig. 5. Prediction strength and robustness of the prognostic signature identi-

fied from the clustering result of ccpwModel for liver cancer. (A, C and D)

Clustering analysis based evaluation of the prediction strength of the

signature using the enlarged TCGA dataset, Roessler’s dataset and Villa’s

dataset, respectively. (B) The QQ plot for the P-values obtained from 1000

tests. In each test, the SVD-based survival analysis is performed on a

randomly sampled dataset that contains 75% of the patients in the enlarged

TCGA data
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identification. The pinpointed signatures are directly relevant to

the etiology of cancers and are practically applicable from both

technical and economic aspects. Our results obtained from the stud-

ies in BLCA and LIHC are not only statistically significant but

also supported by previous research. For example, the signature in

LIHC is selected based on the lethal outcome of patients whose

tumors are characterized by mutation-disturbed DNA damage

control or RAS/PI3K pathways. Vauthey et al. have showed that

RAS mutation predicts early lung recurrence and worse survival

after curative resection of colorectal liver metastases (Vauthey et al.,

2013).
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