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Abstract

Motivation: The V3 loop of the gp120 glycoprotein of the Human Immunodeficiency Virus 1 (HIV-1)

is considered to be responsible for viral coreceptor tropism. gp120 interacts with the CD4 receptor

of the host cell and subsequently V3 binds either CCR5 or CXCR4. Due to the fact that the CCR5 cor-

eceptor is targeted by entry inhibitors, a reliable prediction of the coreceptor usage of HIV-1 is of

great interest for antiretroviral therapy. Although several methods for the prediction of coreceptor

tropism are available, almost all of them have been developed based on only subtype B sequences,

and it has been shown in several studies that the prediction of non-B sequences, in particular sub-

type A sequences, are less reliable. Thus, the aim of the current study was to develop a reliable pre-

diction model for subtype A viruses.

Results: Our new model SCOTCH is based on a stacking approach of classifier ensembles and

shows a significantly better performance for subtype A sequences compared to other available

models. In particular for low false positive rates (between 0.05 and 0.2, i.e. recommendation in the

German and European Guidelines for tropism prediction), SCOTCH shows significantly better pre-

diction performances in terms of partial area under the curves and diagnostic odds ratios com-

pared to existing tools, and thus can be used to reliably predict coreceptor tropism for subtype A

sequences.

Availability and implementation: SCOTCH can be downloaded/accessed at http://www.heiderlab.de.

Contact: dominik.heider@uni-marburg.de

1 Introduction

Infection of the host cells with the Human Immunodeficiency Virus

1 (HIV-1) proceeds in several steps that include the binding of the

gp120 surface protein of HIV-1 to the CD4 receptor and a corecep-

tor, namely one of the chemokine receptors CCR5 or CXCR4 (Lee

et al., 1999). Coreceptor tropism, i.e. the type of coreceptor that is

used by an HIV-1 virus, has important clinical implications. First,

patients with a CXCR4-tropic virus progress faster to AIDS com-

pared to patients with CCR5-tropic viruses (Koot et al., 1993).

Second, entry inhibitors that bind to the coreceptor and thus inhibit

viral entry, such as Maraviroc (Dorr et al., 2005), are only available

for the CCR5 coreceptor, and are thus ineffective against CXCR4-

tropic viruses. Today, entry inhibitors are frequently used in anti-

retroviral treatment, thus the determination of coreceptor tropism

has become crucial for patient therapy. The gold standard for deter-

mining coreceptor tropism is by cell-based assays (Whitcomb et al.,

2007). The main disadvantages of cell-based assays are that they can

only be carried out by specialized laboratories and that these assays

are expensive and time-consuming. It has been shown in several

studies, that computational approaches for coreceptor tropism
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prediction can be a viable alternative to cell-based assays. The main

advantage of these predictive models is that the procedure is cheap

and very fast, in particular when these algorithms are executed in a

parallelized manner, e.g. on graphics cards (Olejnik et al., 2014).

Due to the fact that the third variable loop of the gp120 protein

(V3) is considered to be responsible for coreceptor usage, these mod-

els are typically trained on a set of V3 sequences with known trop-

ism, and subsequently applied to new, unseen V3 sequences in order

to predict tropism. Several models have been proposed, from simple

rules, such as the 11/25 rule (Fouchier et al., 1992; Shioda et al.,

1992), to sophisticated machine learning models. For instance,

geno2pheno[coreceptor] is based on a support vector machine

(Lengauer et al., 2007) trained on V3 sequences. T-CUP uses struc-

tural information for modeling the electrostatic potential and hydro-

phobicity of the V3 sequences in order to predict coreceptor tropism

(Dybowski et al., 2010a,b; Heider et al., 2014). PhenoSeq makes use

of sequence motifs and predicted charges of the sequences (Cashin

et al., 2015), while WebPSSM (Jensen et al., 2003) uses scoring

matrices. These models have been shown to give reliable predictions

and can be used for clinical assessment of coreceptor tropism.

However, HIV-1 can be subdivided into different subtypes that

show different abundancies and different spatial distributions. HIV-

1 subtype B is mainly found in North America, the Caribbean, Latin

America, Western and Central Europe and Australia and makes up

11% of the infections worldwide (Hemelaar et al., 2011). Almost all

available computational models have been trained on subtype B

data. Subtype C makes up 48% of worldwide infections and is

mainly found in Africa. It has been shown in several studies that the

available models for coreceptor tropism can also be applied for sub-

type C sequences with comparable prediction accuracy (Gupta

et al., 2015; Riemenschneider et al., 2016). The third major subtype,

namely subtype A, is responsible for around 12% of worldwide in-

fections and can be mainly found in Eastern Europe and Central

Asia. Unfortunately, it has been demonstrated that the available

models are not reliable for tropism prediction of subtype A viruses.

The performance of the existing tools drops to less than 50% accur-

acy when applied to subtype A sequences (Riemenschneider et al.,

2016). They proposed that there may be a slightly different underly-

ing mode of binding, which could involve other parts of gp120. The

potential involvement of the V2 loop, for instance, is also mentioned

by others (Kitawi et al., 2017; Pastore et al., 2006). Moreover, there

is an apparent selection for subtype A variants that are less glycosy-

lated and with shorter V1-V2 loop sequences (Chohan et al., 2005).

The aim of the current study was the development of a reliable sub-

type A specific coreceptor prediction model.

2 Materials and methods

2.1 Dataset
We used the dataset of V3 sequences of subtype A collected by

Riemenschneider et al. (2016). The V3 loop sequences of HIV-1

with assigned subtype A or CRFs with a V3 region originating from

subtype A were downloaded from the Los Alamos HIV sequence

database (http://hiv-web.lanl.gov) in March 2015. Sequences that

occur with contradictory tropism annotation in the database or con-

tain non-canonical amino acid symbols were removed. Duplicated

sequences were included only once. Additionally, nine subtype A se-

quences that were collected at the Institute of Virology at the

University of Cologne were used as well. The final dataset consists

of 182 V3 sequences of subtype A from 147 R5-tropic and 35 X4-

tropic viruses.

2.2 Phylogenetic analysis of the samples
We performed a phylogenetic analysis of the V3 sequences in order

to confirm the assigned subtypes. To this end, a multiple sequence

alignment (MSA) of the V3 sequences was computed with MUSCLE

(Edgar, 2004). The MSA was used to generate phylogenetic trees

with SeaView 4 (Gouy et al., 2010) using Poisson distance and

BioNJ (Gascuel, 1997). Gap sites were ignored and significance was

estimated by bootstrapping with 100 replicates.

2.3 Feature encoding
It has been shown in several studies that the most crucial part in pre-

dictive modeling is the feature encoding, i.e. the encoding of the pro-

tein sequences. In order to improve ensemble diversity (Kuncheva

and Whitaker, 2003), we made use of structural and sequence in-

formation of the V3 loop according to Dybowski et al. (2010a),

which have been demonstrated to give reliable prediction on HIV

tropism, when used as input in subsequent machine learning models.

Introducing structural information into classification models has

been demonstrated to improve overall prediction performance

(Bozek et al., 2013; Dybowski et al., 2011; Sander et al., 2007). To

this end, we used the same overall architecture as for subtype B se-

quences (Dybowski et al., 2010a), however, due to the higher flexi-

bility of the subtype A V3 loop sequences, the distances needed to be

adapted. We encoded the V3 sequences in two ways: (i) by building

homology models of the V3 loop and calculating the electrostatic

potential on the surface, and (ii) by using a hydrophobicity encoding

of the V3 sequences (see Fig. 1). We employed Modeller (v 9.17)

(�Sali and Blundell, 1993) in order to generate homology models of

the V3 sequences, using the X-ray structure of the gp120 protein

(PDB: 2QAD) as a template. The V3 loop sequences were aligned

pairwisely against the sequence of the template structure with the R

package bio3d (Grant et al., 2006). Upon visual inspection we found

that the alignments were of good quality and there was no need to

manually adjust them. Ten models were generated, and for each V3

sequence, we selected the structure with the highest DOPE-Score

(Elias et al., 1991) for subsequent analyses. Next, we calculated the

electrostatic potential at the surface of the V3 structures using the

AMBER force field and PDB2PQR (v 2.1.1) (Dolinsky et al., 2004).

The solvent accessible surface of the structures was determined by

APBS (v 1.4.2.1) (Baker et al., 2001) using a grid of 333 points with

a spacing of 3 Å according to Dybowski et al. (2010a), which have

been demonstrated to give reliable prediction on HIV resistance and

tropism, and a radius of the solvent molecules of 1.4 Å. In order to

find the best distance for our prediction model, we evaluated the

electrostatic hull at distances of 0, 3, 6, 9 and 12 Å from the solvent

accessible surface. The hydrophobicity encoding of the V3 sequences

was generated with Interpol (v 1.3) (Heider and Hoffmann, 2011).

V3 sequences were translated into their numerical hydrophobicity

representation according to the Kyte-Doolittle hydropathy index

(Kyte and Doolittle, 1982). Subsequently, the numerical hydropho-

bicity vectors were interpolated to a common length of 35, which

represents the average length in our dataset. We also evaluated

whether an additional feature encoded in Interpol (Heider and

Hoffmann, 2011) could improve overall prediction performance.

However, we found no significant improvements of the resulting

models in terms of AUC, compared to the model based on hydro-

phobicity and electrostatics.

2.4 Machine learning
The dataset was not balanced prior to training. In imbalanced data,

there are two opportunities in order the balance the dataset, namely

2576 H.F.Löchel et al.
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upsampling of the minority class or downsampling of the majority

class. Although balancing has been shown to improve the overall

performance metrics, e.g. AUC, upsampling may lead to overesti-

mation of the AUC and downsampling may lead to a significant loss

of information. Due to the fact that the amount of available subtype

A V3 sequences with known tropism is limited, we used an imbal-

anced dataset in the current study.

In order to make use of the two encodings mentioned above, we

employed a stacking approach (Wolpert, 1992). We trained two sep-

arate random forests (RFs) (Breiman, 2001), one based on the elec-

trostatic potentials and another on the hydrophobicity-encoded V3

sequences using the randomForest package in R. For each approach,

we trained ten RFs with 3000 trees. The RFs were evaluated using

the internal out-of-bag estimation, which is based on bootstrapping.

RFs have been shown in several studies to be highly accurate classi-

fiers and less prone to overfitting compared to other machine learn-

ing approaches. Besides producing accurate predictions, RFs can

also be used to estimate the importance of features. We used the

Gini-index in order to estimate feature importance. The outputs of

the electrostatic-RF and the hydrophobicity-RF, i.e. the RF trained

on the electrostatic potentials and the hydrophobicity vectors, re-

spectively, are combined by a stacking approach with a third RF.

The RFs were evaluated by receiver operating characteristics (ROC)

analyses using the R packages ROCR (Sing et al., 2005) and pROC

(Robin et al., 2011). In ROC analysis, the true positive rate (TPR) is

plotted against the false positive rate (FPR):

TPR ¼ TP

TPþ FN
¼ sensitivity (1)

FPR ¼ FP

FPþ TN
¼ 1� specificity (2)

accuracy ¼ TPþ TN

TPþ FN þ TN þ FP
(3)

with TP: true positives, FN: false negatives, FP: false positives, TN:

true negatives. Besides the area under the curve (AUC), we also cal-

culated corrected partial AUCs for low FPRs and the Diagnostic

Odds Ratio (DOR) for FPRs of 0.05, 0.1, 0.15 and 0.2 in order to

reflect the performance of the models with respect to current

treatment guidelines (Vandekerckhove et al., 2011) for entry inhibi-

tors. The DOR (Glas et al., 2003) is defined as

DOR ¼ TP=FP

FN=TN
(4)

2.5 Comparison with other methods
We compared our novel subtype A prediction model SCOTCH with

existing models, namely T-CUP (Heider et al., 2014), geno2pheno

[coreceptor] (Lengauer et al., 2007), PhenoSeq (Cashin et al., 2015),

WebPSSM (Jensen et al., 2003) using all available matrices (i.e.

x4r5, sinsi and sinsi c), and the genotypic rules of Raymond et al.

(2012) and Esbjörnsson et al. (2010).

3 Results

3.1 Overall approach
The aim of the study was to build a reliable coreceptor tropism pre-

diction for HIV-1 subtype A. Our model SCOTCH is based on a

stacking approach of two random forests (RFs) that were trained on

different feature encoding in order to improve classifier diversity.

The first RF was trained on the electrostatic potentials at the surface

of the V3 structure models. The second RF was trained on the nu-

merical hydrophobicity representations of the V3 sequences. The

outputs of these RFs are combined via stacking. To this end, a third

RF uses the outputs, i.e. pseudo-probabilities, and makes a final

prediction whether a given V3 sequence belongs to a CCR5- or

CXCR4-tropic virus. The performance of SCOTCH was compared

with the existing models.

3.2 Electrostatics hull
The sequences were aligned using MUSCLE (Edgar, 2004) in a pair-

wise manner (all-against-all). 117 V3 sequences (64.3% of all se-

quences) share at least 90% identity of their sequence with at least

one other sequence in the dataset. For 48 V3 sequences (i.e. 26.4%),

there is at least one other V3 sequence with a similarity of �97.1%.

The R5-tropic sequences show a higher average similarity compared

to the X4 sequences (91.8 and 86.7%, respectively). We used

Fig. 1. Overview: V3 sequences are encoded in two ways: i) by building homology models and calculating the electrostatic potential with APBS, and ii) by using

hydrophobicity encoding via Interpol. Two separate random forests were trained and combined via stacking

SCOTCH 2577
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Modeller (�Sali and Blundell, 1993) in order to generate the V3 struc-

tures for the prediction of coreceptor tropism, and APBS Baker et al.

(2001) in order to calculate the electrostatic hulls at different dis-

tances to the surface. For the discretization of the electrostatic hulls

in order to be used in the subsequent classification models, we used

a grid spacing of 3 Å, which was centered over each V3 loop struc-

ture. For the electrostatics hull at a distance of 0 Å, all 182 V3 loops

are too close to the hull or even penetrate it, so they have at least

one grid point that is not accessible by the solvent. For a distance of

3 and 6 Å, 177 and 65 sequences, respectively, still penetrate the

hull. In contrast to our results with subtype B sequences (Dybowski

et al., 2010a), only the electrostatic hulls at a distance of 9 Å com-

pletely enclose all V3 loop structures. These findings might imply

that, on average, V3 sequences from subtype A are more disordered

compared to subtype B, which have been used in former studies.

These findings are in line with the notion that subtype A sequences

show biochemical differences compared to subtype B sequences

(Chohan et al., 2005).

3.3 Electrostatics-based classification
A homology model for each V3 loop was generated based on the tem-

plate X-ray structure of the viral gp120 protein (PDB: 2QAD).

Electrostatic potentials at discrete grid for each V3 loop structure

were obtained by solving the non-linear Poisson-Boltzmann equation

by APBS (Baker et al., 2001). We used the RFs to estimate feature im-

portance. Figure 2 shows the twenty most important positions on the

V3 structure according to the RF importance analysis. The most im-

portant positions cluster around residues 11–14 and residue 25, which

is in partial agreement with the 11/25 rule (Fouchier et al., 1992;

Shioda et al., 1992). Residue 25 might be less important than residues

11 to 14, given the fact that only two out of the twenty most import-

ant grid points can be assigned to this residue.

3.4 Hydrophobicity-based classification
In addition to the RF trained on the electrostatic hulls, we also

trained a model based on the hydrophobicity encoding. The V3 loop

sequences were encoded with the Kyte-Doolittle hydropathy index

(Kyte and Doolittle, 1982) using Interpol (Heider and Hoffmann,

2011) and normalized to the average V3 length, i.e. 35 residues.

Figure 3 shows the importance of the residues of the normalized V3

sequences according to the hydrophobicity-based RF. Two import-

ant clusters can be identified at positions 10–14 and 22–25. Again,

these findings are in agreement with the 11/25 rule. Due to the fact

that the dataset contains sequences shorter than 35 amino acids,

residue positions in the interpolated sequences are again slightly

shifted to the right and do not necessarily correspond to the actual

residues.

3.5 Stacking approach
We used a stacking approach in order to combine both models. To

this end, the pseudo-probabilities of both models were used as an in-

put for a third RF. Figure 4 shows the ROC curves of the electro-

statics- and hydrophobicity-based models. The AUC of the RF

trained on the electrostatic hulls is 0.7704 6 0.0043, while the RF

trained on hydrophobicity reaches an AUC of 0.7004 6 0.0023.

However, the difference in AUC is not significant (P¼0.1899). The

electrostatics-based model reaches higher true TPRs for almost all

FPRs, thus it is not obvious why the use of stacking could improve

overall performance. Nevertheless, the third combined RF outper-

formed the other two RFs significantly at low FPRs. The AUC of the

combined RF (i.e. our final method SCOTCH) is 0.7031 6 0.0046,

which is not significantly higher compared to the model trained

solely on the electrostatic hull (P¼0.2216). However for low FPRs

(<0.2) the combined model outperforms the single models (see

Fig. 4). For instance, the European guidelines recommend the use of

a 10% FPR cutoff. The corrected partial AUCs for the combined

model is 0.7498 for an FPR between 0.05 and 0.2, which is signifi-

cantly higher compared to the corrected partial AUCs of 0.6993 and

0.5969 for the electrostatics- and hydrophobicity-based model, re-

spectively. The sensitivity and accuracy at a specificity of 95, 90 and

85% for the different models are listed in Table 1. For a specificity

of 95%, the electrostatics-based model achieves a sensitivity of

40.0% and an accuracy of 84.4%. The combined method has a

higher sensitivity (47.7%) and a higher accuracy (85.9%). The

DOR is also higher for the combined model at low FPRs (see

Table 1).

3.6 Comparison with other methods
The prediction performance of SCOTCH was compared with exist-

ing methods, namely T-CUP (Heider et al., 2014), geno2pheno[core-

ceptor] (Lengauer et al., 2007), PhenoSeq (Cashin et al., 2015),

WebPSSM (Jensen et al., 2003) using all available matrices (i.e.

x4r5, sinsi and sinsi c), and the genotypic rules of Raymond et al.

(2012) and Esbjörnsson et al. (2010). In Table 2, the results of the

comparison are shown. For all existing methods, except WebPSSM

with sinsi.c, the sensitivity is less than 20% at a specificity between

93.94 and 99.49%. WebPSSM with sinsi.c only reaches a sensitivity

of 37.8% at a specificity of 58.59%. SCOTCH outperforms all

existing models in terms of sensitivity and accuracy at comparable

specificities. For instance, PhenoSeq reaches a specificity of 94.74%,

which is only slightly lower compared to SCOTCH (95%).

Fig. 2. Most important grid points in the template structure: The twenty most

important grid points identified by the RF are plotted as white spheres around

the V3 loop structure of the template. The Ca atoms of residues neighboring

important grid points are shown in grey. Residues 11 and 25 are highlighted

in black

Fig. 3. Importance of the V3 loop residues: The importance has been esti-

mated using the Gini-index
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However, the resulting sensitivity of SCOTCH is 47.71%, which is

significantly higher compared to the sensitivity of PhenoSeq, namely

17.7%. The accuracy of PhenoSeq is 54.39%, which is again signifi-

cantly lower than the accuracy of our new model (85.91%).

4 Discussion

Almost all existing approaches for the prediction of HIV-1 corecep-

tor tropism are based on subtype B and have been shown to perform

poorly on subtype A, which is responsible for approximately 12%

of all HIV-1 infections worldwide. We therefore sought to develop a

reliable subtype A specific model. To this end, two RF models were

developed, one based on electrostatics and the other one based on a

hydrophobicity index. These two models were combined by using a

stacking approach. The resulting model SCOTCH shows signifi-

cantly better performance for subtype A compared to all other meth-

ods that have been evaluated. Nevertheless, the sensitivity and

accuracy of our new model still did not reach the same levels than

those of the prediction methods for subtype B or C. In this study we

developed a novel coreceptor tropism prediction algorithm which

makes use of sequence and structural information of the V3 loop for

subtype A. Combining structural and sequence information im-

proves diversity in ensembles and thus leads to higher prediction

performance compared to single models. We could demonstrate that

SCOTCH outperforms existing approaches, but there is still room

for improvement. Riemenschneider et al. (2016) already proposed

that other regions beside the V3 loop, namely the V2 loop, might

also be involved in coreceptor binding in subtype A. Involvement

of V2 information might improve coreceptor tropism prediction of

subtype A sequences in the future. However, although sequencing

of the complete gp120 region might be useful in order to improve

prediction accuracy for subtype A, it is not really practical due to

length restrictions in the sequencing protocols at the moment.

Nevertheless, there is little doubt that technological progress will

soon make the sequencing of gp120, or even whole viral genomes,

feasible for routine diagnostics.

5 Conclusion

Our new model SCOTCH was specifically developed for HIV-1 sub-

type A and it has been shown in our study to outperform the existing

models, which have mostly been trained with subtype B sequences.

However, lower prediction performance of SCOTCH compared to

subtype B prediction tools implies the existence of a different bind-

ing mode of subtype A to the host cell, as already proposed by

Riemenschneider et al. (2016). Other regions, in particular the V2

loop, might be also involved in this process. In the future we intend

to improve our model by also incorporating other regions of the

gp120 protein. However, incorporating longer reads may be imprac-

tical due to the distance between the V3 and V2 loops. In order to

get V2 and V3 information simultaneously, a region of around 430

nucleotides within the env gene needs to be sequenced.
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