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Abstract

Summary: Structural and physiochemical descriptors extracted from sequence data have been

widely used to represent sequences and predict structural, functional, expression and interaction

profiles of proteins and peptides as well as DNAs/RNAs. Here, we present iFeature, a versatile

Python-based toolkit for generating various numerical feature representation schemes for both

protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive

spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature de-

scriptors. It also allows users to extract specific amino acid properties from the AAindex database.

Furthermore, iFeature integrates 12 different types of commonly used feature clustering, selection

and dimensionality reduction algorithms, greatly facilitating training, analysis and benchmarking

of machine-learning models. The functionality of iFeature is made freely available via an online

web server and a stand-alone toolkit.

Availability and implementation: http://iFeature.erc.monash.edu/; https://github.com/Superzchen/

iFeature/.

Contact: jiangning.song@monash.edu or kcchou@gordonlifescience.org or roger.daly@monash.edu
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1 Introduction

In recent years, machine learning techniques have been increasingly

used as a powerful means to predict structural and functional prop-

erties of proteins and to assist in the annotation of genomic and

proteomic data (Larranaga et al., 2006; Libbrecht and Noble,

2015). In this regard, it has proven crucial to transform protein and

peptide sequences into effective mathematical expressions that de-

scribe their intrinsic correlation with the corresponding structural

and functional attributes (Chou, 2011). Over the past decades, an

increasing number of diverse feature encoding methods or descrip-

tors extracted from protein and peptide sequence information have

been proposed for improving various predictions. Applications in-

clude predicting protein structural and function classes (Chou and

Fasman, 1978), protein-protein interactions, protein–ligand inter-

actions (Cao et al., 2015; Shen et al., 2007), subcellular locations

(Chou and Shen, 2008), enzyme substrates (Barkan et al., 2010;

Rottig et al., 2010; Song et al., 2010), among others.

Several web servers and stand-alone software packages have

been developed to calculate a variety of structural and physicochem-

ical features, including PROFEAT (Li et al., 2006; Rao et al., 2011),

PseAAC (Shen and Chou, 2008), PseAAC-Builder (Du et al., 2012),

propy (Cao et al., 2013), PseAAC-General (Du et al., 2014), protr/

ProtrWeb (Xiao et al., 2015), Rcpi (Cao et al., 2015) and

PseKRAAC (Zuo et al., 2017). However, in addition to feature ex-

traction, feature selection and ranking analysis is an equally crucial

step in machine learning of protein structures and functions. To the

best of our knowledge, there is no universal toolkit or web server

currently available that integrates both functions of feature extrac-

tion and feature selection analysis. It is in this spirit that we de-

veloped iFeature, a versatile open-source Python toolkit that bridges

this gap. iFeature can be used not only to extract a great variety of

numerical feature encoding schemes from protein or peptide se-

quences, but also for feature clustering, ranking, selection and

dimensionality reduction, all of which will greatly facilitate users’

subsequent efforts to identify relevant features and construct effect-

ive machine learning-based models. In order to facilitate users’ inter-

pretability of outcomes, the clustering and dimensionality reduction

results can be visualized in form of scatter diagrams. iFeature also

supports the integration of different feature types, making it more

convenient to train models by combining different feature groups.

Lastly, we developed a user-friendly web server for iFeature.

2 Implementation

An important advantage of iFeature is that it integrates the multi-

faceted functionality of feature calculation, extraction, clustering,

selection and dimensionality reduction analysis. A complete list of

the 18 major encoding schemes is summarized in Table 1. We briefly

discuss below.

The first group includes six feature sets, i.e. amino acid com-

position, composition of k-spaced amino acid pairs (Chen et al.,

2013; Liu et al., 2017), enhanced amino acid composition, dipep-

tide composition, dipeptide deviation from expected mean

(Saravanan and Gautham, 2015) and tripeptide composition

(Bhasin and Raghava, 2004). The secondary group is labeled

‘grouped amino acid composition’, which also consists of five de-

scriptors (Table 1). For this group, 20 amino acid types are first

categorized according to their physicochemical properties, and

then the composition of each category is calculated. The third

group is the binary encoding scheme in which each amino acid is

represented by a 20-dimensional binary vector. The fourth group

includes three types of autocorrelation feature sets: normalized

Moreau–Broto autocorrelation, Moran autocorrelation and Geary

autocorrelation (Sokal and Thomson, 2006). This feature group

allows users to select properties from the AAindex database

(Kawashima et al., 2008). The fifth group consists of three feature

sets: composition, transition and distribution (Dubchak et al.,

1995, 1999). The sixth group is the conjoint triad (Shen et al.,

2007). The seventh group contains two sequence-order feature

sets, sequence-order-coupling number and quasi-sequence-order

(Chou, 2000; Chou and Cai, 2004; Schneider and Wrede, 1994).

The eighth group includes the pseudo-amino acid composition and

the amphiphilic pseudo-amino acid composition (Chou, 2001,

2005). The ninth group includes two K-nearest neighbor features:

KNNprotein and KNNpeptide (Chen et al., 2013). The tenth

group is the PSSM encoding scheme, which extracts features from

the position-specific scoring matrix (PSSM; Altschul, 1997) gener-

ated by PSI-BLAST. The eleventh group is the AAindex encoding

scheme where each amino acid is represented by a 531-dimen-

sional vector (Tung and Ho, 2008). The twelfth group is the

BLOSUM matrix-derived descriptor (Lee et al., 2011). The thir-

teenth group is the Z-scale encoding where each amino acid is rep-

resented by five physicochemical descriptor variables. Feature

groups 14 to 17 are derived from information about the predicted

protein secondary structure, disorder, accessible surface area and

torsional angles, respectively. The last group includes 16 types of

pseudo K-tuple reduced amino acid compositions (Zuo et al.,

2017).

Moreover, as high-dimensional features can potentially cause

over fitting or high-dimensional disaster (Bellman and Bellman,

1961) and increase of redundant information, machine learning

models trained using such high-dimensional initial features often

perform poorly in practice. To solve this problem, iFeature further

integrates several commonly used feature clustering, selection and

dimensionality reduction algorithms to filter out redundant fea-

tures and retain the useful and relevant ones. All implemented fea-

ture analysis algorithms are listed in Table 2. All clustering

methods support sample and feature clustering procedures. In

cases where users are not familiar with computer programming

using Python, we also implemented an online web server of

iFeature. It is configured on the extensible cloud computing facility

supported by the e-Research Centre at Monash University,

equipped with 16 cores, 64 GB memory and a 2 TB hard disk. This

configuration can be easily upgraded in line with increasing user

demands in the future.

3 Results

In this work, we have developed iFeature, a comprehensive, flexible

and open-source Python toolkit for generating various sequences,

structural and physiochemical features derived from protein/peptide

sequences. iFeature also allows users to integrate various feature

clustering, selection and dimensionality reduction algorithms that

facilitate feature importance analysis, model training and bench-

marking of machine learning-based models. iFeature has been exten-

sively tested to guarantee correctness of computations, and was

purposely designed to ensure workflow efficiency. To the best of our

knowledge, this is the first universal toolkit for integrated feature

calculation, clustering and selection analysis. In the future, we will

integrate more analysis and clustering algorithms to enable inter-

active analysis and machine learning-based modeling. iFeature is ex-

pected to be widely used as a powerful tool in bioinformatics,

computational biology and proteome research.
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