
Data and text mining

pymzML v2.0: introducing a highly compressed

and seekable gzip format

M. Kösters1, J. Leufken1,2, S. Schulze1, K. Sugimoto1, J. Klein3,

R. P. Zahedi4,5, M. Hippler1, S. A. Leidel2 and C. Fufezan1,6,*

1Institute of Plant Biology and Biotechnology, WWU Münster, Münster 48143, Germany, 2Max Planck Institute for

Molecular Biomedicine, Münster 48149, Germany, 3Bioinformatics Program, Boston University, One Silber Way,

Boston 02215, MA, USA, 4Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University,

5100 de Maisonneuve Boulevard West, Suite 720, Montreal, Quebec H4A 3T2, Canada, 5Segal Cancer Proteomics

Centre, Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte-Sainte-Catherine Road,

Montreal, Quebec H3T 1E2, Canada and 6Cellzome A GSK Company, Heidelberg 69117, Germany

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on August 11, 2017; revised on January 6, 2018; editorial decision on January 14, 2018; accepted on January 30, 2018

Abstract

Motivation: In the new release of pymzML (v2.0), we have optimized the speed of this established

tool for mass spectrometry data analysis to adapt to increasing amounts of data in mass spectrom-

etry. Thus, we integrated faster libraries for numerical calculations, improved data retrieving algo-

rithms and have optimized the source code. Importantly, to adapt to rapidly growing file sizes, we

developed a generalizable compression scheme for very fast random access and applied this con-

cept to mzML files to retrieve spectral data.

Results: pymzML performs at par with established C programs when it comes to processing times.

However, it offers the versatility of a scripting language, while adding unprecedented fast random access

to compressed files. Additionally, we designed our compression scheme in such a general way that it

can be applied to any field where fast random access to large data blocks in compressed files is desired.

Availability and implementation: pymzML is freely available on https://github.com/pymzML/

pymzML under GPL license. pymzML requires Python3.4þand optionally numpy. Documentation

available on http://pymzml.readthedocs.io.

Contact: christian@fufezan.net

1 Introduction

The rise of high-throughput methods in modern mass spectrometry,

has triggered the demand for tools to analyze data with new and

complex experimental setups. The two key elements at the forefront

of computational mass spectrometry method development are rapid

development cycles, by using e.g. scripting languages, such as

Python and most importantly standardized file formats.

With pymzML we have pioneered the scripting language access to

the mzML file format (Bald et al., 2012), which has been proven to be

very powerful in different projects (Kukuczka et al., 2014; Röst et al.,

2015). Subsequently, other scripting implementations, such as pyteo-

mics (Goloborodko et al., 2013) and pyOpenMS (Röst et al., 2014),

highlighted the need for rapid development cycles. Python is well

suited for such a task, due to its high flexibility, extendability and

platform independence. Additionally, the Python community is very

large, especially in the scientific computing area as manifested by the

large number of highly optimized, stable and open source packages.

Thus, pymzML v2.0 could be build using the latest optimized libraries

for numerical calculations, that e.g. accelerate vectorized calculations

(TIC calculation or normalizations). Since pymzML is widely used in

computational mass spectrometry method development, we further

extended its API towards user written file interface plugins, to allow

tailored pipelines for non-standard data analysis to be developed that

maintain downstream compatibility. Finally, we integrated the

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2513

Bioinformatics, 34(14), 2018, 2513–2514

doi: 10.1093/bioinformatics/bty046

Advance Access Publication Date: 31 January 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/14/2513/4831092 by guest on 19 April 2024

https://github.com/pymzML/pymzML
https://github.com/pymzML/pymzML
http://pymzml.readthedocs.io
https://academic.oup.com/


interactive plotting library, plotly, to create a toolbox for visualizing

customizable annotated mass spectra and ion chromatograms.

The standard file format for storing and sharing mass spectrometry

data is mzML. It was defined by a joint effort of the Seattle Proteome

Center/Institute for Systems Biology and the HUPO PSI (Proteomics

Standards Initiative) (Deutsch, 2008). mzML is a human-readable

XML format, which comes at cost of a large file size due to the high

repetition of tags, names and white-spaces. This issue has been ad-

dressed by employing compression algorithms, e.g. golomb-rice-coding

(Golomb, 1966; Rice and Plaunt, 1971) [aka Numpress (Teleman

et al., 2014)] or zlib. These implementations compress the data arrays

which constitute most of the data within a mzML file. However, they

fail to reduce the size to RAW levels. Currently, the only strategy to

achieve such file size reductions is to apply gzip compression in com-

bination with zlib or golomb-rice-coding. Unfortunately, this sacrifices

random access the mzML files, which is a major drawback for many

computational mass spectrometry approaches.

In this update we enhance the performance of pymzML includ-

ing highly optimized numerical libraries and we have overcome the

limitation in compression approaches by the development of the

indexed gzip format (igzip). Our generalized API for igzip allows

any data to be stored into a highly compressed gzip file and retrieved

by user defined tags, e.g. spectrum IDs in the case of mzML.

2 Materials and methods

We determined general mzML parsing speed in order to evaluate

firstly, how the improved pymzML compares to the established C im-

plementation (Fig. 1a) and secondly, how the igzip format alters pars-

ing efficiency in general (Fig. 1b). As a benchmark, we used ten

different unindexed mzML files obtained from 4 different mass spec-

trometers with sizes ranging from 1.3 to 3.8 GB as dataset. Figure 1a

shows that C-implementations are still faster [ProteoWizard (Kessner

et al., 2008) 2.3�, OpenMS (Röst et al., 2016) 2�] while calculating

the total ion current (TIC), i.e. calculating the sum of all intensities in

every spectrum, which implies data decoding.

When using gzip compressed files, openMS and Proteowizard per-

form about 2� faster than pymzML whereas ProteoWizard is slightly

faster than openMS. It is important to note, that by tightly integrating

numpy into pymzML v2.0, any numerical and vectorial operations on

arrays, such as TIC calculations are about 50% faster than the previ-

ous pymzML v0.7 (Bald et al., 2012) (data not shown).

On average, uncompressed mzML is 4.9 times larger than RAW

and only the combination of zlib or golomb-rice-coding with gzip can

reach RAW level sizes (see online documentation). However, files

compressed using gzip do not offer random access. While index gzip

solutions exist, none are optimized for data blocks that largely exceed

the 64KB block size, like in mass spectrometry data. Therefore, we

have developed the index gzip format (igzip), which, in combination

with golomb-rice-coding or zlib allows files to be compressed to sizes

similar or smaller than RAW files while maintaining random access

capability (see online documentation for detailed file sizes). Figure 1b

shows the random access benchmark, where 10 randomly defined

spectra ID were accessed and decoded from each of the benchmark

files. In general random access in uncompressed (yet unindexed)

mzML is approximately two orders of magnitude faster when using

pymzML compared to ProteoWizard’s msaccess command line tool.

The fast random access of pymzML v2.0 in uncompressed mzML

files is due to our implementation of binary jumps within the file,

making the the index information obsolete. Random access in igzip

files is faster than in uncompressed files, since a) less data has to be

read from disk and b) no binary jumps are used, only one seek

operation is required to find the spectrum. A comparison to openMS

is not straightforward and was therefore not performed.

3 Conclusion

The tight integration with high performance numerical libraries

makes pymzML a very attractive module for computational mass

spectrometry.

Additionally, we introduced igzip to enable fast random access

in compressed files, allowing mzML files to be compressed back to

RAW levels while maintaining random access. Importantly, the igzip

strategy can be generally applied to data blocks that largely exceed

the 64KB block size, therefore igzip can be used in any other compu-

tational context.

Acknowledgements

We thank all contributors over the years for their valuable work with and on

pymzML, especially B. Akdeniz, H. Roest and M. Wolfson.

Conflict of Interest: none declared.

References

Bald,T. et al. (2012) PymzML-Python module for high-throughput bioinfor-

matics on mass spectrometry data. Bioinformatics (Oxford, England), 28,

1052–1053.

Deutsch,E. (2008) mzML: a single, unifying data format for mass spectrometer

output. Proteomics, 8, 2776–2777.

Goloborodko,A.A. et al. (2013) Pyteomics – a python framework for explora-

tory data analysis and rapid software prototyping in proteomics. J. Am. Soc.

Mass Spectrom., 24, 301–304.

Golomb,S.W. (1966) Run-length encodings. IEEE Transact. Inf. Theory, 12,

399–401.

Kessner,D. et al. (2008) ProteoWizard: open source software for rapid prote-

omics tools development. Bioinformatics (Oxford, England), 24,

2534–2536.

Kukuczka,B. et al. (2014) Proton gradient regulation5-like1-mediated cyclic

electron flow is crucial for acclimation to anoxia and complementary to non-

photochemical quenching in stress adaptation. Plant Physiol., 165, 1604.

Rice,R. and Plaunt,J. (1971) Adaptive variable-length coding for efficient compres-

sion of spacecraft television data. IEEE Trans. Commun. Technol., 19, 889–897.

Röst,H.L. et al. (2014) pyOpenMS: a Python-based interface to the OpenMS

mass-spectrometry algorithm library. Proteomics, 14, 74–77.

Röst,H.L. et al. (2015) Efficient visualization of high-throughput targeted

proteomics experiments: tAPIR: fig. 1. Bioinformatics, 31, 2415–2417.

Röst,H.L. et al. (2016) OpenMS: a flexible open-source software platform for

mass spectrometry data analysis. Nat. Methods, 13, 741–748.

Teleman,J. et al. (2014) Numerical compression schemes for proteomics mass

spectrometry data. Mol. Cell. Proteomics MCP, 13, 1537–1542.

(a) (b)

Fig. 1. (a) Calculating total ion current (TIC) benchmark comparing OpenMS,

Proteowizard and pymzML against each other. (b) Processing times in se-

conds required for accessing and writing a peak list file from a random spec-

trum using 10 files varying in size. X-axis, combination of file type and

program; Y-axis, processing time in seconds; note log scale

2514 M.Kösters et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/14/2513/4831092 by guest on 19 April 2024


