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Abstract

Motivation: The biological relevance of chimeric RNA alignments is now well established. Chimera

arising as chromosomal fusions are often drivers of cancer and recently discovered circular RNA

(circRNA) are only now being characterized. While software already exists for fusion discovery and

quantitation, high false positive rates and high run-times hamper scalable fusion discovery on

large datasets. Furthermore, software available for circRNA detection and quantification is limited.

Results: Here, we present STAR Chimeric Post (STARChip), a novel software package that

processes chimeric alignments from the STAR aligner and produces annotated circRNA and high

precision fusions in a rapid, efficient and scalable manner that is appropriate for high dimensional

medical omics datasets.

Availability and implementation: STARChip is available at https://github.com/LosicLab/STARChip.

Contact: nicholas.kipp.akers@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The key agnostic hallmark of the RNA-seq assay compared to

microarray is the potential to observe previously unknown RNA

fragments. This revolutionary power, in principle, allows for a com-

plete de novo sampling of the transcriptome. At present, however,

this ideal is rarely attained in practice. Difficulties of computation,

interpretation and validation typically impede one from attempting

to leverage RNA-seq beyond straightforward linear gene expression

analysis. Nevertheless, confronting the reality of the complicated,

dynamically spliced eukaryotic transcriptome in large high dimen-

sional omics datasets naturally raises important and increasingly

tractable questions about non-mRNA fragments, including circular

RNA (circRNA) and RNA from chromosomal rearrangements.

In fact, there is a rapidly growing field of research indicating that

circular isoforms of RNA are common, tissue specific (Salzman

et al., 2013), expressed across eukaryotes (Wang et al., 2014) and

may be associated with disease (Bachmayr-Heyda et al., 2015). The

molecular function of circRNA is unknown, with evidence indicat-

ing circRNA can regulate microRNA (Hansen et al., 2013), though

this is not likely the function of most circRNA (Guo et al., 2014).

CircRNA lack polyA tails and can be detected in RNA that has been

prepared using a RiboZero protocol (Fig. 1). Perhaps surprisingly,

for at least a fraction of genes accurate quantification of protein

coding transcripts can be confounded by circRNA abundance

(Salzman et al., 2013).

Non-linear RNA alignments can also be used to detect chromo-

somal rearrangements, a common causal factor in cancer.

Chromosomal fusions are the aberrant connection of part of one

chromosome with another. Initially described in chronic myelogene-

ous leukemia, recurrent chromosomal fusions have been described

in 20 types of cancer (Mertens et al., 2015). Uncovering these fu-

sions contributes to knowledge of the pathogenesis of disease as well

as serving as clinical biomarkers. Because chromosomal fusions may

occur in non-transcribed regions of the genome, RNA-seq is limited

in its ability to observe all such events. On the other hand, whole

genome sequencing is relatively expensive and does not generally

provide any information about gene expression.

The landscape of software tools for circRNA and RNA fusion

detection is actively evolving. For the rapidly developing field of

circRNA, the existing options generate results that are inconsistent
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with one another (Hansen et al., 2016), and only one software pack-

age (CircRNA Identifier (CIRI); Gao et al., 2015) leverages the

power of multiple samples to improve circRNA prediction. Fusion

detection is a more developed field with several mature software op-

tions (Haas et al., 2017; Jia et al., 2013; Kim and Salzberg, 2011;

Nicorici et al., 2014), however we will show that these tools suffer

from a high false-positive rate that prohibits validation using limited

patient DNA. Additionally, the majority of existing fusion detection

software packages perform alignments as a part of their sequence

alignment pipeline, which prevents the use of the same alignments

for both chimera detection and linear gene expression quantifica-

tion. This can represent a significant increase in the computational

burden of any bioinformatics pipeline.

Reasoning that a simplified filtration of high quality chimeric

alignments will improve circRNA and fusion detection, we created a

single software package based on the STAR aligner (Dobin et al.,

2013), STAR Chimeric Post (STARChip). This open-source soft-

ware is accessible to anyone with the technical expertise required to

perform RNA-seq alignments.

2 Materials and methods

STARChip is written in Perl, Bash and R. It is implemented in two

distinct modes; detection of circRNA or fusion transcripts (Fig. 2).

STARChip is able to process raw sequence (FASTQ format) or to

directly use the output of the STAR aligner. Chimeric alignment is a

feature of STAR—using the flag, ‘–chimSegmentMin’ with a positive

value will generate chimeric output. This value indicates the min-

imal length in base pairs required on each segment of a chimeric

alignment. In practice, we use 15 bpb, however, larger values should

make results more accurate, while smaller values should make re-

sults more sensitive. It is recommended to use a STAR index con-

taining all reference chromosomes and unplaced contigs—reads

transcribed from unplaced contigs may map chimerically without a

proper reference. For annotation, STARChip relies on reference

gene annotation (GTF) and sequence (FASTA) files, which must be

modified for use with STARChip using a built in script. Software

dependencies are R (R Core Team, 2015), BEDTools (Quinlan,

2014), SAMtools (Li et al., 2009) and MAFFT (Katoh and Standley,

2013).

2.1 CircRNA detection
STARChip detects high quality circRNA by drawing power from all

available samples, using multithreading to achieve rapid run times.

In order to accommodate different use cases, STARChip circRNA

detection can be run distributed or locally. Users provide the loca-

tion of FASTQ or STAR output directories and use a parameter file

to specify the minimum required reads of support and the minimum

samples needed to call a circRNA. STARChip will run on paired- or

single-end data of any length that STAR can align. Greater power

and precision can be expected from paired-end and longer reads due

to improved alignments.

2.1.1 Detection and filtration of circRNA

The initial step of in circRNA detection is searching all chimeric

alignments for ‘back-spliced’ reads. These are reads for which two

chimeric segments align on the same chromosome and strand,

with the 50 segment aligning downstream of the 30 segment (Fig. 1).

By default, STARChip limits circRNA to chimeric align-

ments<100 000 bp apart, chimeric junctions with less than 6 bp of

identical sequence on each side of the junction and does not call

circRNA on mitochondrial chromosomes. CircRNA reads passing

these filters are then merged if junction ends are very close (default

5 bp). Each read is checked to ensure the entire alignment is within

the proposed circRNA. CircRNA with less than 95% of reads

aligning completely within the circRNA are eliminated as likely

non-circular. Paired-end data with large inserts between reads are

particularly well powered to satisfy this requirement. Finally,

circRNA that are present with sufficient read support and sample

frequency are carried forward for annotation and analysis.

Indeed, multiple samples can be used to improve the reliability

and confidence of circRNA detection and splicing prediction. There

is greater confidence in circRNA found in multiple samples than

those found in a very few samples. A user-set filter requiring

circRNA to be present in a minimum number of patients leverages

power from all samples. Additionally, internal circRNA splicing pre-

dictions output the splicing pattern most common across all

samples.

A recommended optional step is re-alignment of FASTQ files,

including in the reference genome an artificial chromosome com-

posed of circRNA sequence. This circRNA FASTA sequence is cen-

tered on the back-splice site, allowing circRNA reads to align

linearly to the circRNA reference and facilitates an additional strand

imbalance filter. CircRNA with 10� more reads on one strand in at

least 50% of samples are removed as likely false-positives.

2.1.2 Quantification of circRNA

STARChip quantifies circRNA by counting reads aligned to the

backsplice. If realignment is performed, this relies on the default

STAR ‘quant mode’. Without realignment, reads in chimeric output

mapping to the same backsplice are counted.

2.1.3 Annotation of circRNA

CircRNA are annotated for known genes, including if the junction is

within an exon, intron or outside of any known gene. STARChip

automatically constructs a heat map, outputs principle component

plots and provides total circular read adjusted counts-per-million

values for each circRNA detection.

STARChip can optionally characterize the internal structure of

the cRNA by analyzing linear splice junctions within and around the

backsplice site. Internal splice junctions are counted in all samples

and summarized across the entire cohort, providing an annotation

of exons in BED format for straightforward assessment of the

spliced size and sequence of the circRNA. Extra-circRNA linear spli-

ces are also quantified, e.g. forward-splices into the circRNA splice

acceptor, out of the circRNA splice donor or forward splices that en-

velop the circRNA by splicing from 50 of the circRNA to 30 of the

circRNA. These measures can be useful for questions into the nature

of circRNA and the genomic environments associated with circRNA

Fig. 1. Description of typical circRNA compared to mRNA. mRNA (top) are typ-

ically composed of several exons and a poly-adenine tail. CircRNA (bottom) are

commonly composed of exons, however they lack poly-adenine tails

STARChip for circRNA and RNA fusions 2365
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formation. All linear splices with an acceptor or donor within the

genomic region of each circRNA are summarized for each sample by

recording the maximum linear splice value, which is often useful as

a proxy for estimating the fraction of reads derived from circRNA at

a given loci.

The output of STARChip circRNA detection is designed to be

easily understandable, amenable for export to additional pipelines

or software and have a scalable level of technical detail to accommo-

date a broad range of research goals. Default settings should work

in most studies, however many parameters allow the software to be

completely customizable.

2.2 Fusion detection
STARChip detects fusion transcripts in a distributed fashion, with

each sample run separately. This allows rapid completion of large

cohorts with a computing cluster. Read depth filters can be manu-

ally set by the user or selected automatically for each sample. We

briefly outline our fusion detection strategy here, with more details

given in the Supplementary Methods.

2.2.1 Fusion read support thresholds

Automatic read support thresholds were developed for users to

quickly and easily analyze their data. To select thresholds, we calcu-

lated sensitivity and the total false-positives (fusions detected in

healthy tissues) as read requirements were increased. The results of

this process, similar to a receiver operating characteristic curve, are

presented in Supplementary Figure S1. We selected as default a

threshold that provides 32% sensitivity with only 15 fusions called

across all healthy tissues (0.28 fusion reads per million mapped

reads). The high-sensitivity threshold requires only 0.05 fusion reads

per million mapped reads, which results in 42% sensitivity and 111

fusions detected in healthy tissues.

2.2.2 Fusion filtration

Putative fusions reported by STAR are reduced using a rational suc-

cession of filters designed to maximize accuracy of results. These

steps (detailed in Supplementary Methods) leverage the sequences,

read support details and, if available, genomic annotations of the

chimeric breakpoints.

Fig. 2. STARChip flow diagram. CircRNA (left side) are processed by filtering STAR Chimeric output files to discover backspliced reads. These reads are proxim-

ity-merged with other circRNA, filtered if part of the read aligns outside the circRNA, and summarized for each sample. Filtering on the number of reads and sam-

ple frequency provides a list of circRNA for follow-up. Optionally, raw sequences are re-aligned to a reference with circRNA sequence inserted. An integer count

matrix of circRNA in each sample is generated, and summary visualizations are generated. Optionally, genes are annotated for each end of the circRNA, and lin-

ear splicing internal and external to the circRNA is summarized. Fusion transcripts (right side) are identified by first collapsing all chimeric reads on location.

Those putative fusion sites with strand imbalanced support (i.e. aligned reads are selectively aligned to a single strand), very weak support, or that appear to be

circRNA are excluded. Fusions are then annotated for genes, known CNVs and repeat regions. Fusions within the same gene or CNV are excluded, as are fusions

that fall into known false-positive gene pairs. Finally, well-annotated, high precision fusions are written in tab-delimited format

2366 N.K.Akers et al.
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2.2.3 Fusion output

STARChip exports fusions passing these filters into two files: a

highly detailed table and a streamlined format summary table de-

signed for quick examination and characterization. For each fusion,

all reads contributing read support across the fusion junction are

aligned and the consensus sequence is generated. This sequence can

be helpful for hand-checking the validity of output fusions or experi-

mentally quantifying the fusion. Finally, the code for generating a

circos-style plot (Krzywinski et al., 2009; Ying and Chunhua, 2015;

Supplementary Fig. S2) is output for users wishing to create circular

visualizations of interchromosomal connections and potentially an-

notate them by phenotype.

2.3 Performance assessment of STARChip
2.3.1 Assessment STARChip circRNA

STARChip’s ability to detect and measure circRNA was bench-

marked using two publicly available datasets. The first is a high read

depth RNA-seq study of human fibroblasts both with and without

RNA exonuclease digestion (Jeck et al., 2013). Since exonuclease

treatment selectively removes linear, but not circRNA, these data

can in principle indicate which called circRNA are truly circular as

opposed to miscalled linear RNA. Five circRNA detection tools

have previously been evaluated with respect to this exonuclease

dataset (Hansen et al., 2016), crucially using the convention that

circRNA found in the normal samples are considered bona fide if

they are present at 5� higher abundance in exonuclease treated sam-

ples. We apply the same convention here to assess STARChip

circRNA quantification against these same tools: find_circ v1.2

(Memczak et al., 2013), CIRCexplorer v2.2.7 (Zhang et al., 2016),

circRNA_finder (Westholm et al., 2014) and CIRI v2.0.6 (Gao

et al., 2015). MapSplice v2.21 (Wang et al., 2010) was run but no

samples finished after 144 h. Each software package was run with

default parameters, given 12 AMD Interlagos (2.3 GHz) cores on a

single host with a maximum wall-time of 144 h. Multithreading was

enabled when available. CIRCexplorer is able to use multiple align-

ers, we used only the default Tophat2/Tophat-Fusion protocol.

Additionally, we used the data from a study of mouse neural tis-

sues (Rybak-Wolf et al., 2015) prepared with ribosomal-depleted

RNA to demonstrate common usage and the annotation features

of STARChip. Further details are found in the Supplementary

Methods.

2.3.2 Assessment of STARChip fusion detection

Fusion detection with STARChip was evaluated by comparing the

performance of STARChip with three other leading fusion detection

software packages when applied to five different studies. SOAPFuse

(Jia et al., 2013) and FusionCatcher (Nicorici et al., 2014) were

selected given their performance in recent comparison papers

(Kumar et al., 2016; Liu et al., 2016), while STAR-Fusion (Haas

et al., 2017) was selected because it was recently developed and is

also based on the STAR aligner. To compare these methods with

STARChip, we used RNA-seq from breast cancer cell lines

(‘Edgren’)(Edgren et al., 2011; Kangaspeska et al., 2012), breast

cancer cell lines validated with long-read sequencing (‘Weirather’)

(Weirather et al., 2015), a mixture of melanoma samples and cell

lines (‘Berger’) (Berger et al., 2010), prostate cancer samples with

paired normal (‘Ren’) (Ren et al., 2012) healthy tissues (‘Bodymap’)

(BodyMap 2.0, 2014). Only paired-end samples were examined

given this is a requirement for SOAPFuse. Details of these samples

can be found in Table 1.

For each of Edgren, Weirather, Berger and Ren, there are known,

experimentally validated, published fusions associated with cancer

tissues. Called fusions were categorized as true positives if the part-

ner genes were identical to those of the known fusions. We calcu-

lated sensitivity as the fraction of validated fusions that could be

detected. Precision was calculated as the fraction of called fusions

that could be mapped to a validated fusion. It should be noted that

the difficult nature of exhaustively finding and validating all fusion

transcripts in cancer tissues implies a strong probability of false-

negative calls in these studies.

3 Results

We implemented STARChip to detect and quantify circRNA and fu-

sions in several datasets. We report here the sensitivity and precision

of STARChip and compare it with other leading tools in this field.

3.1 STARChip circRNA
3.1.1 STARChip circRNA sensitivity and precision

Using previously published methods (Hansen et al., 2016), we as-

sessed the effectiveness of STARChip and four other published

circRNA tools. STARChip reported the highest percent bona fide

circRNA (74.8%) and the second most bona fide circRNA (2042)

(Fig. 3A). Although CIRI reported the most bona fide circRNA

(2122), only 67% of all reported circRNA were bona fide.

Enumerated results can found in Supplementary Tables S2 and S3.

3.1.2 STARChip circRNA runtimes

Runtimes for STARChip circRNA can vary based on the number of

samples, number of computational threads used, number of

circRNA discovered and which features of STARChip are employed.

For this paper, we show data making use of all STARChip features,

including realignment with STAR. Comparison with other software

packages is demonstrated in Figure 3B. STARChip requires less

memory than CIRI and less time than CIRCexplorer.

3.1.3 STARChip circRNA splice inference

STARChip estimates the internal structure of circRNA from

observed splice junctions, outputting the data in BED format. This

feature was used to examine the size distribution of bona fide

circRNA before and after splicing (Fig. 3C). Similarly, an estimate

of the number of internal exons in bona fide circRNA is shown in

Figure 3D. These outputs provide an easy reference for both valid-

ation and computational comparisons of different datasets.

3.2 STARChip fusions
A guiding design principle for STARChip was improved precision,

in contrast to most currently available software. This is driven by

our experience with high dimensional medical omics data and the

Table 1. Studies used to compare fusion/CircRNA software

Study Samples Validated

fusions

Source

Jeck 4 NA RNAse treated/control

Berger 6 9 Melanoma samples/cell lines

Bodymap 16 0 Healthy tissues

Edgren normal 1 0 Normal breast

Edgren tumor 4 40 Breast cancer cell lines

Ren normal 14 0 Adjacent normal samples

Ren tumor 14 9 Prostate cancer samples

Weirather 1 35 Breast cancer cell line

STARChip for circRNA and RNA fusions 2367
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intractability of validating hundreds or even thousands of fusion

calls with limited patient DNA.

3.2.1 STARChip fusions sensitivity and precision

Sensitivity and precision of all RNA-seq fusion studies merged are

shown in Figure 4A. STARChip is an outlier for having relatively

strong precision at the expense of decreased sensitivity. Figure 4B

and Supplementary Table S4 show the strong variation of these val-

ues from study to study. The high precision of STARChip is again

demonstrated in Figure 4C. Within two non-cancerous datasets,

STARChip with default settings returned only 15 fusions, presum-

ably false-positives. In contrast, FusionCatcher, STAR-Fusion and

SOAPFuse reported 135, 824 and 6962 fusions found in these same

healthy samples.

3.2.2 STARChip fusions computational burden

An additional benefit to STARChip is its small computational foot-

print. Figure 4D shows that STAR-Fusion and STARChip are ex-

tremely rapid to run, while requiring �34 GB of memory for human

or mouse genomes. The median runtimes for SOAPFuse and

FusionCatcher were 22.3 and 3.2 h, compared to 0.65 h for both

STAR-based aligners.

4 Discussion

Our results indicate that in the young field of software for circRNA

and fusion RNA analysis, STARChip provides key advances in

circRNA detection, circRNA quantification, circRNA annotation,

high-precision fusion prediction and overall computational burden.

4.1 STARChip circRNA
With circRNA research in its infancy, there are few ‘gold standard’

datasets with which to assess the effectiveness of new tools. Individual

predicted circRNA are easily validated in the laboratory, however this

strategy is clearly not scalable. Assessing confidence in RNA-seq de-

tected circRNA is often dependent on exonuclease treatment, with the

expectation that circRNA will be enriched in exonuclease treated RNA,

compared to non-treated samples. Although this strategy has several un-

tested assumptions, we will proceed with it for lack of alternatives.

STARChip detects circRNA effectively by assessing chimeric

output from STAR alignments, incorporating these into a reference

genome, realigning with STAR and filtering the output. With this

strategy STARChip achieves the best precision of all tools tested and

nearly the best sensitivity (Fig. 3A). This does not appear to come at

an increased resource cost. Both CIRI and CIRCexplorer had com-

petitive precision and sensitivity values; STARChip required 43 and

A B

C D

Fig. 3. STARChip CircRNA performance. All results shown are for the Jeck et al. dataset. (A) Percent bona fide versus number of bona fide circRNA observed.

(B) Total runtime required and maximum memory required. (C) Scaled density plot of circRNA genomic size (red) and estimated spliced size (black).

(D) Histogram of exons per circRNA
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179% of the runtimes of these packages, respectively, and �72% of

the memory requirements.

STARChip attempts to streamline downstream analysis by pro-

viding high quality circRNA annotations. Gene annotations, in-

ternal splicing structure predictions, circRNA genomic size, spliced

size and alignment scores facilitate feature-mining circRNA in con-

siderable detail, enabling rapid biological insight. Supplementary

Figure S3 provides several examples of circRNA analyses made sim-

ple with the outputs of STARChip.

4.2 STARChip fusions
Ideally, RNA-seq fusion detection would be rapid, sensitive and pre-

cise. SOAPFuse, FusionCatcher and STAR-Fusion unsurprisingly all

have strong sensitivity and precision values when benchmarked on

the Edgren study. These values however, do not appear to be pre-

dictive of performance in other studies (Fig. 4B). Indeed, the land-

mark Edgren study represents the earliest available comprehensive

RNA-seq fusion dataset, and most, if not all, fusion detection soft-

ware is written based on the features of the fusions identified in this

study. Additionally, some of the validated fusions in Edgren are pre-

sent at very low read depths in the RNA-seq data. Software tuned to

detect these fusions must be hypersensitive by construction.

Unfortunately, for all other datasets, this hypersensitivity naturally

results in extremely low precision values. The value of this sensitiv-

ity/precision balance is context dependent: clinical users may require

the utmost sensitivity when searching for specific fusions.

Epidemiologist however will find research difficult when results are

composed of 92–99% false positives. With STARChip, we have at-

tempted to emphasize precision at the expense of sensitivity in these

particular gold-standard studies, reasoning that such hyper-tuning

inflates type I error in mining novel datasets.

The value and necessity of this strategy are emphasized in

Figure 4C. For two studies of healthy tissues, the total number of fu-

sions reported by STARChip is far lower than the other tools. An

important but superficial exception to this is FusionCatcher, which

used precisely the Bodymap data to identify and automatically hard-

filter false-positive fusion partners. Of course this trivially lowers

the number of fusions called in Bodymap by FusionCatcher com-

pared to the independent dataset from Ren. Fusions called from

RNA-seq must be validated in the lab using Sanger sequencing

or other methods. By dramatically lowering the number of

false-positive fusions called, STARChip generates output that can

reasonably be tested by laboratories with modest resources.

A B

C D

Fig. 4. Comparison of STARChip with other fusion detection software. (A) Sensitivity versus precision for all fusion-finders and all studies summarized.

(B) Sensitivity versus precision separated by study. This plot demonstrates the variable efficacy of each tool by study. (C) False positives are shown for two

groups of healthy samples. On the left is the Illumina bodymap (BodyMap 2.0, 2014) cohort of healthy tissues, on the right are paired normal prostate samples

from (Ren et al., 2012). The FusionCatcher value for Bodymap is likely deflated because that software determined known false-positives using this same dataset.

(D) Maximum memory in gigabytes (GB) and median runtimes in hours. There was no meaningful difference in these measures for STARChip and STARChip in

high sensitivity mode
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Researchers with limited computing resources may select

SOAPFuse for its ability to run on a basic workstation or laptop (6.5

GB memory), though the runtimes are much higher. With sufficient

memory however, these STAR-based aligners can save significant

computing time. It should be noted that the majority of the time and

memory requirements for STARChip arise from the STAR align-

ment. This alignment is run in order to facilitate expression quanti-

tation in almost all studies that generate RNA-seq data. Thus in the

context of a typical study, running STARChip fusion detection rep-

resents a minor addition to usual computational requirements, often

less than 5 min per sample.

Using STARChip in a pan-cancer dataset, we observed both previ-

ously reported and novel fusion events (See Supplementary Results

and Discussion). These findings demonstrate the utility of STARChip

in large-scale fusion screening.

Acknowledgements

We gratefully acknowledge useful discussions with Gabriel Hoffman, Johan

Bjorkegren, Lesca Holt, and Daniel Teupser. We also acknowledge many im-

provements to the manuscript were made in response to insights from our

peer reviewers.

This work was supported in part through the computational resources

and staff expertise provided by Scientific Computing at the Icahn School of

Medicine at Mount Sinai.

Funding

This work was funded by the Icahn Institute for Genomics and Multiscale

Biology.

Conflict of Interest: none declared.

References

Bachmayr-Heyda,A. et al. (2015) Correlation of circular RNA abundance

with proliferation—exemplified with colorectal and ovarian cancer, idio-

pathic lung fibrosis, and normal human tissues. Sci. Rep., 5, 8057.

Berger,M.F. et al. (2010) Integrative analysis of the melanoma transcriptome.

Genome Res., 20, 413–427.

BodyMap 2.0 (2014) The Illumina Body Map 2.0 data. https://www.ebi.ac.

uk/arrayexpress/experiments/E-MTAB-513/.

Dobin,A. et al. (2013) STAR: ultrafast universal RNA-seq aligner.

Bioinformatics, 29, 15–21.

Edgren,H. et al. (2011) Identification of fusion genes in breast cancer by

paired-end RNA-sequencing. Genome Biol., 12, R6.

Gao,Y. et al. (2015) CIRI: an efficient and unbiased algorithm for de novo

circular RNA identification. Genome Biol., 16, 4.

Guo,J.U. et al. (2014) Expanded identification and characterization of mam-

malian circular RNAs. Genome Biol., 15,

Haas,B. et al. (2017) STAR-fusion: fast and accurate fusion transcript detec-

tion from RNA-seq. https://www.biorxiv.org/content/early/2017/03/24/

120295.

Hansen,T.B. et al. (2013) Natural RNA circles function as efficient microRNA

sponges. Nature, 495, 384–388.

Hansen,T.B. et al. (2016) Comparison of circular RNA prediction tools.

Nucleic Acids Res., 44, e58.

Jeck,W.R. et al. (2013) Circular RNAs are abundant, conserved, and associ-

ated with ALU repeats. RNA, 19, 141–157.

Jia,W. et al. (2013) SOAPfuse: an algorithm for identifying fusion transcripts

from paired-end RNA-seq data. Genome Biol., 14, R12.

Kangaspeska,S. et al. (2012) Reanalysis of RNA-sequencing data reveals sev-

eral additional fusion genes with multiple isoforms. PLoS ONE, 7, e48745.

Katoh,K. and Standley,D.M. (2013) MAFFT multiple sequence alignment

software version 7: improvements in performance and usability. Mol. Biol.

Evol., 30, 772–780.

Kim,D. and Salzberg,S.L. (2011) TopHat-Fusion: an algorithm for discovery

of novel fusion transcripts. Genome Biol., 12, R72.

Krzywinski,M. et al. (2009) Circos: an information aesthetic for comparative

genomics. Genome Res., 19, 1639–1645.

Kumar,S. et al. (2016) Comparative assessment of methods for the fusion tran-

scripts detection from RNA-seq data. Sci. Rep., 6, 21597.

Li,H. et al. (2009) The sequence alignment/Map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Liu,S. et al. (2016) Comprehensive evaluation of fusion transcript detection

algorithms and a meta-caller to combine top performing methods in

paired-end RNA-seq data. Nucleic Acids Res., 44, e47–e47.

Memczak,S. et al. (2013) Circular RNAs are a large class of animal RNAs

with regulatory potency. Nature, 495, 333–338.

Mertens,F. et al. (2015) The emerging complexity of gene fusions in cancer.

Nat. Rev. Cancer, 15, 371–381.

Nicorici,D. et al. (2014) FusionCatcher— a tool for finding somatic fusion

genes in paired-end RNA-sequencing data. http://biorxiv.org/lookup/doi/

10.1101/011650.

Quinlan,A.R. (2014) BEDTools: the Swiss-Army tool for genome feature ana-

lysis: bEDTools: the Swiss-Army tool for genome feature analysis. In:

Bateman, A. et al. (eds) Current Protocols in Bioinformatics. John Wiley &

Sons, Inc., Hoboken, NJ, USA, pp. 11.12.1–11.12.34.

R Core Team (2015) R: a language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria.

Ren,S. et al. (2012) RNA-seq analysis of prostate cancer in the Chinese popu-

lation identifies recurrent gene fusions, cancer-associated long noncoding

RNAs and aberrant alternative splicings. Cell Res., 22, 806–821.

Rybak-Wolf,A. et al. (2015) Circular RNAs in the mammalian brain are

highly abundant, conserved, and dynamically expressed. Mol. Cell, 58,

870–885.

Salzman,J. et al. (2013) Cell-type specific features of circular RNA expression.

PLoS Genet., 9, e1003777.

Wang,K. et al. (2010) MapSplice: accurate mapping of RNA-seq reads for

splice junction discovery. Nucleic Acids Res., 38, e178.

Wang,P.L. et al. (2014) Circular RNA is expressed across the eukaryotic tree

of life. PLoS ONE, 9, e90859.

Weirather,J.L. et al. (2015) Characterization of fusion genes and the signifi-

cantly expressed fusion isoforms in breast cancer by hybrid sequencing.

Nucleic Acids Res., 43, e116–e116.

Westholm,J.O. et al. (2014) Genome-wide analysis of Drosophila circular

RNAs reveals their structural and sequence properties and age-dependent

neural accumulation. Cell Rep., 9, 1966–1980.

Ying,H. and Chunhua,Y. (2015) OmicCircos: high-quality circular visualiza-

tion of omics data. R package version 1.16.0.

Zhang,X.-O. et al. (2016) Diverse alternative back-splicing and alternative

splicing landscape of circular RNAs. Genome Res., 26, 1277–1287.

2370 N.K.Akers et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/14/2364/4883488 by guest on 23 April 2024

Deleted Text:  
Deleted Text: utes
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/
https://www.biorxiv.org/content/early/2017/03/24/120295
https://www.biorxiv.org/content/early/2017/03/24/120295
http://biorxiv.org/lookup/doi/10.1101/011650
http://biorxiv.org/lookup/doi/10.1101/011650

