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Abstract

Motivation: Optimality principles have been used to explain many biological processes and sys-

tems. However, the functions being optimized are in general unknown a priori. Here we present an

inverse optimal control framework for modeling dynamics in systems biology. The objective is to

identify the underlying optimality principle from observed time-series data and simultaneously es-

timate unmeasured time-dependent inputs and time-invariant model parameters. As a special

case, we also consider the problem of optimal simultaneous estimation of inputs and parameters

from noisy data. After presenting a general statement of the inverse optimal control problem, and

discussing special cases of interest, we outline numerical strategies which are scalable and robust.

Results: We discuss the existence, relevance and implications of identifiability issues in the above

problems. We present a robust computational approach based on regularized cost functions and

the use of suitable direct numerical methods based on the control-vector parameterization ap-

proach. To avoid convergence to local solutions, we make use of hybrid global-local methods. We

illustrate the performance and capabilities of this approach with several challenging case studies,

including simulated and real data. We pay particular attention to the computational scalability of

our approach (with the objective of considering large numbers of inputs and states). We provide a

software implementation of both the methods and the case studies.

Availability and implementation: The code used to obtain the results reported here is available at

https://zenodo.org/record/1009541.

Contact: julio@iim.csic.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Optimality principles in biology have a long history. The optimal

design principle hypothesis was formally stated by Rashevsky

(1961) and later extended by Rosen (1967). This principle claims

that the biological structures necessary to perform a certain function

must be of maximum simplicity, and optimal regarding energy and

material requirements. Similar optimality principles have been

shown to agree with observations about living matter at different

levels of organization, from basic molecular and cell biology

phenomena, up to the levels of organs, individuals, populations and

their evolution (Alexander, 1996; Dekel and Alon, 2005; de Vos

et al., 2013; Friston, 2010; McFarland, 1977; Parker et al., 1990;

Popescu, 1998; Schaffer, 1983; Smith, 1978; Sutherland, 2005;

Todorov, 2004). The general justification is that evolution by nat-

ural selection is the mechanism behind these optimality principles, a

concept already present in Darwin’s work.

Sutherland (2005) claims that these optimality principles allow

biology to move from merely explaining patterns or mechanisms to
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being able to make predictions from first principles. Bialek (2017)

makes the important point that optimality hypotheses should not be

adopted because of esthetic reasons, but as an approach that can be

directly tested through quantitative experiments. Mathematical opti-

mization could therefore be regarded as a fundamental research tool

in bioinformatics and computational systems biology (Banga, 2008;

de Vos et al., 2013; Ewald et al., 2017; Handl et al., 2007; Heinrich

et al., 1991; Mendes and Kell, 1998).

Here we consider the role of optimality principles in molecular

and cell biology. In particular, we focus on the problem of explain-

ing and predicting dynamics at those levels based on optimality con-

siderations. In the context of biochemical pathways, pioneering

studies were performed in the 1990s considering optimization in

metabolic networks (Hatzimanikatis et al., 1996; Heinrich et al.,

1991, 1997; Heinrich and Schuster, 1996). To our knowledge, the

first attempt to explain the dynamics in metabolic networks was pre-

sented by Klipp et al. (2002) considering linear networks and the hy-

pothesis of minimum transition time. Interestingly, the predicted

pattern of gene expression dynamics was later found experimentally

(Zaslaver et al., 2004). Therefore, the pioneering work of Klipp

et al. (2002) is a good example of the predictive value of optimality-

based methods in systems biology.

Since then, several studies (Bartl et al., 2010; Oyarzún et al.,

2009) recognized that the original question considered by Klipp

et al. (2002) can be naturally formulated as an optimal control prob-

lem. Optimal control (also known as dynamic optimization when

the system is open loop) considers the optimization of a dynamic

system, that is, one seeks the optimal time-dependent input (open

loop control) to minimize a certain performance index (cost func-

tion). In recent years, a number of studies have extended these ideas

considering more realistic pathways (larger size and more complex

topologies), and in some cases making use of increasingly sophisti-

cated optimal control formulations (Bartl et al., 2013; de Hijas-Liste

et al., 2014, 2015; Ewald et al., 2017; Nimmegeers et al., 2016;

Oyarzún, 2011; Waldherr et al., 2015; Wessely et al., 2011).

Similarly, Giordano et al. (2016) have recently used optimal control

to obtain novel insights into microbial growth strategies, success-

fully explaining the dynamical allocation of cellular resources.

Interestingly, these authors have also shown that a near-optimal

control strategy based on a coarse-grained model exhibited struc-

tural similarities with the regulation of ribosomal protein synthesis

in Escherichia coli.

These studies reflect the potential benefits and the increasing im-

portance of applying control engineering concepts to systems and

synthetic biology problems, an area that is still in its infancy (Doyle

and Stelling, 2006; He et al., 2016; Wellstead et al., 2008).

However, an open question in all these studies is that the cost func-

tion (i.e. the performance index being optimized) is unknown a pri-

ori. Although multiobjective dynamic optimization can be used to

consider several objectives simultaneously (de Hijas-Liste et al.,

2014), researchers still have to come up with cost functions describ-

ing the hypothetical underlying optimality principle.

It is important to note that these studies should be distinguished

from the more standard application of optimal control to biosystems

and bioprocesses. This is an area where a lot of research has been

carried out, and it includes well known problems as e.g. how to op-

erate a bioreactor to ensure optimal production of a substance of

interest (Smets et al., 2004), or how to create or inhibit oscillations

or patterns (Lebiedz and Brandt-Pollmann, 2003; Sootla et al.,

2016). All these problems have pre-defined performance indexes,

which are related to the optimal design and manipulation of biosys-

tems by humans, i.e. the cost function is known a priori.

Here we consider the use of an inverse optimal control (IOC)

perspective to find the optimality principle which can explain (and/

or predict) dynamic behavior in biological systems. That is, we face

the situation where the cost function is not known a priori. The

usual approach so far has been to hypothesize and then test different

cost functions for a given biosystem, i.e. computing the optimal con-

trol and checking, a posteriori, if there is a match between the pre-

dicted and the observed dynamics.

With the aim of finding a more systematic approach, we present

here an IOC framework. Briefly speaking, IOC aims to find the opti-

mality criteria that can explain a set of given dynamic measure-

ments. In more detail, given a dynamic model of a biosystem with

unknown parameters and time-series observations (measurements)

of (at least part of) its dynamic states and (some or none) of the in-

puts, we seek to find the underlying optimality criteria (cost function

or performance index) together with the unmeasured inputs and

time-invariant model parameters that explain the measurements in

the best way. This problem can also be regarded as estimating par-

ameters in optimal control problems, and a number of important

variants can be derived depending on what is measured.

2 Materials and methods

2.1 Approach
We consider two classes of IOC problems:

• IOCP-1—input reconstruction as an optimal tracking problem:

given a non-linear dynamic model of a biosystem and a set of

measurements (time-series data of observed states), find the time-

dependent inputs and time-invariant parameters that explain the

available time-series data.
• IOCP-2—general IOC problem: given a non-linear dynamic

model of a biosystem operating with an underlying optimality

principle, find the cost function, the time-dependent inputs and

time-invariant parameters that explain the available data (time-

series measurements).

Problem IOCP-1 can be regarded as a special case of problem

IOCP-2. It should be noted that several other variants of IOCP-1 are

possible, depending e.g. if the system is partially or fully observed. A

few instances of this input reconstruction problem have been re-

cently studied in the domains of systems biology (Kahm et al., 2012;

Kaschek et al., 2016; Lang and Stelling, 2016; Schelker et al., 2012)

and pharmacokinetics (Trägårdh et al., 2016, 2017). Particularly

interesting variants of IOCP-1 have been presented by Engelhardt

et al. (2016, 2017) to model biosystems with unknown inputs as

well as missing and erroneous interactions. Here we are considering

scenarios where all relevant inputs are known and there are no

wrong interactions, showing that even under these assumptions the

inverse problems can be extremely challenging due to lack of

identifiability.

To the best of our knowledge, problem IOCP-2 has not been pre-

viously studied in systems biology, but it has recently received atten-

tion in the areas of robotics (Clever et al., 2016; Panchea and

Ramdani, 2015) and biomechanics (Hatz et al., 2012; Hatz, 2014;

Mombaur, 2016).

Next, we present the general problem statements, followed by a

section detailing numerical strategies to solve them. We also discuss

several important issues related to the structural identifiability of

these problems.
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2.2 Statement of the IOC problem
Here we consider dynamic models of biological systems given by

sets of deterministic non-linear ordinary differential equations

(ODEs). The systems are assumed to be at least partially observable,

i.e. we can obtain time series measurements of at least some of the

states. Here we do not consider the scenarios of errors in the model

or unknown inputs.

For the more general problem (IOCP-2), we assume that there is

optimality with respect to certain unknown criteria from a finite set

of possibilities. Our aim is to find both the criteria and the model

parameters that best explain the observed data. This IOC problem is

formulated as a bi-level optimal control structure, consisting of an

upper (or outer) and a lower (or inner) optimization problem. The

outer problem corresponds to a simultaneous input and parameter

estimation problem (as detailed in the Supplementary Material),

where the time-invariant model parameters p and time-dependent

inputs (e.g. stimuli) u tð Þ are computed so the model predictions y fit

the observed data ~y. The inner problem corresponds to a multi-

objective optimal control problem (see also Supplementary

Material), where the optimal solution of the time-dependent inputs

u tð Þ is computed as Pareto optimal controls for the set of optimality

criteria considered. The general mathematical formulation of the

IOC problem IOCP-2 considering free terminal time becomes:

min
u tð Þ;p;tf

Jouter x;u; p½ � (1)

Subject to:

min
u tð Þ;tf

Jinner x;u; p½ � (2)

Subject to:

dx

dt
¼ ~W x t; pð Þ;u tð Þ; p; t½ �;

xðt0; pÞ ¼ x0

(3)

y x;pð Þ ¼ g x t; pð Þ;pð Þ (4)

g x t; pð Þ;u tð Þ; p½ � ¼ 0 (5)

f x t; pð Þ;u tð Þ; p½ � � 0 (6)

gi x ti; pð Þ; u tið Þ;p½ � ¼ 0 (7)

fi x ti; pð Þ;u tið Þ;p½ � � 0 (8)

uL � u tð Þ � uU (9)

pL � p � pU (10)

where:

Jouter ¼
Xn exp

k¼1

Xnobs

j¼1

Xns

i¼1

wijk yijk x ti;pð Þ; pð Þ � ~yijk

� �2
(11)

Jinner x; u;p½ � ¼ J1; J2; . . . ; JN½ �T (12)

For Ji, (i 2 1;N½ �):

Ji x; u; p½ � ¼ Ui
M x tf ; p

� �
;p

� �
þ
ðtf

t0

Ui
L x t; pð Þ;u tð Þ; p½ � (13)

where ~W is the right-hand side of the system’s dynamics dx
dt (here we

are assuming deterministic non-linear dynamics given by ODEs) and

equations 5–8 are algebraic constraints, including path equalities

and inequalities (g; f), and time-point constraints (gi; fi). Equations

(9) and (10) correspond to the bounds on the controls (time-depend-

ent inputs, stimuli) (u) and time-invariant parameters (p), respect-

ively. The system observables (y) are defined through an observation

functional of states and parameters g x t; pð Þ;pð Þ. The upper cost

function Jouter can take form of weighted (wijk) least squares (as

above), but alternatively can be described by a maximum likelihood

function. The inner problem’s cost functional is a multi-objective

functional considering the set of N possible optimality criteria to ex-

plore. In its general form, each objective function Ji in this set

(i 2 1;N½ �) consists of a Mayer (Ui
M) and a Lagrange (Ui

L) term.

Problem IOCP-1 (input estimation) can be considered as a spe-

cial case of the formulation above where the lower level optimal

control problem is ignored. In other words, it results in a standard

optimal control problem where one seeks the optimal input and

model parameters that best explain the observed data. This formula-

tion is very general and flexible, allowing us to consider problems

with arbitrary inputs, multi-experimental settings and multiple crite-

ria for the optimality hypothesis.

2.3 Solution strategy
The solution of the above bi-level formulation is extremely challeng-

ing. Here we transform this hierarchical IOC problem IOCP-2 into

a sequence of two optimal control problems with a subsequent iden-

tification of the optimality principle using the set of Pareto optimal

controls compatible with the system dynamics and the observed

data. In other words, we solve the above bi-level formulation by

decomposing it as follows:

• Step 1: we first solve the outer input estimation problem to ob-

tain the time-dependent inputs u� tð Þ and time-invariant param-

eters p� which explain the data in terms of the outer cost

function metric. This is a standard single-objective non-linear op-

timal control problem. Note that parameters need to be structur-

ally identifiable in order to ensure a unique solution (see further

discussion about identifiability below).
• Step 2: we then use parameters p� obtained in the previous step to

compute the Pareto set of optimal controls (inner problem). Note

that this is a multi-objective non-linear optimal control problem.
• Step 3: finally, we find the solution located in the Pareto set

which is consistent with the experimental data.

The corresponding workflow is shown in Figure 1. Note that for

the case of IOCP-1, only Step 1 is necessary.

For the sake of completeness, the following considerations and

numerical details were used to implement the above steps in an effi-

cient way:

Fig. 1. Overall workflow of the solution strategy for IOC problems
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• The optimal control problem in Step 1 is a standard non-linear

dynamic optimization problem. In the case of the multi-objective

optimal control problem of Step 2, we use an epsilon-constraint

decomposition to transform it into a set of single-objective opti-

mal control problems. Thus both steps result in a set of non-lin-

ear optimal control problems.
• These non-linear optimal control problems are solved using the

control-vector parameterization approach, CVP (Vassiliadis

et al., 1994). The resulting non-linear programming problems

are typically multimodal (Banga et al., 2005) so we use a hybrid

global-local optimization method combining the enhanced

Scatter Search (eSS) and efficient local solvers (Egea et al., 2009),

as implemented in AMIGO2 (Balsa-Canto et al., 2016). More

details are given in the Supplementary Material.
• Due to the ill-conditioning of these problems, regularization

terms and/or constraints are used in the cost functions, as de-

tailed below.
• It should be noted that our methodology can handle non-smooth

or discontinuous dynamics thanks to the use of the global opti-

mizer. This is illustrated with some of the examples below which

have inequality path constraints that behave as state events.

2.3.1 Regularization of cost functions

Regularization methods can be successfully used to reduce ill-

conditioning and avoid over-fitting (Gábor and Banga, 2015). Here

we make use of regularized cost functions in order to reduce the ill-

conditioning of the IOCPs. Thus, we extend the objective functions

by adding regularization terms to incorporate problem-specific prior

knowledge and/or constraints. In particular, we have implemented

(i) a Tikhonov regularization scheme to incorporate possible prior

knowledge about inputs and parameters, expressed as reference sets

uref; prefð Þ; (ii) a penalty on the second order derivative of the esti-

mated inputs to avoid wild oscillations and ensure convexity in the re-

sulting input profiles. The resulting regularization terms are given by:

Jreg
outer ¼ Jouter þRu þ Rp þ Rd2 (14)

Ru ¼ a �
Pnu

i¼1ðuiðtÞ � ui;refðtÞÞ2

nu � tf
(15)

Rp ¼ b �
Pnp

j¼1 pj � pj;ref

� �2

np
(16)

Rd2 ¼ x �
Xnu

i¼1

ðtf

0

d2ui tð Þ
dt2

dt (17)

where Jouter is the cost function, that is considered to be regularized,

and a, b and x are the regularization parameters, i.e. the weights

balancing prior knowledge and information in the data. Although a

number of regularization tuning methods have been developed to

choose these weights, for the general non-linear case this tuning re-

mains an open question (Gábor and Banga, 2015). Here, we have

adopted an iterative re-optimization scheme, similar to that of the

L-curve method, where these weights are reduced in each re-

optimization. As shown in the case studies below, we have found

that these regularization terms can be very helpful for the incorpor-

ation of prior knowledge regarding the qualitative behavior of the

inputs. For instance, we might want to avoid wild oscillations in the

recovered inputs, or to impose a certain behavior compatible with

the biochemical mechanisms (e.g. a decreasing profile for any spe-

cies being degraded).

2.3.2 Implementation

The code implementing the case studies reported here is available at

https://zenodo.org/record/1009541. This code makes use of the

above numerical strategy, which has been implemented as a soft-

ware (add-on) module for the AMIGO2 toolbox (Balsa-Canto et al.,

2016). This new IOC add-on is available at https://sites.google.com/

site/amigo2toolbox/home/amigo2_ioc. In all the computations re-

ported here, we have used the eSS optimizer, a hybrid global-local

optimization meta-heuristic available in AMIGO2.

2.4 Remarks about identifiability
Identifiability considers the possibility of uniquely inferring model

parameters from experimental data (Walter and Pronzato, 1997).

A model is structurally identifiable if it is theoretically possible to es-

timate its parameters under the ideal scenario of continuous noise

free data. A model is identifiable in practice if (i) it is structurally

identifiable, and (ii) we have sufficiently rich experimental data to

achieve high-quality parameter estimates.

This fundamental question becomes even more relevant in the case

of IOCPs, where we seek the simultaneous identification of parameters

and time-dependent inputs. The latter will in general imply the add-

ition of further degrees of freedom, thus inducing lack of structural

identifiability. We illustrate this in Figure 2 with a simple example re-

garding the reaction X1 !
u;k1

X2!
k2

which involves an inducer concen-

tration, u. The reactant X1 is present in excess, therefore we assume

that its concentration x1 is known and constant throughout the pro-

cess. We can observe x2 dynamics. The production and degradation

rates have kinetic parameters k1 and k2. We considered a simple case

in which u follows an exponential decay, u tð Þ ¼ kue�ktt. Figure 2 illus-

trates how different combinations of k1 and ku produce exactly the

same x2 profile for the same value of the product k1ku. In other words,

for this simple example, it will not be possible to individually identify

k1 and ku but only their product. Other illustrative examples can be

found in the Supplementary Material.

Assessing the structural identifiability of a non-linear dynamic

model can be a rather complicated task. The analysis requires sym-

bolic manipulation, which may become computationally prohibitive

(Chis et al., 2011b). Trägårdh et al. (2017) is one of the few studies

that has considered identifiability in an input estimation problem,

Fig. 2. Illustrative example of lack of structural identifiability in IOCP. The fig-

ure shows a forward problem where two different input profiles (ku ¼ 1 and

ku ¼ 0:5, with uðtÞ ¼ ku expð�0:1tÞ) result in the same output y. Thus, if we at-

tempt to solve the inverse problem using observations of this output y, it will

not be possible to uniquely recover the input, even for the ideal case of con-

tinuous noise-free measurements of the output
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analyzing parametric and stimuli structural identifiability separately.

Here we have considered alternative possibilities to assess the identi-

fiability of the IOCP formulation presented above. Since the struc-

tural identifiability of the general IOCP is (to the best of our

knowledge) an open question, we have considered special cases

where we could exploit the possibilities offered by methods de-

veloped in the context of parameter estimation (Chis et al., 2011b).

For example, a Taylor series approach can be applied by either using

time-dependent control parameterizations, or by assuming that the

successive time derivatives of the stimuli (as evaluated at t ¼ 0þ) are

unknown parameters to be considered simultaneously alongside the

model parameters p. Also, we can apply the generating series ap-

proach as implemented in GenSSI (Chis et al., 2011a), provided the

stimuli are parametrized using continuous bounded functions of

time. We illustrate the use of both approaches in the Supplementary

Material.

2.5 Remarks about the reconstruction of the optimality

principles
Although optimality principles have been studied at different levels

of organization of biological systems, the case of metabolic net-

works deserves special attention. Heinrich et al. (1991) reviewed

this topic in the early 1990s, stating several key ideas. First, the

structural design and functioning of these networks are the outcome

of evolution, which can be considered an optimization process.

Second, the optimality assumption for these systems is supported by

the fact that experimental perturbations (e.g. mutations) typically

result in worse function. Third, the cost functions more frequently

used were (i) maximization of fluxes, (ii) minimization of the con-

centration of metabolic intermediates, (iii) minimization of transient

times, (iv) maximization of the sensitivity to external signals and (v)

maximization of thermodynamic efficiencies. It should be noted that

at that time most studies were restricted to stationary states.

Later, Klipp et al. (2002) explicitly considered dynamics and

used the concept of minimum transition time to derive optimal tem-

poral gene expression profiles, based on the assumption that cells

have developed optimal adaptation strategies as an evolutionary re-

sponse to changing environmental conditions. Notably, these predic-

tions were experimentally confirmed by Zaslaver et al. (2004) for

linear pathways, and agreed with earlier experimental observations.

A detailed account can be found in Bartl et al. (2010), who make the

case for a closely related cost function, the minimization of the oper-

ation time of substrate to product conversion, with an upper bound

on the total amount of enzymes at any given time. These authors

show how this alternative cost produces the same temporal pattern

in linear pathways (just-in-time expression), while still being consist-

ent with the assumption that high fitness requires high flux.

Although the vast majority of studies in this field have con-

sidered single cost functions, it is interesting to realize that Heinrich

et al. (1991) had already suggested the use of multicriteria optimal-

ity, a concept further motivated in their later book (Heinrich and

Schuster, 1996). The motivation was based on the idea that appro-

priate objective functions must be used to evaluate the efficiency (fit-

ness) of a given system, and that it is very unlikely that the structure

and dynamic behavior of current metabolic networks can be ex-

plained on the basis of a single objective, especially considering their

many biological functions and the interactions between them. To

the best of our knowledge, de Hijas-Liste et al. (2014) were the first

to use multicriteria optimal control in the context of metabolic path-

ways, predicting the full set of best trade-offs (known as the Pareto

set) between conflicting objectives.

Here we adopt this multicriteria view for the inverse problem of

finding the underlying optimality principles. The method presented

above for the general IOCP-2 problem starts from a list of candidate

cost functions, and aims to find the point in the Pareto set which

agrees with the experimental data and where the reconstructed in-

puts agree with the observed ones (although the latter are not used

in the solution of the inverse problem).

3 Results

We present results for several challenging case studies. We first con-

sider a problem of input estimation (IOCP-1). A second, more chal-

lenging problem of the same class is presented in the Supplementary

Material to illustrate the scalability of the method regarding the

IOCP-1 class. Next we present two instances of the more general

IOC problem (IOCP-2). Simulated data (i.e. pseudo experimental

data generated by simulation with different noise levels) are used in

order to better assess the methodology. In these scenarios using

simulated data, the true input functions (and optimality criteria, in

the case of IOCP-2) are known and therefore we can carefully ana-

lyze the performance and accuracy of the method. However, it

should be noted that in two cases we also consider scenarios with

real data. The goodness of fit is evaluated using the normalized root

mean square error (NRMSE; more details and other metrics in the

Supplementary Material). All the computations were carried out on

a PC Intel Xeon E5-2630@2.30 GHz using Matlab R2015B under

Windows 7.

3.1 Case study JAK-STAT: input reconstruction for the

JAK2-STAT5 signaling pathway
This case study is an example of IOCP-1, based on the problem con-

sidered by Schelker et al. (2012), where we seek the simultaneous in-

put reconstruction and parameter estimation in a dynamic model of

the JAK2-STAT5 signaling pathway. The detailed mathematical

statement is given in the Supplementary Material. The problem has

one time-dependent stimulus (pEpoR, which is treated as unknown

here), nine internal state variables and two observables. Real meas-

urements are available for both the observables and the stimulus.

Our aim here is to simultaneously estimate the model parameters

and the time-dependent trajectory for the input (stimulus), using

only the experimental data for the observables in the cost function.

The estimated input is then compared with the (unused) measure-

ments of pEpoR. In other words, we only use the pEpoR measure-

ments for the a posteriori analysis of the goodness of the input

estimation.

This example is well suited to illustrate the importance of identifi-

ability analysis in this class of problems. We provide a detailed struc-

tural identifiability analysis in the Supplementary Material, revealing

that it is not possible to uniquely and simultaneously estimate all

model parameters and pEpoR(t). In particular, p1, p4 and the scaling

parameters are structurally non-identifiable. Based on this, we con-

sidered the problem of estimating p2�3, the offsets and pEpoR(t).

Scaling parameters were fixed to nominal values. A piecewise linear

approximation for the input pEpoR(t) was considered. Based on the

nature of the stimulus, we used regularization to avoid wild oscillatory

behavior and over-fitting (i.e. fitting the noise instead of the signal).

The results are depicted in Figure 3, showing a good agreement

(NRMSE ¼ 0.142) between the estimated input and the input meas-

urements (not used in our method), and a very good fit of the model

predictions to the observed states measurements (NRMSE ¼ 0.084).

Computation times were in the range of 1–4 min.
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In the Supplementary Material, we include detailed results for two

additional scenarios: (i) a subcase considering the ideal scenario of syn-

thetic noiseless data, for which we achieve almost perfect estimations

for both inputs and parameters, and (ii) a subcase using synthetic data

generated with the addition of 5% heteroscedastic proportional noise.

3.2 Case study LPN3B: linear pathway with three

enzymatic reactions
This is a first example of the more general IOCP-2 problem class,

where we seek to identify the underlying optimality criteria along

with the time-dependent stimuli and the time-invariant parameters

considering a metabolic pathway model. This problem is a general-

ization of the dynamic optimization problem considered by de

Hijas-Liste et al. (2014), based on the study by Bartl et al. (2010). In

brief, we consider a linear chain of enzymatic reactions where the

hypothesis is that the time-dependent enzyme concentrations corres-

pond to an optimal trade-off between minimum conversion time

and minimum accumulation of intermediates. The corresponding

Pareto front is shown in Figure 4. We take the upper left (circled)

point as reference, and generate pseudo-experimental data for those

conditions. Then we consider the inverse problem of recovering the

inputs and the optimality trade-off from the data. From an optimal

control perspective, this case study is computationally challenging

due to its multimodality and the presence of algebraic path con-

straints on the states and the stimuli. We have assumed that the sys-

tem is fully observed, and we generated pseudo-experimental data

for two subcases: LPN3B0 (noiseless data) and LPN3B10 (data with

10% heteroscedastic proportional noise). The detailed mathematical

statement is given in the Supplementary Material.

First, we performed a structural identifiability analysis, revealing

that it is not possible to simultaneously and uniquely estimate the

kinetic constants and the time-dependent enzyme profiles. We also

confirmed this property numerically, i.e. we were able to obtain dif-

ferent combinations of enzyme activation profiles and kinetic par-

ameters which result in the same good fit to the data (full details of

these identifiability issues are given in the Supplementary Material).

Next, in order to handle this lack of structural identifiability, we

used prior knowledge so as to enforce a unique numerical solution.

This prior information was embedded into the regularization scheme

and the selected bounds. We also considered several types of control

parameterizations for the inputs (enzyme activation profiles). We

achieved a very good reconstruction of the original stimuli trajectories

and the parameter values in both subcases. The goodness of the input

estimation for the noisy subcase is given in Figure 4, showing a re-

covered just-in-time activation profile in good agreement with the true

one (not used in the reconstruction). Note that the corresponding

NRMSE of 14% is due to the small shifts in the switching times.

Computation times were in the range of 1–20 min. Further details for

both subcases can be found in the Supplementary Material.

3.3 Case study SC: central metabolism of

Saccharomyces cerevisiae during diauxic shift
As a second example of problem IOCP-2, we considered the dy-

namics of the central metabolism of yeast during diauxic shift in a

nutrient depletion scenario. Our formulation is based on the prob-

lems studied by Klipp et al. (2002) and de Hijas-Liste et al. (2014),

where the model considers six reactions: upper and lower glycolysis,

ethanol formation and ethanol consumption, the TCA cycle and the

respiratory chain. This description results in 9 dynamic states, 8 par-

ameters and six time-dependent enzyme concentrations. In the previ-

ous study by de Hijas-Liste et al. (2014), the objective was to find

the enzyme activation profiles so as to compute the Pareto set of op-

timal control considering two objective functions (survival time and

enzyme synthesis cost). A path inequality constraint is used to ensure

that concentrations of NADH and ATP remain above critical values

at all times. In other words, Pareto-optimal enzyme profiles were

computed which ensure long-term homeostasis of key metabolites

under conditions of a diauxic shift.

Here, we formulate a synthetic problem by selecting a reference

point in the Pareto front and considering the full IOC problem:

given synthetic time-series data for the observed states at such a ref-

erence point, estimate the model parameters, the inputs (enzyme

time-dependent activation profiles) and the optimality criteria which

best explain such data.

This case study is more complex than LPN3B, including more

time-dependent stimuli and several challenging path constraints on

the concentrations of NADH and ATP. The detailed mathematical

Fig. 3. Case study JAK-STAT: estimated versus measured input (pEpoR) pro-

files, along with the fit for the two observables (y1 and y2). The lower left sub-

figure shows the goodness of the estimation as measured by the NRMSE

with respect to the observables (y) and the input (u)

Fig. 4. Case study LPN3B10: Pareto front (optimal trade-offs for the cost func-

tions) indicated the reference point selected for the IOCP-2 problem. The

good agreement between estimated and true inputs is shown in the figure

inset. The error of the estimation is NRMSEy ¼ 0:13 and NRMSEu ¼ 0:14
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formulation and a diagram of the network are given in the

Supplementary Material. We considered two different subcases based

on the generated synthetic data: SC0 (noiseless) and SC10 (noisy, with

10% heteroscedastic proportional noise). Note that this case study is

particularly interesting because real experimental data are also avail-

able, allowing qualitative comparisons (Klipp et al., 2002).

As expected, the problem is very ill-conditioned and exhibits

identifiability issues of a similar nature to those in Section 3.2. The

controls ei appear only multiplying the parameters, making both of

them structurally unidentifiable. Therefore, to reduce the identifi-

ability issues, we re-formulated the model, estimating the products

of parameters and stimuli (details in the Supplementary Material).

This re-formulated problem has nine dynamic states, two param-

eters and six time-dependent products of enzyme concentrations and

kinetic parameters which we consider as our new inputs.

The results for the noiseless subcase SC0 are given in the

Supplementary Material, showing a very good reconstruction of the

inputs (NRMSEu ¼ 0:2) and an almost perfect fit to the data

(NRMSEy ¼ 0:001). The more realistic SC10 subcase was also suc-

cessfully solved, showing that despite the 10% noise, our method-

ology was able to find a very reasonable reconstruction of the inputs

(NRMSEu ¼ 0:29), and therefore a good identification of the opti-

mality trade-off explaining the dynamics. In Figure 5 we show the

matching between the estimated and the true input values, the cor-

responding fit of the estimated states to the data and the NRMSE

values. Computation times were in the range of 15–90 min.

It is worth discussing the biological meaning of the estimated

states and inputs. At early times, enzyme e1 shows a peak of activity

which allows the rapid consumption of glucose. Enzyme e2 and e3

also present significant activity at early times, resulting in the pro-

duction of ethanol while glucose is still present. Later on, e4 in-

creases its activity, so ethanol is consumed to maintain the required

levels of NADH and ATP. These results are consistent with the

observed behavior of diauxic shift of yeast under glucose starvation

conditions. An additional qualitative comparison with experimental

data is given in the Supplementary Material.

4 Conclusions

Here we consider the question of systematically inferring optimality

principles in cellular pathways from noisy dynamic data. We present

a general IOC framework to address this question, where the object-

ive is to simultaneously identify the underlying optimality principle,

as well as the time-dependent inputs and time-invariant model par-

ameters. We present a solution strategy where the IOCP is decom-

posed into an optimal tracking problem and a multi-criteria optimal

control problem. As a special case, we also consider the subproblem

of input and parameter estimation from noisy data.

Importantly, we discuss the existence and implications (in terms

of fundamental limitations) of structural identifiability issues in the

above problems. Further, we present a robust computational solu-

tion strategy based on regularized cost functions and the use of suit-

able direct numerical methods based on the control-vector

parameterization approach. To avoid convergence to local solutions,

we make use of hybrid global-local optimization methods.

We illustrate the performance of this framework by successfully

solving several challenging case studies dealing with biochemical

pathways of increasing size and complexity, including scenarios

with simulated and real data. We highlight the importance of ana-

lyzing the structural identifiability issues present in these problems.

We show how the limitations arising from these issues can be sur-

mounted by model reformulation and/or the exploitation of prior

knowledge. Similarly, practical identifiability issues (due to lack of

information in the data) could be surmounted by incorporating

more informative experiments and/or by performing model-

reduction. Finally, we find that the methodology exhibits a satisfac-

tory scalability in terms of computational cost as a function of prob-

lem size (details are provided in the Supplementary Material). It

should be noted that large speedups could be obtained by exploiting

the inherent parallelism of the methodology.

Funding

This research was supported by the European Union’s Horizon 2020 research and

innovation program under grant agreement No 675585 (MSCA ITN ‘SyMBioSys’)

and from the Spanish MINECO/FEDER projects SYNBIOFACTORY [grant num-

ber DPI2014-55276-C5-2-R], SYNBIOCONTROL [DPI2017-82896-C2-2-R] and

IMPROWINE [grant number AGL2015-67504-C3-2-R]. N.T. is a MSCA ESR at

IIM-CSIC (Spain).

Conflict of Interest: none declared.

Fig. 5. Case study SC: estimated versus true input values (left; NRMSE ¼ 0.29), and the corresponding fit to observed data (right; NRMSE ¼ 0.13), for the SC10

(10% noise) subcase
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