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Abstract

Motivation: Most genetic variants implicated in complex diseases by genome-wide association

studies (GWAS) are non-coding, making it challenging to understand the causative genes involved

in disease. Integrating external information such as quantitative trait locus (QTL) mapping of mo-

lecular traits (e.g. expression, methylation) is a powerful approach to identify the subset of GWAS

signals explained by regulatory effects. In particular, expression QTLs (eQTLs) help pinpoint the re-

sponsible gene among the GWAS regions that harbor many genes, while methylation QTLs

(mQTLs) help identify the epigenetic mechanisms that impact gene expression which in turn affect

disease risk. In this work, we propose multiple-trait-coloc (moloc), a Bayesian statistical framework

that integrates GWAS summary data with multiple molecular QTL data to identify regulatory ef-

fects at GWAS risk loci.

Results: We applied moloc to schizophrenia (SCZ) and eQTL/mQTL data derived from human brain

tissue and identified 52 candidate genes that influence SCZ through methylation. Our method can

be applied to any GWAS and relevant functional data to help prioritize disease associated genes.
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Availability and implementation: moloc is available for download as an R package (https://github.

com/clagiamba/moloc). We also developed a web site to visualize the biological findings

(icahn.mssm.edu/moloc). The browser allows searches by gene, methylation probe and scenario

of interest.

Contact: claudia.giambartolomei@gmail.com or panagiotis.roussos@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have successfully identified

thousands of genetic variants associated with complex diseases

(Visscher et al., 2012). However, the majority of the discovered asso-

ciations point to non-coding regions, making it difficult to identify the

causal genes and the mechanism by which risk variants mediate dis-

ease susceptibility. A potential approach to explore the mechanism of

risk non-coding variants is through integration with datasets that

measure the association of molecular phenotypes such as gene expres-

sion [expression quantitative trait locus (QTL) or expression QTL

(eQTL)] and DNA methylation (methylation QTL or mQTL). The

observation that the same variant is driving the association signal in

GWAS, and also affecting expression at a near-by gene and methyla-

tion site, could indicate a putative disease mechanism. Analyzing two

datasets jointly has been a successful strategy to identify shared gen-

etic variants that affect different molecular processes, in particular

eQTL and GWAS (Fromer et al., 2016; Gusev et al., 2016; Hauberg

et al., 2017; Zhu et al., 2016) and mQTL and GWAS integration

(Hannon et al., 2016a, b; Hannon et al., 2017; Jaffe et al., 2016). All

these previous efforts have focused on pairwise dataset integration

(e.g. eQTL and GWAS or mQTL and GWAS).

To our knowledge, a statistical approach to integrate more than

two datasets with information on genetic associations is lacking.

Therefore, we developed multiple-trait-coloc (moloc), a statistical

method to quantify the evidence in support of a common causal

variant at a particular risk region across multiple traits. Our ap-

proach is a multi-trait extension of our previously developed two-

trait model described in coloc (Giambartolomei et al., 2014). This

method can be used to compare association signals for multiple

phenotypes (molecular or complex disease traits), using summary-

level information from genetic association datasets.

To illustrate the advantage of a joint analysis in real data, we

applied moloc to schizophrenia (SCZ), a complex polygenic psychi-

atric disorder, using summary statistics from the most recent and

largest GWAS by the Psychiatric Genomics Consortium (PGC;

Schizophrenia Working Group of the Psychiatric Genomics

Consortium, 2014), which reported association for 108 independent

genomic loci. eQTL data were derived from the CommonMind

Consortium (Fromer et al., 2016), which generated the largest

eQTL dataset in the dorsolateral prefrontal cortex (DLPFC) from

SCZ cases and control subjects (N¼467). Finally, we leveraged

mQTL data that were previously generated in human DLPFC tissue

(N¼121) to investigate epigenetic variation in SCZ (Jaffe et al.,

2016). Integration of multiple phenotypes helps better characterize

the genes predisposing to complex diseases such as SCZ.

2 Materials and methods

2.1 Method description
We introduce moloc to detect colocalization among any number of

traits in a specific locus. The input of the model is the set of

summary statistics derived from three (or more) traits measured in

distinct datasets of unrelated individuals. In this manuscript, we

refer to traits (e.g. complex trait, gene expression and DNA methy-

lation) as a synonymous to datasets containing the information on

genetic associations (e.g. GWAS, eQTL and mQTL).

We define a genomic region containing Q variants, for example

a cis region around expression or methylation probe. We are inter-

ested in a situation where summary statistics (effect size estimates

and standard errors) are available for all datasets in the genomic re-

gion. We first derive our model using three traits, then generalize to

any number of traits. If we consider colocalization of three traits

(GWAS, eQTL and mQTL), under a maximum of a single causal

variant per trait, there can be up to three causal variants and 15 pos-

sible scenarios summarizing how the variants are shared among the

traits. Each hypothesis can be represented by a set of index sets ac-

cording to which of the traits each SNP is associated with (all

hypotheses are listed in Supplementary Table S1).

To illustrate our notation, consider a region with eight SNP. For

simplicity, we denote GWAS as G, eQTL as E and mQTL as M.

Four examples of configurations are shown in Figure 1. The ‘.’ in the

subscript denotes scenarios supporting different causal variants. For

instance, GE summarizes the scenario for one causal variant shared

between traits GWAS and eQTL (Fig. 1—Right plot top panel);

GE.M summarizes the scenario with one causal variant for traits

GWAS and eQTL, and a different causal variant for trait mQTL

(Fig. 1—Left plot bottom panel).

Our approach computes the evidence supporting the 15 possible

scenarios (H0. . .H14), of sharing of SNPs among traits in the given

genomic region. We first compute the posterior probability of any of

the 15 configurations by weighting the likelihood of the data D given

a configuration S, P(DjS), by the prior probability of a configuration,

P(S) (described below). We can reformulate the posterior probability

for each hypothesis as a ratio by dividing each by the baseline likeli-

hood supporting the first model of no association with any trait H0.

The probability of the data for hypothesis h is then the sum over all

configurations Sh, which are consistent with the given hypothesis:

PðHhjDÞ
PðH0jDÞ

¼
X
S2Sh

PðDjSÞ
PðDjS0Þ

� PðSÞ
PðS0Þ

(1)

where, P(DjS)/P(DjS0) is the Bayes Factor for each configuration

compared to the baseline configuration of no association with any

trait S0, P(S)/P(S0) is the prior odds of a configuration compared

with the baseline configuration S0, and the sum is over Sh, the set of

configurations supporting hypothesis H0 to H14. Similar to pairwise

colocalization (Giambartolomei et al., 2014) we then estimate the

evidence in support of different scenarios in a given genomic region

using the posterior probability supporting hypothesis h among H

possible hypothesis, computed from:

PPh ¼
PðHhjDÞPH

i¼0 PðHiÞ
¼

PðHh jDÞ
PðH0 jDÞ

1þ
PH

i¼1
PðHi jDÞ
PðH0 jDÞ

(2)
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Therefore, in our application, the method outputs 15 posterior prob-

abilities. We are most interested in the scenarios supporting a shared

causal variant for two and three traits.

We make three important assumptions in moloc, the same that

are made in our previous coloc methodology. Firstly, that the causal

variant is included in the set of Q common variants, either directly

typed or well imputed. If the causal SNP is not present, the power to

detect a common variant will be reduced depending on the linkage

disequilibrium (LD) between other SNPs included in the model and

the causal SNP. Secondly, we assume at most one causal variant is

present for each trait per locus. In the presence of multiple causal

variants per trait, this method is not able to identify colocalization

between additional association signals independent from the pri-

mary one. Thirdly, as we do not explicitly model LD between SNPs,

we assume the samples are drawn from the same ethnic population

and therefore have identical allele frequencies and patterns of LD.

2.2 Bayes factor of a SNP with one trait
We start by computing a Bayes Factor for each SNP and each trait

(i.e. GWAS, eQTL and mQTL). We assume a simple linear regres-

sion model to relate the phenotypes or a log-odd generalized linear

model for the case-control dataset, and the genotypes. Using the

Wakefield Approximate Bayes factors (WABF; Wakefield, 2009),

only the variance and effect estimates from regression analysis are

needed, as shown below and previously described (Giambartolomei

et al., 2014; Pickrell et al., 2016):

WABFj
i ¼

1ffiffiffiffiffiffiffiffiffiffiffi
1� r
p x exp �

Z2
ij

2
� r

" #
(3)

where Zij¼bb/�V is the usual Z statistic and the shrinkage factor r is the

ratio of the variance of the prior and total variance (r¼W/(VþW)).

The WABF requires specifying the variance W of the normal

prior. In the moloc method, we set W to 0.15 for a continuous trait

and 0.2 for the variance of the log-odds ratio parameter, as previ-

ously described (Giambartolomei et al., 2014). Another possibility is

to average over Bayes factors computed with W¼0.01, W¼0.1 and

W¼0.5 (Pickrell et al., 2016). We provide this as an option that can

be specified by the user. If the variance of the estimated effect size V

is not provided, it can be approximated using the allele frequency of

the variant f, the sample size N (and the case control ratio s for bin-

ary outcome; Giambartolomei et al., 2014):

2.3 Bayes factor of a SNP across more than one trait
To compute the BF where a SNP i associates with more than one

trait, we use:

BFi;s ¼
Y
j2s

BFj
i (4)

Where s is the set of trait indices for which SNP i is associated with.

Note that the computations under>1 trait multiply the individual

Bayes Factors together. This is equivalent to the Bayes Factor under

the maximum heterogeneity model used in Wen and Stephens (Wen

and Stephens, 2011). Two key assumptions are necessary for the fol-

lowing computations. Firstly, that the traits are measured in unre-

lated individuals. The datasets we used in the current analysis does

not contain overlapping individuals; however, we provide the code

to adjust for this. Secondly that the effect sizes for the two traits are

independent (Giambartolomei et al., 2014).

2.4 Prior probabilities that SNP i associates with traits

indexed in s
The prior probability that SNP i associates with all traits indexed in

a set in our three trait model is: pu SNP i associates with no trait,

with one trait, pairs or traits or all traits p{1, 2, 3} such that they

sum to 1: pu þp{1} þp{2}þp{3}þp{1, 2}þp{1, 3}þp{2, 3}þp{1, 2, 3}¼1.

2.5 Simplified model under the assumption that all

SNPs have the same prior
The probability of the data under each hypothesis can be computed

by summing the probability of all the causal configurations consist-

ent with a particular hypothesis, weighted by the prior probabilities

(Equation 1). In our model, P(S) is the prior probability under any

one of the 15 hypotheses. We can define these priors from the prior

probability that a SNP i associates with traits indexed in ps (section

above). Additionally, since the prior probability P(S) of any one con-

figuration in the different sets do not vary across SNPs that belongs

to the same set Sh, we can multiply the likelihoods by one common

prior supporting the different hypothesis (Giambartolomei et al.,

2014). In this framework, we can see that P(S) depends on a ratio of

ps and on Q, the number of SNPs in the region (Supplementary Text

S1), Therefore, across a set of j traits {1, 2, 3. . .,}, we compute the

probability of the data supporting hypothesis h, where one SNP is

associated with j traits as:

PðHhjDÞ
PðH0jDÞ

¼
Y
s2h

ps

XQ
i¼1

BFi;s (5)

where BFi, s are the Bayes factor of a SNP across traits indexed in s

(Equation 4), p are the prior probabilities that SNP i is the causal

SNP under a specific model.

The probability of the data where there are more than one inde-

pendent associations among the j traits (i.e. jhj>1) can be derived

Fig. 1. Graphical representation of four possible configurations at a locus with

eight SNPs in common across three traits. The traits are labeled as G, E, M rep-

resenting GWAS (G), eQTL (E) and mQTL (M) datasets, respectively. Each plot

represents one possible configuration, which is a possible combination of three

sets of binary vectors indicating whether the variant is associated with the se-

lected trait. Left plot top panel (GEM scenario): points to one causal variant be-

hind all of the associations; Right plot top panel (GE scenario): represent the

scenario with the same causal variant behind the GE and no association or lack

of power for the M association; Left plot bottom panel (GE.M scenario): repre-

sents the case with two causal variants, one shared by the G and E and a differ-

ent causal variant for M; Right plot bottom panel (G.E.M. scenario): represents

the case of three distinct causal variants behind each of the datasets considered
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from the pre-computed probability of the data where there is one as-

sociation among the j traits (i.e. jhj ¼1, Supplementary Text S1):

PðHhjDÞ
PðH0jDÞ

¼
Y
s2h

ps

XQ
i¼1

BFi;s �
Q

s2h cs

pt

XQ
i¼1

ptBFi;t (6)

where t is the union of the index set in h.

2.6 Prior probabilities of each hypothesis
In practice, we collapsed the prior probabilities to a smaller set for

each kind of configuration. We set the prior probability that a SNP

is causal in each trait to be identical (p{1}¼p{2}¼p{3}) and refer to

this a p1. We also set the prior probability that is associated with

two traits to be identical (p{1, 2}, p{2, 3}, p{1, 3}) and refer to this as p2.

We refer to the prior probability that SNP i the causal for all traits

(p{1, 2, 3}) as p3.

2.7 Moloc analysis
The GWAS, eQTL and mQTL datasets were filtered by minor allele

frequency greater than 5% and had individually been filtered by im-

putation quality (Supplementary Text S1). The Major

Histocompatibility (MHC) region (chr 6: 25 –35 Mb) was excluded

from all co-localization analyses due to the extensive LD and com-

plexity of the associations. We applied a genic-centric approach,

defined cis-regions based on a 50 kb upstream/downstream from the

start/end of each gene, since our goal is to link risk variants with

changes in gene expression. We evaluated all methylation probes

overlapping the cis-region. The number of cis-regions/methylation

pairs is higher than the count of genes because, on average, there are

more than one methylation sites per gene. Common SNPs were eval-

uated in the colocalization analysis for each gene, and each methyla-

tion probe, and GWAS. In total, 12 003 cis-regions and 481 995

unique cis-regions/methylation probes were tested. Genomic regions

were analyzed only if greater than 50 SNPs were in common be-

tween all the datasets. Across all of the analyses, a posterior prob-

ability equal to, or greater than, 80% for each configuration was

considered evidence of colocalization.

In order to compare colocalization of two trait analyses with

three traits, we applied our previously developed method [coloc

(Giambartolomei et al., 2014)]. Effect sizes and variances were used

as opposed to P-values, as this strategy achieves greater accuracy

when working with imputed data (Giambartolomei et al., 2014).

2.8 Simulations
We simulated genotypes from sampling with replacement among

haplotypes of SNPs with a minor allele frequency of at least 5%

found in the phased 1000 Genomes Project within 49 genomic re-

gions that have been associated with type 1 diabetes susceptibility

loci [excluding the major histocompatibility complex (MHC) as pre-

viously described (Wallace, 2013)]. These represent a range of re-

gion sizes and genomic topography that reflect typical GWAS hits in

a complex trait. For each trait, two, or three ‘causal variants’ were

selected at random. We have simulated continuous traits, and as-

sume that causal effects follow a multivariate Gaussian distribution,

with each causal variant explaining 0.01 variance of the trait in the

GWAS data and 0.1 in the eQTL and mQTL datasets. Note that

colocalization testing may be applied equally to quantitative data

(using linear regression), and to case control data (using logistic re-

gression). For the null scenario, the causal variants explain zero vari-

ance of the traits. To quantify false positive rates on a large number

of tests, we simulated the null 500 000 times. We simulated the 15

possible scenarios with different sharing patterns between the

GWAS, eQTL and mQTL datasets. We used sample sizes of 82,

315, 467 and 121 individuals to reflect our true sample sizes. We

also used different combinations of sample sizes to explore power to

detect the correct hypothesis.

We estimated the number of false positives within each simulated

scenario, by counting the proportion of simulations under the null

that passed a posterior probability supporting each of the 14

hypothesis at a particular threshold (PPA>¼threshold). We also

report the false positives using the sum of the posteriors

(PPA.abþPPA.ab.cþPPA.abc). The false positive rate is the num-

ber of false positives over 1000 simulations. We repeated this pro-

cedure using 500 000 simulations under our true sample sizes.

We next sought to compare the mis-classification rates, and

power to detect the correct hypothesis. To compute the number of

mis-classified calls within each simulated scenario, we counted the

proportion of simulations that passed a posterior probability sup-

porting a different hypothesis from the one simulated at a particular

threshold (PPA>¼threshold). We estimated power to distinguish a

particular hypothesis from the others by counting the proportion of

correctly identified simulations at a particular threshold

[PPA(true)>¼threshold]. Since in most cases the causal variant will

not be included in the panel, we repeated simulations after removing

the causal variant.

To explore the effect of LD on estimated posterior probability

we first computed an LD score for each SNP in the region, defined

as the sum of the squared correlation between a SNP and all the

SNPs in the region. To assess the degree of LD at a locus we took

the average of these scores. All analyses were conducted in R.

3 Results

3.1 Sample size requirements
In a first set of simulations we explored false positive rates

(Supplementary Fig. S1) and the posterior probability under differ-

ent sample sizes (Supplementary Figs S2 and S3). False positive rates

are below 0.05 even if a threshold of 0.3 for posteriors are used, and

where the causal variant is masked (Supplementary Fig. S1).

Figure 2A illustrates the posterior probability distribution across our

three scenarios of interest: GWAS and eQTL, alone or together with

mQTL. With a GWAS sample size of 10 000 and eQTL and mQTL

sample sizes of 300, the method provides reliable evidence to detect

a shared causal variant behind the GWAS and another trait (median

posterior probability of any hypothesis>50%). The posterior across

all of the possible scenarios is illustrated in Supplementary Figure

S2. Although in this paper we analyze GWAS, eQTL and mQTL,

our method can be applied to any combinations of complex disease

and molecular traits, including two GWAS traits and an eQTL data-

set. We explored the minimum sample size required when analyzing

two GWAS datasets (termed G1, G2) and one eQTL (E)

(Supplementary Fig. S3). The method provides reliable evidence for

all hypotheses when the two GWAS sample sizes are 10 000 and

eQTL sample size reaches 300. We then explored mis-classification

rates (Supplementary Tables S2–S4). When samples are 10 000 for

GWAS and greater than 300 for eQTL and mQTL, mis-

classification rates for detecting our hypotheses of interests at 80%

threshold are all below 0.05 (Supplementary Table S2). Where the

causal variant is masked, sample sizes also need to reach 10 000 for

GWAS and greater than 300 for eQTL and mQTL, for mis-classifi-

cation rates to be below 0.05 (Supplementary Table S3). Given the

small sample size for the mQTL data, the method has trouble
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detecting a different causal variant for the mQTL dataset

(Supplementary Table S4). For example, evidence pointing to two

different causal variants between GWAS and eQTL could be gener-

ated by the presence of three causal variants in reality, but the causal

variant for mQTL remains undetected. For this reason, we focused

on cases with shared casual variants between GWAS, eQTL, with or

without mQTL.

It is instructive to observe where evidence for other hypotheses is

distributed. Figure 2B illustrates the accuracy of our approach under

different scenarios where two or three causal variants are shared.

For example, under simulations of one shared variant for GWAS

and eQTL and a second variant for mQTL (GE.M), on average

60% of the evidence points to the simulated scenario, while 12%

point to GE, 12% to G.E.M and 7.2% to gene expression and

methylation (GEM).

3.2 Choice of priors
The method requires the definition of prior probabilities for the as-

sociation of a SNP with one (p1), two (p2), or three traits (p3). We

set the prior probability that a variant is associated with one trait as

1 x 10�4 for GWAS, eQTL and mQTL, assuming that each genetic

variant is equally likely a priori to affect gene expression or methyla-

tion or disease. This estimate has been suggested in the literature for

GWAS (Stephens and Balding, 2009) and used in similar methods

(Hormozdiari et al., 2016). We set the priors p2¼1 x 10�6, p3¼1

x 10�7 based on sensitivity and exploratory analysis of genome-

wide enrichment of GWAS risk variants in eQTLs and mQTLs. In

Supplementary Figure S4, we find eQTLs and mQTLs to be simi-

larly enriched in GWAS, justifying our choice of the same prior

probability of association across the two traits. These values are also

suggested by a crude approximation of p2 and p3 from the common

genome-wide significant SNPs across the three datasets.

We performed sensitivity analyses using different priors.

Specifically, we fixed p1 to 1 x 10�4 and tested a range of priors for

p2 and p3 from 1 x 10�5 to 1 x 10�8, with increasing difference be-

tween p1, p2 and p3. We used a form of internal empirical calibra-

tion to compare our prior and posterior expectations. We find that

the posterior expectation of colocalization most closely resembled

the prior expectation under our choice of priors (Supplementary

Table S5). We note that our R package implementation allows users

to specify a different set of priors. Additionally, we could vary the

prior probability of a SNP to be causal based on features of interest,

using estimates of the prior probability of a SNP to be causal given

specific annotations (Chung et al., 2014; Kichaev et al., 2014; Li

and Kellis, 2016; Pickrell, 2014). We demonstrate this utility by

applying fGWAS (Pickrell, 2014) to the SCZ dataset, together with

different chromatin marks measured in the DLPFC as profiled by

the Roadmap Epigenomics Consortium (Supplementary Text S1).

3.3 Co-localization of eQTL, mQTL and risk for SCZ
We applied our method to SCZ GWAS using eQTLs derived from

467 samples and mQTL from 121 individuals (Supplementary Text

S1). Our aim is to identify the genes important for disease through

colocalization of GWAS variants with changes in gene expression

and DNA methylation. We analyzed associations genome-wide, and

report results both across previously identified GWAS loci and

across potentially novel loci. While we consider all 15 possible scen-

arios of colocalization, here we focus on gene discovery due to

higher power in our eQTL dataset, by considering the combined

probabilities of cases where the same variant is shared across all

three traits GWAS, eQTLs and mQTLs (GEM>0.8) or scenarios

where SCZ risk loci are shared with eQTL only (GE>0.8 or

GE.M>0.8; Table 1 and Supplementary Table S1). We identified

1053 cis-regions/methylation pairs with posterior probability above

0.8 that are associated with all three traits (GEM), or eQTLs alone

(GE or GE.M). These biologically relevant scenarios affect overall

84 unique genes and include 39 genes that fall within the previously

identified SCZ LD blocks (Supplementary Table S6) and 45 poten-

tially novel genes outside of these regions (Supplementary Table S7).

Fifty-two out of the eighty-four candidate genes influence SCZ,

GEM (GEM>¼0.8). One possible scenario is that the variants in

these genes could be influencing the risk of SCZ through methyla-

tion, although other potential interpretations such as pleiotropy

should be considered.

3.4 Addition of a third trait increases gene discovery
We examined whether moloc with three traits enhance power for

GWAS and eQTL colocalization compared to using two traits. In

simulations to compare coloc and moloc under one causal variant

and our true sample sizes for all three datasets, we observe a fold in-

crease of 1.5 for gene discovery using moloc versus coloc. Moloc

with three traits recovers all the genes discovered using coloc with

eQTL and mQTL, and additional genes from the inclusion of the

third layer. In our real data, colocalization analysis of only GWAS

and eQTL traits identified 45 genes with a posterior probability,

PP4 in coloc, of>¼0.8. The 39 additional genes that were found by

adding methylation include genes such as CALN1, a neuronal tran-

script associated with abnormalities in sensorimotor gating in

Fig. 2. Results from simulations under colocalization/non-colocalization scen-

arios (A, B), and results from real data application (C). (A) Simulations under dif-

ferent sample sizes for all scenarios in moloc of three traits (GWAS, eQTL and

mQTL). The y axis shows the median, 10% and 90% quantile of the distribution

of posterior probabilities (‘PPA’), which supports each of our scenarios of inter-

est. Combined scenarios include gene-methylation pairs or genes that reach a

posterior probability of GEM>¼80%, orþGE.M>¼80%, or GE>¼80%. All

cases include 10 000 individuals in the GWAS dataset. The variance explained

by the trait was set to 0.01 for GWAS (1%), and to 0.1 (10%) for the eQTL and

mQTL. (B) Posterior probabilities from simulations using a sample size of 10 000

individuals for GWAS trait (denoted as G), 300 for eQTL trait (denoted as E) and

300 for mQTL trait (denoted as M). X-axis shows all 15 simulated scenarios, e.g.

G.E.M, three different causal variants for each of the three traits. Y-axis shows

the distribution of posterior probabilities under the simulated scenario. The

height of the bar represents the mean of the PPA for each configuration across

simulations. (C) Venn diagram comparing number of colocalization of two traits

(coloc PPA>¼80%) with three traits (moloc PPA GEþGE.MþGEM)
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humans (Roussos et al., 2016), that would have been missed by only

GWAS and eQTL colocalization.

3.5 Loci overlapping reported SCZ LD blocks
PGC identified 108 independent loci and annotated LD blocks

around these, 104 of which are within non-HLA, autosomal regions

of the genome (Schizophrenia Working Group of the Psychiatric

Genomics Consortium, 2014). In Table 1 and Supplementary Table

S1, we report the number of identified gene-methylation pairs and

unique genes under each scenario that overlap the SCZ-associated

LD blocks. Out of the 78 SCZ-associated LD blocks, we examined

in our analysis, we found colocalizations in 20 of them. We note

that each LD block can cover multiple genes that co-localize with

the GWAS signal; in fact within a block, there are, on average, 2.4

unique genes that reach evidence of sharing the same causal variant

with a GWAS signal. Supplementary Figure S5A illustrates the aver-

age distribution of the posteriors across these regions. Cumulatively,

12% of the evidence points to shared variation with an eQTL (GE,

GE.M and GEM). The majority of the evidence within these regions

(64%) did not reach support for shared variation across the three

traits, with 20% not reaching evidence for association with any

traits and 44% with only one of the three traits (36% with GWAS,

6% with eQTL and 2% with mQTLs). The lack of evidence in these

regions could be addressed with greater sample sizes. Supplementary

Figure S5B shows the evidence for colocalization of GWAS with

eQTL or mQTL across the 39 candidate genes. We provide illustra-

tive examples of SCZ association with expression and DNA methy-

lation in the FURIN locus (Supplementary Figs S6 and S7).

3.6 Potentially novel SCZ loci
We found 45 unique genes that have a high posterior for SCZ and

eQTL, but fall in regions not previously identified to be associated

with SCZ (at P-value of 5�10�8). All genes were far from a SCZ

LD block (more than 150 kb, Supplementary Table S7), and con-

tained SNPs with P-values for association with SCZ ranging from

10�4 to 10�8. These genes will likely be identified using just the

GWAS signal if the sample size is increased. KCNN3 is among these

genes which encodes an integral membrane protein that forms a

voltage-independent calcium-activated channel. It regulates neur-

onal excitability by contributing to the slow component of synaptic

after hyperpolarization (Deignan et al., 2012). A plot of the

associations with the three datasets within this locus is shown in

Supplementary Figure S6B.

3.7 Comparison with previous findings
We compare our gene discovery results to previous studies that as-

sess GWAS-eQTL (Fromer et al., 2016; Gusev et al., 2016; Hauberg

et al., 2017; Zhu et al., 2016) or GWAS-mQTL (Gusev et al., 2016;

Hannon et al., 2016a, b; Hannon et al., 2017) colocalization using

the same or similar datasets (Supplementary Table S9 and

Supplementary Fig. S8). A substantial proportion of genes detected

in our study (range 44–85%, pairwise hypergeometric P-val-

ue<0.01) was validated with four studies (Fromer et al., 2016;

Gusev et al., 2016; Hauberg et al., 2017; Zhu et al., 2016) that used

eQTL and GWAS integration to prioritize genes important for SCZ.

Several studies have also linked methylation data with SCZ

(Hannon et al., 2016a, b; Hannon et al., 2017). Two recent studies

(Hannon et al., 2016a; Hannon et al., 2017) used blood mQTL data

from 639 samples and identified colocalization of SCZ loci with 32

and 200 methylation probes by applying coloc and SMR, respect-

ively. A proportion of SCZ-mQTL colocalization was validated in

our study (coloc: 46%; SMR: 18%, Supplementary Table S9).

Overlap between our analysis in brain and these analyses point to

shared mechanisms in blood and brain. Another study (Hannon

et al., 2016b) used mQTL data from 166 fetal brain samples and

identified 297 methylation probes important for SCZ. We analyzed

184 of those and found evidence for 13 probes. We note that our

methylation data did not included fetal brain samples. Finally, a re-

cent study (Gusev et al., 2016) identified 44 genes involved in SCZ

through TWAS, followed by integration with chromatin data in

blood that resulted in 11 genes associated with GWAS, eQTL and

epigenome QTL. We analyzed 8 out of the 11 associations and con-

firmed 6 of these genes that, in our study, influence SCZ through

eQTL and mQTL.

3.8 Association of gene expression with methylation
We examined the association of DNA methylation and gene expres-

sion as a function of distance from transcription start site. We

explored direction of effects of methylation and expression, for gene

expression and DNA methylation that colocalize (PPA.GEMþ
PPA.EMþPPA.G.EM>¼0.8). This approach has the advantage of

linking changes in methylation with specific transcripts, avoiding

the issues of arbitrary annotating CpG methylation sites to the

Table 1. Number of genes with evidence of colocalization (PPA>¼0.8) under each scenario

Scenarios Hypotheses for association

with each trait

Sharing of variant Unique gene-

methylation pairs

Unique genes

Total PPA>¼80% Total

PPA>¼80%

Overlapping

SCZ LD blocks

Number of

LD blocks

GE H4- association for traits

{1 and 2}

GWAS, eQTL 359 30 18 14

GE.M H11- association for traits

1, 2 and 3, but different

causal variants for {1, 2}

and {3}

GWAS, eQTL

not mQTL (2 causals)

31 17 10 7

GEM H14 SNP is associated with

all 3 traits {1, 2, 3}

GWAS, eQTL, mQTL 123 52 25 11

GEM or

GE.M or GE

aCombined scenarios

for GWAS, eQTL

1053 84 39 20

Total Total 481 995 12 003 273 78

aCombined scenarios include gene-methylation pairs or genes that reach a posterior probability of GEM>¼ 80%, orþGE.M>¼ 80%, or GE>¼ 80%.
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nearby genes. Overall, we tested 1947 DNA methylation and gene

expression pairwise interactions and found a significant negative

correlation between the effect sizes of methylation and expression in

the proximity of the transcription start site (Supplementary Fig. S9,

P-value: <2.2 x 10�16). Supplementary Table S8 provides a list of

methylation and gene expression pairwise interactions in human

brain tissue for DNA methylation probes that are proximal to the

transcription start site (20 kb upstream to 2 kb downstream of tran-

scription start site).

4 Discussion

In this paper, we propose a statistical method for integrating genetic

data from molecular quantitative trait loci (QTL) mapping into

genome-wide genetic association analysis of complex traits. The

proposed approach requires only summary-level statistics and pro-

vides evidence of colocalization of their association signals. To our

knowledge, a method integrating more than two traits is lacking. In

contrast to other methods that attempt to estimate the true genetic

correlation between traits such as LD score regression (Bulik-

Sullivan et al., 2015) and TWAS (Gusev et al., 2016), moloc focuses

on genes that are detectable from the datasets at hand. Thus, if the

studies are underpowered, most of the evidence will lie in the null

scenarios. We note that our model is the same as gwas-pw in

Pickrell et al. (Pickrell et al., 2016) under specific settings. Precisely,

gwas-pw averages over Bayes factors computed with W¼0.01,

W¼0.1 and W¼0.5 (Section 2). We provide this as an option that

can be specified by the user. Additionally, gwas-pw estimates the

prior parameters genome-wide using a maximization procedure.

However, we note that, unlike gwas-pw that focuses on genome-

wide estimation across pairs of traits, our approach focuses on one

locus at a time with multiple traits.

Our method is complementary to methods quantifying local gen-

etic covariance across traits. The aim of this method is to identify

cases where the same causal variant is shared between the traits. We

argue that it is valuable to identify cases where the same signal is

influencing multiple traits, for example when studying application

to drug development and possible side effects of drugs to non-target

biomarkers. Other methods such as genetic covariance (Shi et al.,

2016) can be used to identify genes shared across traits even where

the causal variants differ.

Our method will not be able to identify genes where different

causal variants have strong effects independently influencing each

trait, and are in weak LD with each other. To account for these cases,

we would need information on LD. However, we believe that the fact

that moloc requires only summary association statistics and does not

require LD estimates is advantageous, particularly when in-sample

LD is not available, as mis-specifications of LD data can lead to bias

(Benner et al., 2017). The statistics (priors and posteriors of configur-

ations) will depend on the pattern of association (LD) and the number

of SNPs in the region (Q) [(Giambartolomei et al., 2014) and

Supplementary Fig. S10]. While moloc can be applied to any genomic

region, complex loci such as the major histocompatibility complex

(MHC) region, with extensive LD structure that exceeds the window

size we consider in this analysis, would benefit from a tailored locus-

based analysis (using genotyped information where possible).

Our goal is to find the functional relevance of genes to disease.

This type of analysis differs to analysis using only GWAS to identify

genes and pathways (Lamparter et al., 2016). Although we identify

a greater number of genes using SCZ GWASs only (Supplementary

Text S1), a joint analysis of multiple datasets provides additional

information on the relevance of the functional information ana-

lyzed. We note that in our analysis, 53% of the genes we identified

are novel, i.e. genes that fall outside of the PGC region. Future

larger-scale GWAS would allow to confirm whether these novel as-

sociations are indeed true positives.

We expose one possible application of this approach in SCZ. In

this application, we focus on scenarios involving eQTLs and GWAS,

alone or in combination with mQTLs. While our method does not

detect causal relationships among the associated traits, i.e. whether

risk allele leads to changes in gene expression through methylation

changes or vice versa, there is evidence supporting the notion that

risk alleles might affect transcription factor binding and epigenome

regulation that drives downstream alterations in gene expression (Li

et al., 2016; Tak and Farnham, 2015).

We assign a prior probability that a SNP is associated with one

trait (1 x 10�4), to two (1 x 10�6) and to three traits (1 x 10�7). We

find support for our choice of priors in the data using two methods.

The first uses stratified QQ plots (Supplementary Fig. S4). We find

that eQTL enrichment in GWAS has a similar enrichment to mQTL

in GWAS. The second is a form of empirical calibration as in Guo

et al. (Guo et al., 2015). We find that the prior and posterior expect-

ations of colocalization matched more closely under our choice of

priors (Supplementary Table S5). However, the choices for prior be-

liefs for each hypothesis are always arguable. One could estimate

priors for the different combinations of datasets. Pickrell et al.

(Pickrell et al., 2015) proposed estimation of enrichment parameters

from genome-wide results maximizing a posteriori estimates for two

traits. For multiple traits, another possibility is using deterministic

approximation of posteriors (Wen et al., 2017). We leave these ex-

plorations to future research. Additionally, instead of flat priors

genome-wide, we can use priors that depend on per-SNP functional

annotations. We provide the code and an example to do this using

fGWAS (Supplementary Text S1), and leave further applications to

future research.

We note that this approach can be extended to more than three

traits. Since the calculations are analytical and no recursive method is

used, computation time for a region with 1000 SNPs is less than 1 s.

However, time increases exponentially as number of traits increases.

For four traits it is about 3 s, for five traits it is greater than 22 min.

Overall, owing to the increasing availability of summary statistics

from multiple datasets, the systematic application of this approach

can provide clues into the molecular mechanisms underlying GWAS

signals and how regulatory variants influence complex diseases.
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