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Abstract

Motivation: The 16S ribosomal RNA (rRNA) gene is widely used to survey microbial communities.

Sequences are often clustered into Operational Taxonomic Units (OTUs) as proxies for species.

The canonical clustering threshold is 97% identity, which was proposed in 1994 when few 16S

rRNA sequences were available, motivating a reassessment on current data.

Results: Using a large set of high-quality 16S rRNA sequences from finished genomes, I assessed

the correspondence of OTUs to species for five representative clustering algorithms using four accur-

acy metrics. All algorithms had comparable accuracy when tuned to a given metric. Optimal identity

thresholds were�99% for full-length sequences and �100% for the V4 hypervariable region.

Availability and implementation: Reference sequences and source code are provided in the

Supplementary Material.

Contact: robert@drive5.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing of the 16S ribosomal RNA (rRNA)

gene has revolutionized the study of microbial communities in envir-

onments ranging from the human body (Cho and Blaser, 2012;

Pflughoeft and Versalovic, 2012) to oceans (Moran, 2015) and soils

(Hartmann et al., 2014). Data analysis in such studies typically

assigns 16S rRNA sequences to Operational Taxonomic Units

(OTUs). Many OTU clustering methods have been proposed [for ex-

ample (Edgar, 2013; Rideout et al., 2014; Schloss and Handelsman,

2005; Schloss et al., 2009; Seguritan and Rohwer, 2001; Ye, 2011)],

most of which use a threshold of 97% sequence identity. Typically,

this threshold is considered given rather than as a tunable param-

eter, following the conventional wisdom that 97% corresponds ap-

proximately to species (Schloss and Handelsman, 2005; Seguritan

and Rohwer, 2001; Westcott and Schloss, 2017). The 97% thresh-

old was proposed in 1994 (Stackebrandt and Goebel, 1994) when

few 16S rRNA sequences were available, raising the question of

whether this value is supported by the much larger datasets currently

available. In this work, I used a high-quality set of 16S rRNA se-

quences from known species to investigate whether the 97% thresh-

old is a good approximation to species, whether a better threshold

can be identified, and whether clustering algorithms can be ranked

by quality.

OTU clustering is most commonly used in analysis of next-

generation amplicon reads of the 16S rRNA gene. These reads have

errors due to PCR and sequencing which can cause large numbers of

spurious OTUs (e.g. Edgar and Flyvbjerg, 2014; Huse et al., 2010).

Thus, in practice, low OTU quality may be due to inadequate error

filtering rather than the clustering algorithm. Here, I focus on OTUs

of correct sequences to investigate whether algorithms differ in their

ability to reproduce species classifications by taxonomists. While it

could be of interest to investigate the tolerance of clustering algo-

rithms to errors, this is a complex issue beyond the scope of the work

reported here. Also, state-of-the-art denoisers have been shown to ac-

curately recover biological sequences from 454 and Illumina amplicon

reads (Callahan et al., 2016; Edgar, 2017b; Quince et al., 2009) sug-

gesting that the best strategy for amplicon reads is to cluster denoised

sequences, in which case the clustering problem is well-modeled by

error-free sequences from known species.

Several OTU quality metrics have been proposed, including

richness (e.g. Sun et al., 2009), normalized mutual information (Cai

and Sun, 2011; Zheng et al., 2012) and Matthews’ Correlation
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Coefficient (Schloss and Westcott, 2011). I investigated whether dif-

ferent quality metrics give consistent algorithm rankings, which

would support published claims that some algorithms generate ob-

jectively superior OTUs (e.g. Cai and Sun, 2011; Schloss, 2008;

Schloss and Westcott, 2011; Westcott and Schloss, 2017).

2 Materials and methods

2.1 HiQFL and HiQV4 databases
To assess cluster quality, I required a set of correct 16S rRNA se-

quences with authoritative taxonomy annotations. Curated data-

bases of 16S rRNA sequences include SILVA (Pruesse et al., 2007),

RDP (Maidak et al., 2001) and Greengenes (DeSantis et al., 2006b).

Most of the sequences in these databases were obtained by PCR

amplification of environmental samples and have predicted rather

than authoritative taxonomies (McDonald et al., 2012; Wang et al.,

2007; Yilmaz et al., 2014). Many belong to unnamed species (Yarza

et al., 2014), and annotations of named species may be false positive

predictions. These databases are therefore not suitable.

I constructed a new database (HiQFL) of high-quality, full-

length 16S rRNA sequences from authoritatively named isolate

strains as follows. I downloaded all prokaryotic genome assemblies

from GenBank (Benson et al., 2012) that were annotated as

‘Complete’ in the in the assembly_summary_genbank.txt file on Feb

15th, 2017. 16S rRNA gene sequences were identified using

SEARCH_16S (Edgar, 2017a,b). If any wildcard letters or ambigu-

ity codes were found in a 16S rRNA sequence, all sequences from its

assembly were discarded to avoid ambiguous sequence identities

and ensure that intra-genome variation between 16S rRNA paralogs

was accurately represented. One copy of each identical sequence

from each assembly was retained. HiQFL contains 16 741 sequences

from 6240 assemblies of 2512 species. Some species have many

assemblies, with most for Escherichia coli (1115 assemblies) and

Salmonella enterica (1035), while 1106 species have exactly one as-

sembly. To create a dataset with less taxonomic bias, I created the

HiQFL_1 database by selecting one assembly at random for each

species. The V4 hyper-variable region is currently a popular target

for next-generation sequencing. To test clustering on high-quality

V4 data, I constructed the HiQV4 and HiQV4_1 databases by ex-

tracting the segment between the primers V4F ¼ GTGCCAGC

MGCCGCGGTAA and V4R¼GGACTACHVGGGTWTCTAAT

(Kozich et al., 2013) from HiQFL and HiQFL_1 respectively.

2.2 OTU quality metrics
I used four quality metrics RR, NMI, MCCsp and Bij. Richness ratio

(RR) is min(S, N)/max(S, N) where S is the number of species and

N is the number of OTUs. Normalized mutual information (NMI)

(Cover and Thomas, 1991) is an information theory measure of the

mutual dependence between two frequency distributions. Matthews’

Correlation Coefficient (MCC) (Baldi et al., 2000; Matthews, 1975)

measures the accuracy of a binary classifier as a correlation between

predicted and known values. I defined the correlation between

OTUs and species (MCCsp), by considering a pair of sequences to be

correctly classified if they belong to the same species and are in the

same OTU. This differs from the metric (MCCSW) of (Schloss and

Westcott, 2011) where a pair is considered to be correctly classi-

fied if they have�97% identity and are in the same OTU (see

Discussion). I defined bijection (Bij) as the fraction of species that

have 1:1 correspondence with an OTU. All four metrics have a max-

imum value of one indicating the best possible quality. For further

details and discussion, see the Supplementary Material.

2.3 Clustering algorithms
I tested the following clustering algorithms: nearest-neighbor (NN,

also called single-linkage), average-neighbor (AN, also known as

UPGMA or average-linkage), furthest-neighbor (FN, also called

complete-linkage), OptiClust (OC) (Westcott and Schloss, 2017)

and abundance-sorted greedy clustering (AGC) (Ye, 2011). For NN,

AN, FN and OC I used mothur v1.39.5 (Schloss et al., 2009) (com-

mands given in Supplementary Material Files). I implemented AGC

in a Python script that accepts a mothur distance matrix as input to

ensure that that the same identities were used by all algorithms.

2.4 Optimal thresholds
I ran each clustering algorithm on the four HiQ databases with

thresholds ranging from 96 to 100% in steps of 0.1%. For each

database, clustering algorithm and quality metric, I identified the

optimal threshold as the tested threshold which gave the largest

value of the metric.

2.5 Conspecific probability
It is well-known that some pairs of species have 16S rRNA se-

quences with>97% identity and using a fixed threshold cannot reli-

ably identify species (e.g. Schloss, 2010). This correspondence

between identity and species can be investigated independently of

clustering by measuring the probability that two sequences are con-

specific (i.e. belong to the same species) as a function of identity. Let

the conspecific probability Pcs(D j d(X, Y)) be the probability that

two sequences X, Y selected at random from a distribution D belong

to the same species given a measure d of pair-wise distance between

X and Y. I calculated Pcs for each HiQ database by assuming that se-

quences are drawn at random from the database with equal proba-

bilities. Pair-wise identities calculated by mothur were binned into

intervals of 0.5%. For each bin (e.g. 97.0% � d<97.5%), let Md be

the total number of pairs and md be the number of pairs which be-

long to the same species, then Pcs(d)¼md /Md.

2.6 Assessment of pair-wise alignments
Mothur distances are calculated from a multiple alignment con-

structed using an algorithm based on the NAST strategy (DeSantis

et al., 2006a) which introduces misalignments to preserve a fixed

number of columns. I compared alignments by mothur and

CLUSTALW v2.1 (Thompson et al., 2002) on 16S rRNA sequences

from (Kozich et al., 2013). I took the 100 most abundant unique

sequences in the reads assigned to soil samples (soil100) and

constructed alignments for all pairs. For each pair-wise alignment,

I calculated identity as the number of columns containing identical

letters divided by the number of columns containing at least one

letter.

2.7 Adverse triplets
It has been proposed (Schloss and Westcott, 2011; Westcott and

Schloss, 2017) that OTUs should be constructed such that all pairs

of sequences with identity�97% are assigned to the same OTU and

all pairs<97% are assigned to different OTUs. This constraint can-

not be satisfied if there is an adverse triplet {A, B, C} with pair-wise

distances A–B�97%, B–C�97% and A–C<97% because A–B and

B–C imply that A, B and C should be assigned to the same OTU

while A–C implies that A and C should be assigned to different

OTUs. If a solution exists, an adverse triplet cannot be present be-

cause all pair-wise constraints are satisfied. Therefore, a solution

exists if, and only if, there are no adverse triplets in the data. To in-

vestigate whether this is an issue in practice, I identified adverse
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triplets of species in the HiQ16_1, HiQV4_1 and soil100 datasets

using the mothur distance matrixes.

3 Results

3.1 Optimal thresholds
Optimal thresholds are given in Table 1; metric values for all thresholds

are given in the Supplementary Material Files. All algorithms achieve

comparable maximum scores with all metrics. No algorithm is consist-

ently better than any other, showing that algorithms cannot be mean-

ingfully ranked by OTU quality. Optimal thresholds are all higher than

97%, especially on V4 where the optimal threshold is 100% for 9/20 of

algorithm-metric combinations on HiQV4 and 17/20 on HiQV4_1.

3.2 Conspecific probabilities
See Figure 1; numerical values are given in Supplementary Table S1.

Conspecific probabilities for the four databases are quite different, illus-

trating that the probability depends on the gene segment (full-length or

V4) and on the distribution from which sequences are sampled; i.e. on

the composition and abundance distribution of species in the data.

3.3 Adverse triplets
See Supplementary Material Files for complete lists of adverse trip-

lets. I found 25 402 triplets in HiQFL_1 with 776/2512 of species

(31%) appearing in at least one triplet. In HiQV4_1, I found

106 576 triplets containing 1320/2512 (53%) distinct species, and in

soil100 I found 384 triplets containing 25/100 (25%) of the input

sequences. This shows that adverse triplets are ubiquitous in the

tested datasets and are therefore probably common in practice.

3.4 Mothur alignment errors
A scatterplot of CLUSTALW versus mothur identities is given in

Figure 2. This shows that mothur systematically underestimates

identity of closely-related pairs (>90% identity) compared with

CLUSTALW, which constructs alignments by pair-wise dynamic

programming (Needleman and Wunsch, 1970). A manual review re-

vealed that all cases where mothur reported lower identities were

due to alignment errors (see Fig. 3 and Supplementary Fig. S1 for an

example; all alignments are given in the Supplementary Material

Files). Errors of these types do not occur with pair-wise dynamic

programming, which implies that the optimal thresholds reported

here may be underestimates for similar clustering methods imple-

mented in other software packages.

Table 1. Optimal thresholds and metric values

Maximum metric Optimal identity threshold

Data Metric NN AN OC FN AGC NN AN OC FN AGC

HiQFL RR 0.99 0.99 0.99 1.00 0.98 99.3 99.1 99.0 98.8 99.1

MCCsp 0.86 0.86 0.85 0.85 0.85 99.3 98.5 98.4 97.8 98.0

Bij 0.62 0.63 0.62 0.62 0.63 99.4 99.4 99.4 99.3 99.4

NMI 0.95 0.95 0.95 0.95 0.94 99.3 98.8 98.9 97.8 98.0

HiQFL_1 RR 1.00 0.98 0.98 0.99 0.99 99.5 99.4 99.4 99.2 99.3

MCCsp 0.55 0.61 0.61 0.64 0.59 99.6 99.4 99.4 99.0 99.3

Bij 0.68 0.68 0.67 0.67 0.67 99.5 99.4 99.4 99.4 99.4

NMI 0.96 0.97 0.97 0.97 0.97 99.5 99.2 99.4 99.1 99.3

HiQV4 RR 0.85 0.97 0.92 0.98 0.94 100.0 99.6 99.6 99.6 99.6

MCCsp 0.78 0.79 0.79 0.79 0.78 100.0 99.6 99.6 98.8 99.3

Bij 0.51 0.51 0.51 0.51 0.52 100.0 100.0 100.0 100.0 100.0

NMI 0.93 0.93 0.93 0.93 0.93 100.0 99.6 99.6 99.2 100.0

HiQV4_1 RR 0.93 0.93 0.93 0.93 0.93 100.0 100.0 100.0 100.0 100.0

MCCsp 0.48 0.50 0.50 0.49 0.48 100.0 99.6 99.3 99.6 100.0

Bij 0.56 0.56 0.56 0.56 0.56 100.0 100.0 100.0 100.0 100.0

NMI 0.95 0.95 0.95 0.95 0.95 100.0 100.0 100.0 100.0 100.0

Note: Metric values for all thresholds are provided in the Supplementary Material.
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Fig. 1. Conspecific probabilities Psc(d) for the HiQ databases. FL is HiQFL,

FL_1 is HiQFL_1, V4 is HiQV4, V4_1 is HiQV4_1. Identities are binned into

intervals of 0.5% so e.g. the x-axis label>97% means 97.5%�d>97%
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Fig. 2. Scatterplot of CLUSTALW versus mothur identity. More than half of

the points are below the diagonal and none are above, reflecting that mothur

systematically underestimates pair-wise identity due to alignment errors (see

Fig. 3 for an example)
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4 Discussion

4.1 Comments on the MCCSW metric
Recent papers (Schloss and Westcott, 2011; Westcott and Schloss,

2015, 2017) have proposed a variant of Matthews’ Correlation

Coefficient (here called MCCSW) as a definitive accuracy metric for

OTUs containing noisy or error-free sequences. Typically, the accuracy

of a clustering algorithm is assessed for individual objects (here, se-

quences) by comparison to categories which have been independently

determined (e.g. species). By contrast, MCCSW measures accuracy by

assuming that true OTUs objectively exist and can be defined indirectly

via a binary classification of pairs of sequences from the sequences

alone, without considering their biological origin. The standard of

truth is based on pair-wise identity as measured by mothur: if a pair

is�97%, the sequences are asserted to be in the same true OTU; other-

wise they are in different true OTUs. However, OTUs by this definition

generally do not exist because of adverse triplets. Also, true positives

and true negatives by this standard may in fact be biological errors. For

example, consider a pair of reads of a chimeric amplicon formed during

PCR. They cannot be assigned to a valid biological OTU if they

have<97% identity to their parent sequences, but are a true positive if

they have>97% identity to each other. Conversely, a pair of paralogs

from a single genome should be assigned to the same biological OTU,

but are asserted to be a true negative if they have<97% identity. The

use of mothur distances as a standard is invalid if misalignments are

common, and regardless biases the metric against methods that use

different parameters (e.g. gap penalties) or distance measures. The

Supplementary Material gives examples where MCCSW is undefined

due to division by zero and does not give the highest score to the best

clusters. Finally, the results presented here show that threshold of

97% is far from optimal as an approximation to species. MCCSW is

therefore not viable as a benchmark standard of biological accuracy.

4.2 There is no best algorithm, threshold or accuracy metric
In the tests reported here, all algorithms achieved comparably high

scores by a given quality metric when thresholds were tuned to the

input data and metric, showing that no algorithm is intrinsically

superior. All metrics were designed to quantify the correspondence

between OTUs and species. However, for a given algorithm and

dataset different metrics were maximized at different thresholds and

thus by different sets of clusters, showing that a single metric cannot

definitively quantify accuracy.

4.3 Optimal thresholds are data-dependent
Different thresholds were obtained were obtained on HiQFL com-

pared to HiQFL_1 and on HiQV4 compared to HiQV4_1. These

datasets contain the same species with different abundances, and

in general it should be expected that the optimal threshold for a

given algorithm and quality metric will depend on the segment

(full-length, V4 or some other region), composition and abundance

distribution of the data. Since the composition and abundance distri-

butions of communities encountered in practice are highly variable,

optimizing a threshold on a given training set cannot reliably predict

that it will have high accuracy on novel data.

4.4 The canonical 97% threshold is too low
All thresholds in Table 1 are higher than 97%, especially on the V4 re-

gion where all optimal thresholds were>99% with a median of 100%.

On full-length sequences, most optimal thresholds (11/20 on HiQFL

and 19/20 on HiQFL_1) were>99%. Thus, while keeping the caveats

of Section 4.3 in mind, it is clear that if the goal of OTUs is to approxi-

mate species, then the canonical 97% threshold is far from optimal for

all clustering algorithms and should be increased to at least 99%.

4.5 Intra-species variation
There can be ‘enormous’ strain-to-strain variation in gene content

within a species (Doolittle and Papke, 2006), causing substantial dif-

ferences in phenotype. For example, some strains may be pathogenic

while others are symbiotic (Ochman, 2001). As a result, OTUs that

accurately approximate species will tend to lump distinct pheno-

types into a single cluster, and it could therefore be more biologic-

ally informative to construct OTUs approximating strains rather

than species, raising the question of whether this is achievable in

practice. Resolving strains would require a higher identity threshold

than species. With the V4 region, optimal thresholds for species are

at or very close to 100%, showing that higher resolution is probably

not possible in general, though some strains might be resolved for

some species. Full-length sequences might enable better strain reso-

lution, as might segments of intermediate length containing two or

more hypervariable regions. However, definition and assessment of

strain-based OTUs raises new difficulties compared to species. For

example, some strains have very similar phenotypes which could

reasonably be assigned to the same OTU, while others are substan-

tially different and would preferably be assigned to different OTUs,

raising the question of whether such distinctions could be satisfac-

torily quantified and annotated for parameter training and bench-

mark testing. Also, while complete genome assemblies are available

for multiple strains of many species, yielding a robust set of

examples for determining typical levels of intra-species sequence

variation, type strains are usually genetically identical rather than nat-

urally occurring subspecies (Dijkshoorn et al., 2000) and little informa-

tion is therefore available about subspecies sequence variation in vivo.

4.6 ZOTUs
If a 100% identity threshold is used, then each distinct sequence

defines a separate OTU. I have previously called this a ZOTU (zero-

radius OTU) (Edgar, 2017b); it has also been called a Sequence

mothur alignment

A GAACACC-GGTGGCGAAG
||||||| | ||||||||

B GAACACCGG-TGGCGAAG

CLUSTALW alignment

A GAACACCGGTGGCGAAG 
|||||||||||||||||

B GAACACCGGTGGCGAAG

(b)

(a)

Fig. 3. Typical misalignment by mothur. Segment of the alignments by

mothur (above) and CLUSTALW (below) for soil.1137 (a) and soil.191 (b);

sequences are given in the Supplementary Material. See Supplementary

Figure S1 for complete alignments. Misalignments of this type do not occur

with pair-wise dynamic programming
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Variant (Callahan et al., 2016). I agree with a recent perspective

(Callahan et al., 2017) arguing that ‘improvements in reusability, re-

producibility and comprehensiveness are sufficiently great that

[ZOTUs] should replace [97%] OTUs as the standard unit of

marker-gene analysis and reporting’. ZOTUs achieve the best possible

phenotype resolution at the expense of an increased tendency to split

species and strains over multiple OTUs. However, some lumping and/

or splitting of strains and species is unavoidable at any threshold. With

V4 sequences, the results presented here show that ZOTUs achieve a

reasonable balance between lumping and splitting of species while 97%

OTUs have a strong tendency to lump species together. ZOTUs have

the additional advantage of being directly comparable between datasets

without re-clustering [i.e. ZOTUs are stable as defined by Rideout et al.

(2014)], providing that the same gene segment is compared. With lon-

ger sequences, ZOTUs may cause more splitting than lumping, but this

is a relatively benign problem which can be addressed by downstream

analysis. For example, alpha diversity could be adjusted according to

estimated rates of splitting and lumping. ZOTUs of longer sequences

may therefore also be preferred over traditional OTUs for their im-

proved ability to discriminate phenotypes.

Conflict of Interest: none declared.
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