
Sequence analysis

SECLAF: a webserver and deep neural network

design tool for hierarchical biological sequence

classification

Balázs Szalkai1,* and Vince Grolmusz1,2,*

1PIT Bioinformatics Group, Institute of Mathematics, Eötvös University, H-1117 Budapest, Hungary and 2Uratim Ltd,

H-1118 Budapest, Hungary

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on August 14, 2017; revised on February 22, 2018; editorial decision on February 24, 2018; accepted on February 26, 2018

Abstract

Summary: Artificial intelligence tools are gaining more and more ground each year in bioinformatics.

Learning algorithms can be taught for specific tasks by using the existing enormous biological data-

bases, and the resulting models can be used for the high-quality classification of novel, un-categorized

data in numerous areas, including biological sequence analysis. Here, we introduce SECLAF, a web-

server that uses deep neural networks for hierarchical biological sequence classification. By applying

SECLAF for residue-sequences, we have reported [Methods (2018), https://doi.org/10.1016/j.ymeth.

2017.06.034] the most accurate multi-label protein classifier to date (UniProt—into 698 classes—AUC

99.99%; Gene Ontology—into 983 classes—AUC 99.45%). Our framework SECLAF can be applied for

other sequence classification tasks, as we describe in the present contribution.

Availability and implementation: The program SECLAF is implemented in Python, and is available

for download, with example datasets at the website https://pitgroup.org/seclaf/. For Gene Ontology

and UniProt based classifications a webserver is also available at the address above.

Contact: grolmusz@pitgroup.org or szalkai@pitgroup.org

1 Introduction and motivation

New biological sequences are identified and submitted to public repo-

sitories by the thousands every day. The classification and annotation

of these data is a demanding task. A frequent requirement is the hier-

archical classification of the data, where data items need to be inserted

in a pre-defined hierarchy, like a phylogenetic tree, a protein ontology-

or a gene ontology graph. One possible solution for sequence classifica-

tion could be the application of advanced artificial intelligence tools,

such as artificial neural networks (McCulloch and Pitts, 1943). In a

previous work (Szalkai and Grolmusz, 2018) we have constructed a

framework, called SECLAF (Sequence Classification Framework), and

have demonstrated its considerable power by multi-label classification

of UniProt (UniProt Consortium, 2009) and Gene Ontology (Gene

Ontology Consortium, 2015) entries. As we have demonstrated in

(Szalkai and Grolmusz, 2018), the SECLAF produces the most accur-

ate artificial neural network for residue sequence classification to date

(for UniProt–into 698 classes–AUC 99.99%; for Gene Ontology–into

983 classes–AUC is 99.45%).

Here, we publish the downloadable SECLAF program, and, add-

itionally, a pre-configured webserver at https://pitgroup.org/seclaf/.

Our goal was to create a tool for designing deep neural networks

which classify biological sequences. To make SECLAF user-friendly,

only the input dataset (training and testing data) should be given in

a certain format, but the neural network architecture and hyper-

parameters can be supplied in a human-readable JSON file.

Preparation of the input data must be done by the user, but after

that, no more coding is required.

2 Materials and methods

We implemented SECLAF in Python 3, using the neural network li-

brary Tensorflow (Abadi et al., 2016; Abadi, 2016; Rampasek and

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2487

Bioinformatics, 34(14), 2018, 2487–2489

doi: 10.1093/bioinformatics/bty116

Advance Access Publication Date: 27 February 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/14/2487/4911884 by guest on 10 April 2024

https://doi.org/10.1016/j.ymeth.2017.06.034]
https://doi.org/10.1016/j.ymeth.2017.06.034]
https://pitgroup.org/seclaf/
Deleted Text:
Deleted Text:
Deleted Text:
Deleted Text:
https://pitgroup.org/seclaf/
https://academic.oup.com/

Goldenberg, 2016). Tensorflow is a relatively new framework cre-

ated by Google which allows one to define and train neural net-

works at various levels of abstractions. We chose Tensorflow

because it is easy to install, supports low level operations which

eliminates the need for writing CUDA code when defining new

layers and performs automatic differentiation. In addition, it is suffi-

ciently fast when compared to the other options.

3 Implementation and usage

When training a neural network, the input of SECLAF should con-

sist of the following files:

• the tree file: a hierarchy of the sequence classes (classes.tre),
• the training set: a file containing the training sequences along

with their classification (train_set.ann),
• the test set: a file with the testing sequences and their annotations

(classifications), which must be a file with the same structure as

train_set.ann, and
• a file containing the network configuration and various necessary

parameters for training, testing and inference (config.json).

SECLAF can perform a hierarchical classification of sequences.

This includes non-hierarchical classification as a special case: if the

classes are pairwise disjoint and there is no implication between class

membership, the class hierarchy file should only contain a list of all

classes with no parent classes specified, along with the textual descrip-

tions of the classes. However, if there is an implication relationship

between some or all of the classes, e.g. they can be organized into a

tree with superclasses and subclasses, then this file should also contain

the logical implications between class memberships. For example, if

all sequences in class A also belong to class B, then being a member of

class A logically implies being a member of class B. In other words, a

relation can be defined on the classes, which we will call is_a after

Gene Ontology terminology (Gene Ontology Consortium, 2015).

Then A is_a B would mean that all the sequences in class A are mem-

bers of class B as well. In this case, the line describing class A in the

tree file must also contain a list of all the classes that are implied by A,

i.e. those classes X for which A is_a X.

SECLAF will use the information about class hierarchy in both

training and inference. In the training and test sets, the superclasses

do not have to be present if the sequences are properly annotated

with their corresponding subclasses because SECLAF will auto-

complete the annotations by including all parent classes and their

parents. In addition, when doing inference, SECLAF will output a

subgraph of the class hierarchy with no outgoing edges, meaning

that if class A is an output for some sequence S and another class B

is (indirectly or directly) implied by A, then B will also be present in

the output corresponding to sequence S. The exact format required

for the class hierarchy file (and also for the sequence container files)

is described in the readme file of SECLAF.

SECLAF implements a multi-label binary cross-entropy classifi-

cation loss on the output neurons (each of which represents a pos-

sible label), specified in detail in (Szalkai and Grolmusz, 2018).

There are a few minor differences because of the class hierarchy.

When training, all annotations (label sets for sequences) are aug-

mented with the possible ancestors of the labels in tree. This is to en-

sure that the annotations in the training set are consistent, i.e. if the

network is trained to classify a sequence into a specific class, then it

is also trained to classify that sequence into the parent class (and all

possible ancestor classes). When testing, inclusion of ancestor nodes

is not enforced, this should be learned by the network itself and thus

the user can verify whether their trained network can produce con-

sistent labellings of sequences or not. Inconsistencies in hierarchical

predictions may only arise when a node is predicted but one or more

of its parents are not. In this case, the predictions may be augmented

by including all parents of all nodes that were predicted.

In the configuration file, one can configure basic neural network

hyperparameters such as the learning rate, the learning rate decay

schedule, the weight decay, the batch size, the number of iterations

and parameters concerning class balancing. Constraints on the input

sequences and classes can also be given: their minimum length (the

neural network will have a lower bound on sequence length depend-

ing on the architecture), maximum length (if overly long sequences

cannot fit into GPU memory), the minimum class size (number of se-

quences) and the maximum depth in the class hierarchy to consider.

The input sequence encoding must also be specified in the config-

uration file, as the neural network cannot accept character se-

quences, only numeric values. SECLAF can encode both DNA and

protein sequences, but they cannot be mixed. Multiple encoding

methods are available. The most simple one (SimpleDnaEncoder,

SimpleAminoAcidEncoder) assigns the elements of a 4- or 20-

dimensional standard basis (i.e. one-hot vectors) to each nucleotide

or amino acid. A compact encoding method is available for DNA se-

quences (CompactDnaEncoder), which assigns a 3-dimensional vec-

tor to each nucleotide: the three components are all binary and

correspond to the purine/pyrimidine, strong/weak and amino/keto

dichotomies. Another method (CompactAminoAcidEncoder) as-

signs a 6-dimensional vector to each amino acid based on its chem-

ical properties, and the last one (BigAminoAcidEncoder) assigns the

concatenation of the two kinds of vectors (20- and 6-dimensional)

to each amino acid, thus yielding a 26-dimensional vector. For ex-

ample, BigAminoAcidEncoder will assign a matrix of size L�26 to

an input sequence with length L. If N denotes the minibatch size,

then a whole minibatch of sequences will be assigned a 3-rank array

with shape N�L�26. The network architecture must also be con-

figured in the config.json file. The architecture should be given

as a list of layers, excluding the input layer. The last one in the list

will be the output layer, which must be a fully connected layer with

the same number of outputs as the number of classes selected for

classification. SECLAF supports the following layers: 1-dimensional

convolution, 1-dimensional max pooling, batch normalization,

dropout, global max-pooling and fully connected (dense). As the in-

put of the network has a variable length, while its output has a fixed

length, SECLAF requires a global max-pooling layer at a point, after

which only batch normalization, dropout and fully connected layers

are allowed.

Two examples are available with SECLAF to demonstrate how

to use the program. One example classifies proteins into 983 Gene

Ontology classes; the other one is the same network architecture

applied for protein classification into 698 UniProt families. These

networks use all the supported layer types, so they provide a com-

prehensive example for describing a neural network in SECLAF.

Pre-trained networks are available for download for both examples

at https://pitgroup.org/static/seclaf_pretrain.

We remark that the running time of the training phase in

Example 1, where the number of sequences in the training set was

521 527, for 150 000 iterations, was 28 h on a single Geforce GTX

750Ti GPU with 4GB RAM. The training on a single Intel(R)

Core(TM) i7 860 CPU at 2.80 GHz would have taken 209 h

(8.7 days). This means that, according to our measurements, training

is about 7.4 times slower on this particular CPU that this particular

GPU. The gap is expected to be larger for high-end GPUs like the

Titan X.

2488 B.Szalkai and V.Grolmusz

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/14/2487/4911884 by guest on 10 April 2024

Deleted Text: ,
Deleted Text: and
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
https://pitgroup.org/static/seclaf_pretrain
Deleted Text: ,
Deleted Text: ,
Deleted Text: ours
Deleted Text: ours

Funding

This work was supported through the new national excellence program of the

Ministry of Human Capacities of Hungary [to B.S.]; and in part by the

VEKOP-2.3.2-16-2017-00014 program and the NKFI-126472 grant of the

Ministry for National Economy and the National Research, Development

and Innovation Office of Hungary, respectively [to V.G.].

Conflict of Interest: none declared.

References

Abadi,M. (2016) Tensorflow: learning functions at scale. In:

Proceedings of the 21st ACM SIGPLAN International Conference on

Functional Programming, Nara, Japan, 2016. pp. 1–1. ACM, New

York, NY, USA.

Abadi,M. et al. (2016) Tensorflow: a system for large-scale machine learn-

ing. In: Proceedings of the 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI). Savannah, GA, USA,

USENIX Association, pp. 265–283. https://www.usenix.org/conference/

osdi16

Gene Ontology Consortium. (2015) Gene ontology consortium: going for-

ward. Nucleic Acids Res., 43, D1049–D1056.

McCulloch,W.S. and Pitts,W. (1943) A logical calculus of the ideas immanent

in nervous activity. Bull. Math. Biophys., 5, 115–133.

Rampasek,L. and Goldenberg,A. (2016) TensorFlow: biology’s gateway to

deep learning? Cell Systems, 2, 12–14.

Szalkai,B. and Grolmusz,V. (2018) Near perfect protein multi-label classifica-

tion with deep neural networks. Methods, 132, 50–56.

UniProt Consortium. (2009) The universal protein resource (UniProt) 2009.

Nucleic Acids Res., 37 (Database issue), D169–D174.

SECLAF 2489

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/14/2487/4911884 by guest on 10 April 2024

Deleted Text: BS
Deleted Text: . VG is supported
Deleted Text: Conflict of Interest: The authors declare no conflicts of interest.
https://www.usenix.org/conference/osdi16
https://www.usenix.org/conference/osdi16

