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Abstract

Motivation: Chromatin immunoprecipitation followed by sequencing (ChIP-seq) can detect read-

enriched DNA loci for point-source (e.g. transcription factor binding) and broad-source factors (e.g.

various histone modifications). Although numerous quality metrics for ChIP-seq data have been

developed, the ‘peaks’ thus obtained are still difficult to assess with respect to signal-to-noise ratio

(S/N) and the percentage of false positives.

Results: We developed a quality-assessment tool for ChIP-seq data, strand-shift profile (SSP),

which quantifies S/N and peak reliability without peak calling. We validated SSP in-depth using

� 1000 publicly available ChIP-seq datasets along with virtual data to demonstrate that SSP pro-

vides a quantifiable and sensitive score to different S/Ns for both point- and broad-source factors,

which can be standardized across diverse cell types and read depths. SSP also provides an effect-

ive criterion to judge whether a specific normalization or a rejection is required for each sample,

which cannot be estimated by quality metrics currently available. Finally, we show that ‘hidden-

duplicate reads’ cause aberrantly high S/Ns, and SSP provides an additional metric to avoid them,

which can also contribute to estimation of peak mode (point- or broad-source) of samples.

Availability and implementation: SSP is open source software written in Cþþ and can be down-

loaded at https://github.com/rnakato/SSP.

Contact: rnakato@iam.u-tokyo.ac.jp

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromatin immunoprecipitation followed by sequencing (ChIP-seq)

can identify DNA loci bound by transcriptional factors (i.e. point-

source) and broadly distributed histone modifications (i.e. broad

source) (Furey, 2012; Park, 2009). In a ChIP experiment, immuno-

precipitated DNA fragments are sequenced as reads that are mapped

to a reference genome, and statistically significant read enrichments

(as compared with a corresponding Input sample) are detected as

peaks. Because technical biases in read distribution may hinder ob-

taining biologically relevant results (Meyer and Liu, 2014), quality

assessment of ChIP-seq data is critical to ensure that they are of high

quality and suitable for subsequent analyses. Numerous

computational measures have been developed such as library com-

plexity and GC content (Landt et al., 2012; Nakato and Shirahige,

2017). However, quality metrics currently available cannot identify

all types of low-quality samples.

The signal-to-noise ratio (S/N) in ChIP-seq assesses the number

of peaks over the whole genome, and the value should be high for

ChIP samples and low for Input samples. A low S/N for ChIP sam-

ples indicates the failure of the immunoprecipitation step, whereas a

high S/N for Input samples reflects higher than expected levels of

read clustering—both of which should be avoided. A straightfor-

ward way to evaluate the S/N is to calculate the fraction of reads

falling within peak regions (called FRiP), but it depends on peak-

calling parameters and sequencing depth (hereafter we use ‘depth’
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for simplicity). In contrast, cross-correlation analysis (Landt et al.,

2012) evaluates the S/N without the need for peak calling. A cross-

correlation analysis estimates the Pearson correlation between the

read densities mapped on the forward and reverse DNA strands

upon shifting from one strand to the other (e.g. see Supplementary

Fig. S1). Such a ‘strand-shift profile’ typically peaks at the shift cor-

responding to the DNA fragment length, which increases with

increasing S/N for the sample. This tendency has also been used to

estimate fragment length from single-end reads. There is also a spike

at the read-length shift that arises from repetitive sequences (Carroll

et al., 2014). Based on this observation, cross-correlation analysis

calculates two metrics, namely the normalized strand coefficient

(NSC) and the relative strand correlation (RSC, see subsection 2.1

for details). These metrics have been used in large consortia such as

ENCODE (Encode Project Consortium, 2012) and ROADMAP

(Roadmap Epigenomics Consortium et al., 2015). An SSP strategy

based on the Hamming distance was also proposed for rapid compu-

tation (Hansen et al., 2015). Whereas these tools are useful for

point-source factors, broad-source factors (e.g. H3K9me3) often

have marginal or truly low scores compared with input samples

owing to the relatively low peak intensity (height), even when the

samples are of high quality (Landt et al., 2012). Moreover, these

S/N indicators do not evaluate the reliability of the peaks obtained,

that is, the percentage of false positives derived from read distribu-

tion bias (e.g. GC bias) (Nakato and Shirahige, 2017). Visual inspec-

tion of a limited number of sites is effective but insufficient to

explain the properties of read distribution over the whole genome.

Consequently, genome-wide assessment of peak quality still presents

challenges that current protocols cannot circumvent.

To address this shortcoming, we developed SSP, which is based

on a strand-shift profile using the Jaccard index to assess S/N and

read distribution bias in ChIP-seq datasets. We evaluated the per-

formance of SSP using an extensive dataset of ChIP-seq samples for

various cell types obtained from the ENCODE and ROADMAP

projects, along with virtual data, to demonstrate that SSP is quantifi-

able and sensitive to different S/Ns for both point- and broad-source

factors and is consistent among cell types and different depths. We

also found that RSC is inappropriate for calculating the S/N.

Finally, we show that ‘hidden-duplicate reads,’ which cannot be

removed by a typical duplicate-reads filtering confound the strand-

shift profile because they cause unexpected enrichment, resulting in

aberrantly high S/Ns (see section 3.6.1). Therefore, we developed an

additional metric to overcome this problem, which can also be used

to estimate peak mode (point or broad source) without peak calling.

2 Materials and methods

2.1 strand-shift profile using the Jaccard index
Figure 1 presents an overview of SSP. Using mapped reads as input,

SSP generates the strand-specific vectors for forward and re-

verse strands of each chromosome c [vstr
c ¼ xstr

1 ; x
str
2 ; . . . ; xstr

n

� �
c
;

str 2 ffwd; revg, step 1]. Because reads mapped to the same gen-

omic position are removed as duplicate reads (Landt et al., 2012),

each element of a strand-specific vector is binary—either zero (un-

mapped) or one (mapped).

SSP calculates the Jaccard index between vfwd
c and vrev

c for each

strand shift d (�500 bp < d < 1 Mb) as follows (step 2):

JðdÞc ¼
jvfwd

c \ vrev
c ðdÞj

jvfwd
c [ vrev

c ðdÞÞj
; (1)

where vrev
c dð Þ ¼ xrev

dþ1;x
rev
dþ2; . . . ;xrev

n

� �
c
. Whereas the Pearson correl-

ation and Hamming distance confer equal weight to pairs of mapped

bases (1, 1) and unmapped bases (0, 0), SSP adopts the Jaccard index

that focuses on the mapped bases (1, 1) because unmapped bases

can often coincide as a consequence of the lack of depth and

low-mappable regions.

To standardize the value for different genome lengths,

the Jaccard score is normalized by the number of mapped reads

(Nc) and the number of uniquely mappable positions on chromo-

some c (Lc):

Jnorm dð Þc ¼ J dð Þc �
Nconst

Nc
� Lconst

Lc
: (2)

Nconst and Lconst are arbitrary constants (default, 10 million and

100 million). SSP assembles Jaccard index profiles for all autosomes

(step 3):

Jnorm dð Þgenome ¼
X
c2C

Nc

Ngenome
� Jnorm dð Þc; (3)

where C is the set of all autosomes and Ngenome ¼
P

c2C Nc. Sex

chromosomes are excluded to ignore sex-specific differences. We use

this Jnorm dð Þgenome as Jaccard score J(d) for each sample in SSP. The

magnitude of J(d) reflects the co-occurrence of reads mapped on the

forward and reverse strands with distance d.

The fragment length dflen is estimated as argmaxJ dð Þ. NSC and

RSC are then calculated in the same manner as a cross-correlation

analysis, that is, NSC ¼ J dflenð Þ=J dbg

� �
and RSC ¼ J dflenð Þ�ð

J dbg

� �
Þ= J dreadlenð Þ � J dbg

� �� �
, where J dbg

� �
is the Jaccard score for

the background. Whereas existing methods use d ¼ 1000–1500 bp

as background, SSP takes the average over a range of 500 kb to

1 Mb at steps of 5 kb (default) because we observed that the

Jaccard score still decreases up to 1 Mb for the human genome

(Fig. 1, step 3).

2.2 Background uniformity
A fundamental question is ‘Why does background level J dbg

� �
vary

among samples?’ By definition, J dbg

� �
reflects the co-occurrence

probability of forward and reverse reads. Ideally, the background

reads should be uniformly distributed; in reality, however, the read

distribution is often more congregated, or biased, owing to various

potential technical or biological issues (Meyer and Liu, 2014), re-

sulting in a higher J dbg

� �
. Although the library complexity evaluates

the percentage of duplicate reads, it does not directly reflect any po-

tential bias in the read distribution. In fact, we observed that J dbg

� �
increased �2-fold when the mapped reads were removed in every

other 10-Mb window, whereas library complexity and NSC score

remained essentially unchanged (Fig. 1, step 4).

Based on this observation, we defined ‘background uniformity’

(Bu, step 4): Bu ¼ J dbgð Þuniform

J dbgð Þobserve , where J dbg

� �uniform
is the Jaccard score

of background for a sample that has completely uniform read distri-

bution [see Supplementary Methods for calculating J dbg

� �uniform
].

A large value for Bu indicates that the sample has a relatively uni-

form read distribution in background regions. Bu should range from

0 to 1, but practically the maximum score for Bu slightly exceeds

1.0 because the estimated number of Lc is slightly larger than it actu-

ally is.

2.3 Fragment cluster score
Finally, SSP calculates a ‘fragment cluster score’ (FCS) that estimates

the cluster level of forward–reverse read pairs with each strand shift

d (step 5).
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Pairs of mapped bases (1, 1) with strand shift d can be expressed

as read pairs mapped on forward and reverse strands with distance

d (pd, orange rectangles in Fig. 1). All read-pairs are denoted

fpd
1; p

d
2; . . . ;pd

Nd
g, where Nd ¼ jvfwd

c \ vrev
c dð Þj, which is sorted

by genomic position. Let f(d, s) represent the number of pd
k

k 2 1;Nd � 1½ �ð Þ that have neighboring read pairs pd
kþ1 within

distance s. Then the cumulative proportion of neighboring frag-

ments (cPNF) is:

cPNF d; sð Þ ¼ f d; sð Þ
Nd

: (4)

cPNF is calculated up to smax (default, 5 kb). FCS(d) is defined

as the maximum difference of cPNF(d) from cPNF(dbg) against

s (Fig. 1):

FCS dð Þ ¼ arg max
0� s� smax

cPNF d; sð Þ � cPNF dbg; s
� �� �

: (5)

Because FCS(d) depends on the depth, SSP calculates it with a fixed

number of reads (default, 10 million reads). This maximum differ-

ence strategy provides more robust values against different values

for smax and dbg than the relative entropy such as the Kullback–

Leibler divergence. The resulting FCS profile reflects the cluster level

of pd in the sample, whereas the Jaccard score J(d) reflects the num-

ber of pd (i.e. Nd). Supplementary Figure S2 shows the typical pat-

tern of cPNF and FCS profile. SSP uses the value at fragment length

FCS(dflen) as the FCS score for each sample.

2.4 Comparison with current methods
To assess the performance of SSP for estimating S/N, we imple-

mented three existing tools: (i) phantompeakqualtools (PPQT),

which internally implements spp version 1.14 (Kharchenko et al.,

2008) for cross-correlation analysis and then outputs NSC and RSC;

(ii) Q version 1.2.0 (Hansen et al., 2015), which adopts a strand-

shift profile based on the Hamming distance and calculates RSC;

and (iii) deepTools version 2.5.0 (Ramirez et al., 2016), which com-

putes the synthetic Jensen–Shannon distance (JSD) that evaluates

differences in the cumulative fraction of mapped reads between

ChIP samples by assuming a Poisson distribution as a background

model for windows of fixed length. We applied deepTools with the

‘-ignoreDuplicates’ option according to the instructions given in the

manual. We used default parameters for each of the other tools.

2.5 Other quality scores
FRiP, library complexity for 10 million reads, peak height and GC

content distribution of nonredundant reads were calculated with

DROMPA version 3.2.6 (Nakato et al., 2013). ‘GC peak’ refers to

the summit position of GC content profile.

3 Results

3.1 Estimating fragment length
We first evaluated the performance of fragment-length estimation

with SSP, PPQT and Q using 45 paired-end ChIP-seq datasets

Fig. 1. Workflow for SSP. Step 1: convert mapped reads to strand-specific binary vectors (n: chromosome length), in which ‘1’ indicates that the 50 end of a read is

mapped at the genomic position. Duplicate reads are discarded. Step 2: calculate the similarity between forward and reverse strand-specific binary vectors for

each strand shift d based on the Jaccard index. An example calculation is shown (n¼10, d¼ 0, 1, 2). Step 3: plot a strand-shift profile based on the Jaccard index

and calculate NSC and RSC. Fragment length is estimated as the distance d at which the Jaccard score is maximal except for read-length shift. Step 4: calculate

background uniformity based on the background level. A strand-shift profile of GM12878 PU.1 data from ENCODE is shown. Blue, original data. Red, virtual data

in which the mapped reads were removed in every other 10-Mb window from original data. The horizontal dashed line indicates the expected background level.

Step 5: calculate the FCS to evaluate the cluster level of all forward-reverse read pairs with each distance d (orange rectangles), where s is the distance to the

nearest downstream read pair. These read pairs are the same as the red bars in step 2. cPNF is the cumulative proportion of neighboring downstream fragments

(Color version of this figure is available at Bioinformatics online.)
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for human (Fig. 2A and Supplementary Table S1) and four datasets

for fly (Supplementary Table S1, see Supplementary Methods for

detailed protocol). We found that SSP provided comparable

fragment-length data to PPQT and Q. On the other hand, none of

the programs could estimate a fragment-length for certain samples

[e.g. sample 16 (K562 H3K27me3)] for which there was no clear

peak in the strand-shift profile (Supplementary Fig. S3). It has been

reported that a high score for read-length shift can be mitigated by

removing reads mapped on ‘blacklist regions’ in the genome (Carroll

et al., 2014). However, removing reads mapped on them had little

effect (Supplementary Fig. S4). In fact, because a failure of

fragment-length estimation is mainly attributable to a lack of

enrichment at the fragment-length shift, mitigating the enrichment

at read-length alone is insufficient. In this case, fragment length

should be supplied by the users.

In subsequent analyses, we did not remove blacklist re-

gions because doing so could affect RSC, and in fact de-

tailed blacklist regions are available only for human genome

build hg19.

3.2 SSP and JSD archive sufficient sensitivity both for

point- and broad-source factors
To comprehensively evaluate the performance of SSP relative to

other tools, we first used a compendium of 860 ChIP-seq samples of

six core histone modifications for 127 cell types, consisting of point-

source (H3K27ac, H3K4me1 andH3K4me3) and broad-source fac-

tors (H3K27me3, H3K36me3 and H3K9me3) along with input

samples, obtained from the ROADMAP web portal (http://egg2.

wustl.edu/roadmap/web_portal). We acquired consolidated map

data, in which reads had been truncated to 36 bp, mapped onto gen-

ome build hg19, filtered based on mappable bases of 36-bp reads

and then uniformly down-sampled to a maximum depth of 30 mil-

lion reads. This avoided the effect derived from different read

lengths, parameters for mapping and mappability. Moreover, these

datasets contain certain low-quality data (Ernst and Kellis, 2015),

which is preferable for dataset of QC performance evaluation.

Figure 2B shows the comparison (see Supplementary Table S2

for detailed information of each sample). The results revealed that

SSP-NSC and JSD could achieve sufficient sensitivity both for point-

and broad-source marks. The smaller difference between point- and

broad-source marks for JSD compared with SSP-NSC is perhaps a

consequence of score saturation, i.e. given that the maximum value

of JSD is 1.0. PPQT-NSC showed little difference (only �1.1-fold)

among three broad marks compared with input samples, indicative

of insensitivity for broad marks. As previously reported, RSCs calcu-

lated with all three tools were comparable or lower for H3K9me3

than input samples, possibly because H3K9me3 is more highly

enriched at the read-length shift (J dreadlenð Þ) compared with other

histone modifications derived from repetitive regions, such as

centromeres (Guenatri et al., 2004). RSC amalgamates the magni-

tude of true peak enrichment and repeat effects, and thus when

J dreadlenð Þ is high, RSC may be small even when the S/N is suffi-

ciently high.

To further validate the sensitivity of the S/N indicators, we gen-

erated virtual data for histone modifications with various S/Ns by

adding a fixed number of input reads in a stepwise manner (see

Supplementary Methods for details). The S/N then decreased with

increasing numbers of input reads. Figure 2C and Supplementary

Figure S5 show the comparison for H3K4me3 (point source) and

H3K9me3 (broad source) as well as the other four histone marks, re-

spectively (E072, brain inferior temporal lobe cells). In most cases,

the values of the indicators decreased with increasing numbers of

input reads. RSC was relatively greater for H3K9me3 because, for

this mark, the scores were often lower than those of the Input

(Supplementary Fig. 2B). SSP-NSC had superior or comparable sen-

sitivity to changes in S/N, whereas PPQT-NSC lacked sensitivity for

evaluating broad marks.

3.3 SSP is robust for various cell types and different

depths
The S/N estimation can be affected by multiple factors, such as

depth, read length and copy number variations in cancer cell lines

(Zarrei et al., 2015). To validate the robustness of the S/N indicators

A

B

C

Fig. 2. (A) Radar plot of the comparison between the fragment-length

estimated by each tool and that from paired-end data for 45 paired-end

ChIP-seq data for human (build hg19). The y axis indicates the difference

between the fragment size estimated from the single-end (forward) reads

by these tools and that derived from the paired-end reads. (B) Distribution

of scores by SSP (NSC and RSC), PPQT (NSC and RSC), Q (RSC) and

deepTools (JSD) for six histone modifications consisting of point-source

(H3K27ac, H3K4me1, H3K4me3) and broad-source factors (H3K27me3,

H3K36me3, H3K9me3) along with Input samples. Note that the y-axis is a

log-scale for SSP-NSC and PPQT-NSC but a linear scale for the others.

(C) Relative ratio at different S/N values (adding Input reads from 5 million

to 30 million) against original data (Color version of this figure is available

at Bioinformatics online.)

In-depth quality assessment of ChIP-seq data 2359

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/14/2356/4924717 by guest on 10 April 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty137#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty137#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty137#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty137#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty137#supplementary-data
http://egg2.wustl.edu/roadmap/web_portal
http://egg2.wustl.edu/roadmap/web_portal
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty137#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty137#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty137#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty137#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty137#supplementary-data


against these factors, we next utilized 399 ChIP-seq samples of tran-

scriptional factors for 20 cell types obtained from the ENCODE

project (Gertz et al., 2013), which contain various read lengths (25,

36 and 50) and depths, and investigated whether each S/N indicator

could distinguish between ChIP samples and Input samples from

them. We acquired fastq files from the Sequence Read Archive under

accession number SRP008797, mapped them on genome build hg38

using bowtie version 1.1.2 (Langmead et al., 2009) and used

uniquely mapped reads (‘-n2 -m1’ option). See Supplementary Table

S3 for detailed information on each sample.

Figure 3A and Supplementary Figure S6 depict the distribution

of SSP-NSC and the other S/N indicators, respectively, for 20 cell

types. Whereas the number of samples varied among the cell types,

we found that SSP-NSC yielded distinct differences between ChIP

and input samples for all cell types. To compare all indicators in

this respect, we displayed the median scores for each cell type

(Fig. 3B). For SSP-NSC and PPQT-NSC, median values for ChIP

and input samples were consistently different among all cell types,

indicating that a universal threshold value applicable to any sam-

ples could be defined for these indicators. For example, SSP-NSC

�3.0 may be a good candidate threshold for transcriptional factor

ChIP samples. Meanwhile, RSC and JSD could not sufficiently dis-

tinguish ChIP and input samples. Although ChIP samples had

larger values than input samples for each cell type (Supplementary

Fig. S6), the difference between ChIP and input samples depended

on cell type, and therefore it was difficult to determine a uniform

threshold value.

3.4 SSP yields the highest correlation with normalized

FRiP, whereas JSD depends on depth
To further evaluate the performance of the S/N indicators, we calcu-

lated the Spearman’s correlation between the FRiP and each S/N

A

C E F G

B D

Fig. 3. (A) SSP-NSC distribution of ChIP (red) and input samples (blue) for 20 cell types. (B) Median values for S/N indicators for 20 cell types. (C) Relative S/Ns at

each depth (5–50 million) against 50 million reads. Duplicate reads were removed in advance. (D) Distribution of background uniformity for histone modifications.

(E)–(G) Analysis of H3K36me3 data for 12 cell types from ROADMAP. (E) Heatmap of S/N scores alongside Bu and GC peak. Darker colors indicate higher values.

(F) Read distribution near the IREB2 locus (chromosome 15, 78.72–78.80 Mb). Read number was normalized by the total number of nonredundant reads. The

peak regions identified by MACS2 are highlighted in red. (G) Histogram of mapped read number for each 100-kb bin of the whole genome except chromosome Y

(Color version of this figure is available at Bioinformatics online.)

Table 1. Spearman’ s correlation between each S/N and FRiP without read normalization (FRiPraw, top values) and with normalization

(FRiPnorm, bottom values)

SSP-NSC SSP-RSC PPQT-NSC PPQT-RSC Q-RSC JSD

ENCODE 0.84* 0.10 0.83* 0.15* 0.16* 0.93*

0.90* 0.28* 0.88* 0.31* 0.32* 0.81*

ROADMAP 0.77* 0.20* 0.70* 0.33* 0.29* 0.97*

(point source) 0.94* 0.28* 0.89* 0.34* 0.30* 0.90*

ROADMAP 0.72* 0.40* 0.43* 0.37* 0.37* 0.90*

(broad source) 0.89* 0.31* 0.64* 0.32* 0.31* 0.79*

*P-value for correlation coefficient <0.01.
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indicator across the ENCODE and ROADMAP datasets (Table 1).

Because the number of obtained peaks for calculating FRiP depends

on depth, we calculated two types of FRiP: FRiP based on peaks

obtained with total read normalization (FRiPnorm) and without

normalization (FRiPraw). FRiPraw is based on peaks identified by

MACS2 version 2.1.1 (Zhang et al., 2008), which does not utilize

total read normalization (–nomodel option, we also supplied the

–broad option for broad marks), and FRiPnorm is based on peaks

identified by DROMPA version 3.2.6 (‘-n GR’ option), which util-

izes total read normalization.

RSC yielded a low correlation, suggesting that RSC cannot be

used for quantification of the S/N. SSP-NSC, PPQT-NSC and JSD

were highly correlated with both types of FRiP. The lesser correl-

ation of PPQT-NSC with broad-source marks compared with point-

source marks implies its lower sensitivity for broad-source marks.

Whereas SSP-NSC and PPQT-NSC each correlated better with

FRiPnorm, JSD correlated more closely with FRiPraw, which clearly

shows the dependency of JSD on depth.

To investigate this tendency, we implemented a down-sampling

analysis (Fig. 3C and Supplementary Fig. S7A). We selected three

samples that contained an abundant number of reads (>50 million)

after removing duplicate reads. For each sample, we subsampled the

reads to a fixed number (from 5 million to 50 million) and calculated

the ratio of the score at each depth relative to the score for the 50 mil-

lion reads. No indicators except for JSD fluctuated with depth; JSD

decreased at lower depth. The analysis of histone modification data

also yielded the same conclusion (Supplementary Fig. S7B).

Consequently, SSP-NSC is a sensitive and robust S/N estimator

for both point-source and broad-source marks, which can be stand-

ardized across diverse cell types, read lengths and depths.

3.5 Background uniformity identifies

low-quality samples
We next computed Bu scores for 860 histone modification samples

from ROADMAP (Fig. 3D and Supplementary Table S2). Although

these consolidated data did not contain duplicate reads, we noted

that a small amount of data had a low Bu score (<0.8). To investi-

gate the various aspects of Bu, we chose 12 H3K36me3 samples as

representatives, and the results are shown in Figure 3E–G. We

grouped these samples into four types: (i) low NSC and high Bu,

(ii) high NSC and high Bu and (iii) high NSC and low Bu; this latter

type was further classified as 3-1 (GC-rich) and 3-2 (not GC-rich).

Figure 3F depicts the read distribution proximal to the housekeeping

gene IREB2 (Eisenberg and Levanon, 2013). Groups 2 and 3 had

high S/Ns, reflecting read enrichment at the IREB2 locus. Group

3-1, however, had an unexpectedly sparse read distribution, which

was not expected considering that H3K36me3 is broadly distributed

within genic regions. Considering the GC-richness, this read distri-

bution may be a consequence of GC bias (Benjamini and Speed,

2012). Interestingly, this group had a striking peak at fragment-

length shift in the strand-shift profile (Supplementary Fig. S8). This

phenomenon might also facilitate the identification of read-

distribution bias.

In contrast, group 3-2 had low Bu values without GC bias, and

read distribution was more in line with expectations compared with

group 3-1. However, this group also had lower overall genome

coverage (Fig. 3G). A possible reason for this is that the DNA frag-

mentation of tightly packed regions, e.g. heterochromatin, did not

work well, resulting in a much lower number of reads on the re-

gions. Such a sample might confound the data normalization for

comparative analyses that assume comparable read depth among

samples (Lun and Smyth, 2014).

Consequently, Bu is an effective criterion with which to judge

whether a specific consideration or a rejection is required for com-

parative analyses.

3.6 FCS can identify peak intensity and peak mode
3.6.1 Hidden duplicate reads and FCS

While verifying the effectiveness of SSP-NSC for calculating the S/N,

we also found that strand-shift profiles of a small number of Input

samples had peaks at fragment length despite having a low FRiP

(e.g. input of E024 and E058 cells, Fig. 4A). These two samples in

particular had extremely high SSP-RSC values (6.66 and 5.35), a

phenomenon that is commonly observed with PPQT and Q

(Supplementary Fig. S9). We presumed that this is attributable to

hidden duplicate reads, that is, at most two reads (forward and re-

verse pair) that are derived from the same amplified DNA fragment

can remain after duplicate-reads filtering because forward and re-

verse strands are scanned separately for single-end reads (Fig. 4B)

A

C E

D

B

Fig. 4. (A) Strand-shift profile for two input samples (E024 and E058), which

have apparent peaks at fragment length but actually have a low FRiP value

(<0.01). A typical profile for input (E096) that has a similar FRiP is also shown.

(B) Schematic illustration of hidden duplicate reads. (C) Strand-shift profile

for sample K562_H3K9me3 (no. 25 in Fig. 2 A) using forward read only (red)

and both forward and reverse reads as single-end (blue). (D) Heatmap for

each S/N value and number of peaks identified by MACS2 for five Input sam-

ples alongside their read distributions in the same manner as in Figure 3 F

(chromosome 1, 160.5–160.7 Mb). (E) Averaged FCS profiles for histone

modification data. Lines and shaded regions indicate the mean value and

95% confidence interval, respectively (Color version of this figure is available

at Bioinformatics online.)
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(Meyer and Liu, 2014). Such reads may often appear in low-library

complexity samples and introduce a spike at the fragment length re-

gardless of whether they are clustered, resulting in aberrant NSC

and RSC values. To test this hypothesis, we generated strand-shift

profiles for a paired-end sample in which both forward and reverse

reads were mapped as ‘single-end’. As expected, the resulting profile

showed a remarkable peak at the fragment length shift (Fig. 4C).

While NSC increased less drastically (1.53–2.54), RSC increased

by>3-fold (0.61–2.29). This result suggested the presence of arti-

factual S/N enrichment without real peaks in a strand-shift profile,

which especially influenced the calculation of RSC.

To overcome this problem, we defined FCS, which directly

evaluates the cluster level of forward–reverse read pairs with dis-

tance d (pd, see Methods for details). As the FCS value is high only

when pds are highly clustered as peaks, samples that contain hidden

duplicate reads that are not clustered in a genome should have a low

FCS score. As expected, FCS could identify read clustering in

samples and was little affected by hidden duplicate reads

(Supplementary Fig. S10).

3.6.2 FCS estimates peak intensity

Through our experiments, we found that FCS correlated better with

peak intensity than did FRiP, which represents a composite of peak

number and intensity (Supplementary Fig. S11). Figure 4D illus-

trates the example of five input samples from ROADMAP. E097

had strong peaks, reflected by the highest FCS score (0.240), which

probably has to be rejected from further analysis. In contrast, E100

had more peaks (33, 476) than E097, but inspection of the read dis-

tribution and relatively lower FRiP suggested that E100 had only

small peaks, resulting in a low FCS score (0.044). Therefore, at a

sufficiently high peak-calling threshold, most of the small peaks (i.e.

as in E100) would be expected to disappear, in contrast to the ex-

pectation for E097. E024 and E058 (shown in Fig. 4A) had high

NSC and RSC values without many peaks, resulting in a low FCS

score (0.041 and 0.038, respectively). Although JSD was also min-

imally affected by hidden duplicate reads because it is not based on

a strand-shift profile, it provided E100 with the highest score, sug-

gesting that it correlated better with peak number than did peak in-

tensity and FRiP.

3.6.3 FCS profile has the potential to identify peak mode

Interestingly, a FCS profile that estimates peak intensity with each

strand shift d reflects peak mode (point or broad source) of histone

modifications (Fig. 4E). H3K4me3 had the highest FCS at d¼ fragment

length and decreased steeply at d � 10 kb. The broad-source marks

H3K27me3, H3K36me3 and H3K9me3 each had a moderate score at

fragment length, and the value was retained even at d � 10 kb, result-

ing in a higher score than for H3K4me3 at d¼10 kb. H3K27ac had a

high score at fragment length and also the highest score at 10 kb. This

is not surprising because H3K27ac had high peaks for point-source

marks, some of which clustered in broad genomic regions called super

enhancers (Hnisz et al., 2013). This result suggested that FCS has the

potential to identify peak mode without the need for peak calling.

4 Discussion

To validate whether each sample in a dataset requires special nor-

malization or should be rejected for further analysis, it is crucial to

objectively assess the genome-wide properties inherent in read distri-

bution. Owing to the difficulty of assessing broad marks, a previous

study involving large-scale sample evaluation for S/N was limited to

point-source factors and input samples (Marinov et al., 2014).

Here, we introduce SSP, a peak calling-free quality assessment

tool for ChIP-seq data. Calculation of Jaccard index is computation-

ally fast that enables to extend the strand-shift profile to 1 Mb dis-

tance with a practical time. Hamming distance is also

computationally fast but produces a vertically inverted profile (e.g.

Supplementary Fig. S9), therefore it can calculate RSC only, which

is a worse S/N indicator than NSC. Cross correlation profile requires

more computational time and moreover, it can have negative value

(�1:0 � 1:0), therefore the NSC and RSC scores of PPQT can be

negative, which makes the strand-shift analysis less robust.

Whereas reads mapped to the same genomic position are

removed as duplicates, independent DNA fragments that have a

common end may also appear when the S/N of ChIP sample is ex-

tremely high. To evaluate the effect of retaining or removing redun-

dant reads, we compared between the SSP-NSC values calculated

from the single-end (forward) reads and that derived from the

paired-end reads for 45 paired-end ChIP-seq data for human

(Supplementary Table S4). We found that the proportion of dupli-

cated reads is �10% higher in single-end data for H3K4me3 sam-

ples, which have high S/N, and �3% higher for the other samples.

On the other hand, almost all samples have slightly lower NSC val-

ues for paired-end data compared with single-end, possibly because

of the effect of hidden duplicate reads. This result suggests that the

PCR-bias filtering step did not result in the underestimate of S/N.

Considering that there is a strong correlation between SSP-NSC val-

ues from single- and paired-end data (Supplementary Table S4), and

that the filtering step is quite common in a ChIP-seq analysis and

adopted by most ChIP-seq tools in default, the S/N estimation after

PCR-bias filtering is reasonable.

In-depth validation of SSP using �1000 publicly available ChIP-seq

datasets revealed that SSP-NSC achieved sufficient sensitivity and ro-

bustness for both point-source and broad-source factors across diverse

cell types, read lengths and depths. JSD, as utilized in deepTools, is also

sensitive for broad marks, but it has less classification power between

ChIP and Input samples among diverse cell types. Moreover, because

JSD depends on depth, it requires subsampling for comparison across

samples, which is burdensome for large-scale analyses. Although the

strand-shift profile strategy (especially RSC) is potentially confounded

by hidden-duplicate reads, SSP also provides FCS that avoids their ef-

fect. The potential of FCS to evaluate peak mode may facilitate the cap-

ture of dynamic changes in genome-wide binding patterns among

samples, e.g. in cells during embryonic development (Dahl et al., 2016).

Bu evaluates the reliability of the obtained peaks by quantifying

the distribution of mapped reads in background regions. Although

GC content correlates with the bias level in ChIP samples, it alone

cannot be used for filtering because samples that have many GC-

rich peaks (e.g. CpG islands) also have a high GC content. Bu is

beneficial in this regard, especially when mapping ratio and library

complexity metrics are unavailable (e.g. consolidated datasets).

Although the mean values for these metrics varied among the

transcriptional factors and antibodies used (Supplementary Fig.

S12), based on the observations of the datasets in this study and pre-

liminary experiments using several other species (mouse, fly and

yeast), we recommend the following thresholds:

• SSP-NSC � 5.0 for strong point-source factors.
• SSP-NSC � 1.5 for weak point-source and broad-source factors.
• SSP-NSC � 2.0 for input samples.
• FCS(dflen) ¼ 1.5 is the separation between ChIP and input

samples.
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• Bu � 0.8 for successful ChIP experiments.

The exception for Bu was MCF-7 cells, which yielded a relatively

lower Bu value possibly owing to extensive copy-number variations

(�0.8, Supplementary Fig. S12B). The low Bu samples also were

more common when the S/N was extremely high (e.g. RNA poly-

merase II, Supplementary Fig. S12C). Thus, it is desirable to use a

relaxed threshold value for Bu for these samples. One challenge that

remains is to identify false-positive peaks caused by non-specific

binding, such as ‘hyper-ChIPable regions’ (Teytelman et al., 2013).

SSP and all existing tools cannot distinguish whether DNA-binding

derives from true binding, and thus a comparison with mock ChIP-

seq data (e.g. IgG) is needed to avoid such false positives.
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