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Abstract

Motivation: Protein solubility plays a vital role in pharmaceutical research and production yield.

For a given protein, the extent of its solubility can represent the quality of its function, and is ultim-

ately defined by its sequence. Thus, it is imperative to develop novel, highly accurate in silico

sequence-based protein solubility predictors. In this work we propose, DeepSol, a novel Deep

Learning-based protein solubility predictor. The backbone of our framework is a convolutional neu-

ral network that exploits k-mer structure and additional sequence and structural features extracted

from the protein sequence.

Results: DeepSol outperformed all known sequence-based state-of-the-art solubility prediction

methods and attained an accuracy of 0.77 and Matthew’s correlation coefficient of 0.55. The super-

ior prediction accuracy of DeepSol allows to screen for sequences with enhanced production cap-

acity and can more reliably predict solubility of novel proteins.

Availability and implementation: DeepSol’s best performing models and results are publicly

deposited at https://doi.org/10.5281/zenodo.1162886 (Khurana and Mall, 2018).

Contact: skhurana@mit.edu or rmall@hbku.edu.qa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The heterologous expression of proteins in standard host cells, such

as Escherichia coli, often render the proteins insoluble reducing their

manufacturability (Chang et al., 2014). However, the exploration of

structural and functional proteomics requires proteins to be pro-

duced in soluble form (Chan et al., 2010). Thus, solubility of pro-

teins is crucial for production of proteins in both the pharmaceutical

and research setting. Enhancement in protein solubility is usually at-

tained by the use of weak promotors or strong denaturants followed

by refolding (Davis et al., 1999), lower temperatures (Idicula-

Thomas and Balaji, 2005), or optimization of other expression con-

ditions (Magnan et al., 2009) such as codon optimization (van den

Berg et al., 2012).

The primary structure plays a major role in determining the solu-

bility of a protein. Previous studies (Bertone et al., 2001;

Christendat et al., 2000; Davis et al., 1999; Idicula-Thomas and

Balaji, 2005; Pédelacq et al., 2002; Trainor et al., 2017; Wilkinson

and Harrison, 1991) indicated that several sequence-based features,

such as the extent of charged and turn-forming amino acid residues,

the level of hydrophobic stretches, protein folding and the length of

the protein sequence, exhibit a strong association with the protein

solubility. Several machine learning-based bioinformatics tools have

been developed for protein solubility prediction to determine the sol-

uble proteins in silico and omit the expensive trial and error proced-

ures involved in wet-labs. These sequence-based predictors include

PaRSnIP (Rawi et al., 2017), PROSO II (Smialowski et al., 2012),
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CCSOL (Agostini et al., 2012), SOLpro (Magnan et al., 2009),

PROSO (Smialowski et al., 2007), RPSP (Wilkinson and Harrison,

1991) and the scoring card method (SCM) (Huang et al., 2012). The

majority of these tools use a support vector machine (SVM) (Cortes

and Vapnik, 1995; Suykens et al., 2002) as the core discriminative

model on biologically relevant handcrafted features from the protein

sequences to distinguish between the soluble and insoluble proteins.

The recently proposed technique, PaRSnIP, uses a gradient boosting

machine (GBM) (Friedman, 2001) on a dataset of over 8000 mono-,

di- and tri-peptide frequency based features along with an additional

57 sequence and structural features. PaRSnIP identified that higher

fractions of exposed residues positively correlate with protein solu-

bility and tri-peptide stretches that contain multiple histidines nega-

tively correlate with protein solubility. PROSO II utilizes a Parzen

window model with a modified Cauchy kernel and a two-level logis-

tic classifier. CCSOL uses an SVM classifier and identifies coil/dis-

order, hydrophobicity, b-sheet and a-helix propensities as primary

differentiating features. SOLpro also uses a two-stage SVM to build

the protein solubility predictor. The PROSO tool uses an SVM with

an RBF (radial basis function) kernel (Suykens et al., 2002) and a

second-level Naive Bayes classifier. RPSP performs classification

with a standard Gaussian distribution to distinguish soluble proteins

from insoluble ones. Finally, the SCM method uses a scoring card by

utilizing only dipeptide composition to estimate solubility scores of

sequences.

The majority of these tools perform a two-stage classification

using a plethora of sequence-based features including mono-, di-

and tri-peptide frequencies i.e. over 8000 features. In the first stage,

these methods perform a feature selection task to reduce the risk of

over-fitting, followed by the discriminative classification step in the

second stage. On the other hand, PaRSnIP relies on the feature im-

portance scores from the GBM model to identify and prune the non-

essential features.

In this study, our goal is to build a single-stage protein solubility

prediction system that outperforms all existing sequence-based

tools. We used Deep Learning models to identify the relationship be-

tween the k-mer structure in the input protein sequence and the solu-

bility of the protein. We used convolutional neural networks

(CNNs) (LeCun et al., 1995) to exploit the k-mer structure. CNNs

construct non-linear high-dimensional k-mer vector spaces. These

vector spaces enable the model to encode more information about

the k-mer structure, necessary for predicting protein solubility, than

just the k-mer frequencies as encoded in the feature vectors of previ-

ous machine learning techniques. Our work is inspired by the recent

success of several research groups using Deep Learning to model

protein sequences for secondary structure (SS) (Li and Yu, 2016;

Wang et al., 2016) and residue-residue contact prediction (Wang

et al., 2017). The main contributions of this article are:

i. Our Deep Learning model can be applied directly to raw pro-

tein sequences without any extensive feature engineering, which

is the hallmark of previous works. Applied directly to raw se-

quences, our model (DeepSol S1) attains comparable perform-

ance to the current state-of-the-art protein solubility predictor,

PaRSnIP. Apart from mono-, di- and tri-peptide frequency fea-

tures, both PaRSnIP and PROSO II use additional biological

features extracted using various external feature extraction

toolkits from the protein sequences. However, in Deep

Learning framework, discriminative features are extracted from

the raw input sequence while optimizing the model for predict-

ing solubility. Hence, the feature representations learned by a

Deep Learning model encode not just k-mer frequencies but

also higher-level abstract structural features that are necessary

for solubility prediction.

ii. Our proposed framework simplifies the solubility prediction work-

flow for bioinformatics researchers by obviating the need for exten-

sive feature engineering. By including the 57 biological features

used in PaRSnIP, the Deep Learning model outperforms all the

state-of-the-art sequence-based protein solubility predictors.

iii. Our DeepSol models are publicly available, permitting future

extensions.

On an independent test set (Chang et al., 2014), we showed that

our predictor, DeepSol, is at least 3.5% more accurate than

PaRSnIP and at least 15% more accurate than second-best solubility

predictor PROSO II. Furthermore, DeepSol was superior to all the

current sequence-based protein solubility predictors on several other

quality metrics including Mathew’s correlation co-efficient (MCC),

selectivity and gain for soluble, and sensitivity for insoluble proteins.

DeepSol is freely available at https://zenodo.org/record/1162886

(Khurana and Mall, 2018).

2 Materials and methods

2.1 Overview
The problem of protein solubility prediction is a binary classification

problem. We learn a mapping function that takes as input some par-

ametrization, x, of a protein sequence and outputs a score in the

range ½0; 1� 2 R i.e. t : x! ½0;1�, where t is the mapping function.

In this work, t is a CNN, a sparse variation of a feed-forward

Neural Network architecture that exploits the co-occurrence pat-

terns in the input. Protein sequence, is parametrized by a sequence

of vectors, x ¼ ðx1;x2; . . . ;xLÞ, where xl is the one-hot encoded vec-

tor (Harris and Harris, 2010) i.e. a binary vector of length 21 (20

for amino acids and 1 for gap) with 1 bit active for the lth amino

acid in the protein sequence. This is a common type of word or char-

acter encoding that is well known and widely used in natural lan-

guage processing applications (Mikolov et al., 2013). Here L

represents the fixed length of the protein sequence i.e. L ¼ 1, 200.

2.2 Data partitioning
We used an initial training dataset consisting of 58 689 soluble and

70 954 insoluble protein sequences originally compiled in

(Smialowski et al., 2012). We then performed two major preprocess-

ing steps as utilized in PaRSnIP (Rawi et al., 2017) to avoid any un-

wanted bias and to ensure heterogeneity of sequences within the

training set. Similar to previous work (Agostini et al., 2012;

Smialowski et al., 2012), we first used CD-HIT (Fu et al., 2012; Li

and Godzik, 2006) to decrease sequence redundancy within the

training data with a maximum sequence identity of 90%. Second,

we pruned out all sequences from the training set that had a se-

quence identity �30% to any sequence in the independent test set to

prevent any bias caused by homologous sequences. The final train-

ing data included 28 972 soluble and 40 448 insoluble proteins.

The independent test set consisted of 1000 soluble and 1001 insol-

uble protein sequences first collected by (Chang et al., 2014). We em-

ployed this test set as a benchmark for a comprehensive comparison

of several state-of-the-art sequence-based protein solubility predictors.

2.3 Data representation
2.3.1 Deep learning model input

The raw protein sequence was used as the input to the CNN. We

did not perform any explicit feature engineering; the CNN was
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allowed to learn feature representations that best encode the infor-

mation essential for solubility prediction.

2.3.2 Additional features

We used two sets of biological features (see Table 1); First,

sequence-based features, such as the length of sequence, molecular

weight and absolute charge were estimated along with features like

the aliphatic indices (AIs), the average of hydropathicity (GRAVY),

as well as fraction of turn-forming residues. Second, structural fea-

tures predicted from the protein sequence using SCRATCH

(Magnan and Baldi, 2014) were used. We determined three- and

eight-state SS using SCRATCH to calculate the fraction of residues

belonging to each class for a given protein sequence. Additionally,

we estimated the fraction of exposed residues (FER) at different rela-

tive solvent accessibility (RSA) cutoffs. We used 20 different RSA

cutoffs ranging from 0 to 95% with an interval of 5%. We also mul-

tiplied the FER by the hydrophobicity indices of the exposed resi-

dues. In total, we included 57 sequence and structural features in

addition to the feature representations obtained from CNN to en-

hance the predictive capability of DeepSol.

2.4 Model
DeepSol consists of a CNN with multiple convolution blocks that

maps the raw protein sequence to a fixed-dimensional continuous

feature vector representation (Fig. 1b). The model is trained in a

supervised learning setting (see Section 2.5) to ensure that the fea-

ture vector is discriminative for the classification task.

The input protein sequence, x 2 R
L�21, where 21 is the size of

the amino acid symbol dictionary, is transformed to a fixed vector

hnew 2 R
d0 by performing the following transformations on x:

i. Embed: x is projected to a dense continuous vector space by

performing the transformation, E ¼ xWe, where We 2 R
21�e is

the embedding weight matrix, e corresponds to the embedding

dimension and E 2 R
L�e is the embedding matrix.

ii. Multi-convolution-pooling: The embedding matrix, E, is con-

volved with K parallel convolution blocks (see Fig. 1b).

Convolution blocks are represented by a set of triplets

fðfk; qk; akÞgk¼1...K, where fk is the convolution filter size, qk is

the number of convolution filters in the convolution block k

and ak is the activation function associated with that convolu-

tion block. We perform one dimensional convolution along the

protein sequence length, L (see Fig. 2 for the description of a

convolution block). Convolution blocks output a set of feature

maps, fZk 2 R
ðL�fkþ1Þ�qkgk¼1 to K. A convolution block k can be

expressed using the following mathematical equation:

Zk m; qð Þ ¼ ak

Xe

i¼0

Xfk

j¼0

C i; j; qð Þ � E i;mþ jð Þ
 !

(1)

where, q ¼ 1; . . . ; qk; C 2 R
e�fk�qk is the weight tensor that

contains all the qk convolution filters in that convolution block,

ak is the activation function; we use rectified linear unit (ReLU)

(Xu et al., 2015) as the activation and Zkðm;qÞ is the ðm; qÞth
element of the feature map Zk. The weight tensor C is learned

during the training phase.

After obtaining each feature map, Zk, we carry out a global

max-pooling operation. By performing max pooling, we prevent

over-fitting by reducing the number of features during the train-

ing phase. This operation leads to a vector, hk of dimension qk.

The vector hk is obtained by:

hk ¼ ½maxZkð:;1Þ; maxZkð:;2Þ; . . . ; maxZkð:; qkÞ�

Finally, we concatenate all such hk for k ¼ 1; . . . ;K to get:

h ¼ ½h1; h2; . . . ; hK�

We next describe the additional steps required to obtain the

protein solubility prediction from the model.

iii. Biological feature concatenation: Three different experimental

settings have been applied:

a. DeepSol S1: We simply use h for classification without the

additional biological features, i.e. hnew ¼ h.

b. DeepSol S2: We concatenate the biological feature vector b,

with h from the previous stage, to get hnew ¼ ½h; b�.
c. DeepSol S3: We transform the biological features using a

feed-forward neural network with p hidden units to obtain

feature vector bp 2 R
p and then concatenate it with h, to get

hnew ¼ ½h; bp�.

Here hnew 2 R
d0 and all model settings are illustrated in

Figure 1b.

iv. Fully connected layer: We pass hnew through a fully connected hid-

den layer having fc hidden units, to get Fc ¼ ReLUðhnewWfc
Þ, where

ReLU represents a rectified linear activation unit and Wfc
2 R

d0�fc is

the weight matrix associated with the fully connected layer.

v. Sigmoid decision unit: Finally, each of the two output units

gives a score between 0 and 1, as illustrated by the equation:

Pðy ¼ 1jxÞ ¼ 1

1þ expð�FcWoÞ
;Pðy ¼ 0jxÞ ¼ 1� Pðy ¼ 1jxÞ

Here Wo 2 R
fc�2 represents the output weight matrix.

2.5 Training
The DeepSol model is trained to classify protein sequences into two

classes: soluble or insoluble, using a binary cross entropy objective

function depicted below:

CE ¼ �
XN
n¼1

yn lnPðyn ¼ 1jxnÞ þ ð1� ynÞlnð1� Pðyn ¼ 1jxnÞÞ

Here xn represents the nth protein sequence and yn represents its cor-

responding soluble or insoluble class label and N represents the total

number of proteins in our training set. The models are trained for

several epochs using the Adam optimizer (Kingma and Ba, 2015),

which depends on various hyper-parameters such as:

i. Learning rate: the step size that the optimizer should take in the

parameter space while updating the model parameters.

ii. Batch size: the number of training examples to consider before

updating the parameters.

iii. Maximum epochs: the total number of iterations over the train-

ing set.

Table 1. Fifty-seven additional sequence and structural features for

DeepSol

Sequence features Structural features

Sequence length (1) Three-state SS (3)

Molecular weight (1) Eight-state SS (8)

Fraction turn-forming residues (1) FERs

AI (1) (0–95% cutoffs) (20)

Average hydropathicity (1) FERs � hydrophobicity

of exposed residues

(0–95% cutoffs) (20)

Absolute charge (1)

Note: The number of features for each type is shown in parentheses.
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(a)

(b)

Fig. 1. DeepSol overall framework. (a) DeepSol development flowchart. (b) The Deep Learning module is expanded to outline our proposed DeepSol

architectures.Model Setting 1 (DeepSol S1) corresponds to the setting where continuous feature representation (h) of the raw input sequence, is the output of the

K convolution and global max-pooling blocks. Convolution blocks are given by the set of triplets fðfk ;qk ; ak Þgk¼1 to K , where fk is the convolution filter size, qk is the

number of convolutional filters and ak is the activation function of the block (see Fig. 2 for details of the convolution block). In model Setting 2 (DeepSol S2), we

concatenate h with 57 sequence and structural features (biological features referred as b), extracted using third-party bioinformatics tools. In model Setting 3

(DeepSol S3), we transform biological features using a feed-forward neural network to get bp before concatenating with h

2608 S.Khurana et al.
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iv. Early stopping patience: the number of epochs to wait before

stopping the model training, given the validation loss does not

improve.

We preset learning rate to 0.01, maximum number of epochs to

50, early stopping patience to 10 and the optimal value of the batch

size tuned on the cross-validation set is found to be 64.

2.6 Evaluation metrics
The performance of DeepSol was comprehensively compared with

several bioinformatics tools using evaluation metrics such as predic-

tion accuracy and MCC. We evaluated additional quality metrics

like sensitivity, selectivity and gain for each class as described in

(Rawi et al., 2017).

3 Results

3.1 Hyper-parameter tuning
Our deep learning models (DeepSol S1, DeepSol S2 and DeepSol S3)

for solubility prediction consisted of multiple hyper-parameters. To

tune the hyper-parameters, we performed stratified 10-fold cross-

validation. The hyper-parameters were tuned using a grid search

procedure. The parameters and the range of values tested were as

follows:

i. Sequence length: The length of all protein sequences in the

training, validation and test set was fixed to L ¼ 1200, which is

the length of the longest protein sequence in the dataset.

Smaller than 1200 sequences were padded with zeros.

ii. Embedding dimension e: We tested the following settings

e 2 f50;64;100g. We found e ¼ 50 to be the optimal value

after tuning on the validation sets, which gives us the embed-

ding matrix, E 2 R
1200�50.

iii. Convolution filter settings: For DeepSol S1, we tested three set-

tings, given by the set of triplets ðfk;qk; akÞ (see Section 2 for ex-

planation of notation). We drop ak because it is fixed to ReLU

for each triplet; 1) A ¼ fð3; 64Þ; ð7;64Þ; ð11; 128Þg, 2) B ¼ fð3;
64Þ; ð5; 64Þ; ð7; 64Þ; ð11; 128Þ; ð13; 128Þ; ð15; 128Þg and 3) C ¼
fð2;64Þ; ð3; 64Þ; . . . ; ð15; 128Þg. Filter sizes (fk 2 f2; 3; . . . ; 15g)
are used to extract local contexts from the protein sequence

given the window size. This corresponds to the notion of a ‘bio-

logical word’ (Asgari and Mofrad, 2015) i.e. combination of

amino acid residues or an amino acid k-mer. For smaller filter

sizes (fk � 10), we used qk ¼ 64 while for larger filters

(fk>10), we used qk ¼ 128.

Subsequent to the multi-convolution layer, we performed global

max pooling to select the maximum value from each feature

map. Max pooling resulted in qk values, each produced from a

distinct convolution filter. We concatenated the values obtained

after max pooling to form a compact vector representation, h.

In the case of setting A, hnew ¼ h and hnew 2 R
d0 , where

d0 ¼ 256. The dimension of hnew i.e. d0 can be calculated using

the formula, d0 ¼
PK

k¼1 qk þ jbj, where b ¼ fg for DeepSol S1,

b 2 R
57 for DeepSol S2 and bp 2 R

p for DeepSol S3.

iv. Fully connected layer dimension (fc): After the multi-

convolution-

layer gave us a vector representation hnew, we passed it through

a final fully connected feed-forward layer comprising fc neu-

rons/units. In our experiments, the values of fc tested were,

fc 2 f64; 128; 256g.

The mean performance of DeepSol models for different settings

on the cross-validation sets are shown in Supplementary Figure S1.

The settings B and C performed better than A and smaller value of fc
was preferred over larger values. The best performing setting was C.

Next for DeepSol S2 and DeepSol S3, we added biological fea-

tures to the feature representation h that the multi-convolution-

pooling layer constructed. In the DeepSol S2 setup, we concatenated

the biological features directly, while for DeepSol S3, we passed bio-

logical features through a single layer feed-forward neural network.

The hidden dimension of the neural network was tuned on the valid-

ation set and the optimal value was found to be 64. For testing the

performance of DeepSol S2 and DeepSol S3, we primarily tested

with settings B and C. A comprehensive comparison of the three

DeepSol models is provided in Supplementary Table S1.

The best setting for DeepSol S2 was found to be B and the opti-

mal value of fc is 64. Similarly, the best setting for DeepSol S3 was C

and the optimal hidden dimension for the feed-forward neural net-

work to transform the biological features is p ¼ 256. The best value

of fc for DeepSol S3 was 64.

The final fully connected layer for all DeepSol models (fc) was

connected to the output layer, which had two neurons, each corres-

ponding to a class. We dropped 20% of the weights connecting any

two layers in each architecture to avoid over-fitting. Each model

was run for a maximum of 20 epochs with an early stopping criter-

ion that if no improvement was observed in validation accuracy for

10 consecutive epochs, then the model building procedure would be

stopped to prevent over-fitting.

Additional architectures were built (other than DeepSol S1, S2

and S3) using multi-layered and -filtered convolutional features, but

their predictive performance was inferior to a model with a single

layer of multi-filtered convolutional features. Detailed analysis of

these models is provided in the Supplementary Material.

3.2 DeepSol performance
The prediction performance of DeepSol was assessed using an inde-

pendent test set reported by (Chang et al., 2014). We compared

DeepSol with solubility predictors PaRSnIP, PROSO II, CCSOL,

SOLpro, PROSO, RPSP and SCM. A comprehensive comparison of

DeepSol models with the best available sequence-based protein solu-

bility predictor, PaRSnIP, and second-best predictor, PROSO II, is

showcased in Figure 3.

Fig. 2. Sample convolution block. Here we illustrate how convolution oper-

ation is performed on the embedding matrix E corresponding to a given pro-

tein sequence. ‘$’ refers to the convolution operator. E is convolved with the

qk filters. Each convolution filter outputs a vector zk that is passed through the

non-linear activation function ak, which are all combined together leading to

the final feature map Zk
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DeepSol S2 and S3 outperformed state-of-the-art methods like

PaRSnIP and PROSO II with respect to several quality metrics, such

as accuracy, selectivity and sensitivity. On the other hand, the per-

formance of DeepSol S1, which just used CNN based features and

no additional biological features, was comparable to PaRSnIP and

better than PROSO II but worse than DeepSol S2 and DeepSol S3

(see Fig. 3 and Table 2). DeepSol S2 emerged as the best solubility

predictor for 5 evaluation metrics yielding a prediction accuracy of

0.77 which was 3.5% better than PaRSnIP (0.74) and 19% better

than PROSOII (0.64). DeepSol S2 achieved an MCC value of 0.55

which was 15% better than that obtained by either PaRSnIP (0.48)

or PROSO II (0.34) (see Fig. 3a and b, and Table 2).

DeepSol S2 attained a much higher performance with respect to

selectivity for soluble (0.84) and sensitivity for insoluble (0.88) pro-

teins with respect to PaRSnIP (0.76 and 0.78 respectively).

However, DeepSol S3 performed the best with respect to selectivity

for soluble (0.73) and gain for insoluble (1.46) proteins. The only

metric for which PaRSnIP outperformed DeepSol S2 models was on

sensitivity for soluble (0.70) proteins where DeepSol S3 (0.69) was

competitive with PaRSnIP. Finally, we assessed the performance of

DeepSol models using different probability cutoffs (see Fig. 3c). The

best performance for all bioinformatics tools (except 0.6 for PROSO

II) was achieved using a threshold of 0.5, which was expected, as the

training and the test sets were fairly balanced (see Table 2). We per-

fomed an additional comparison highlighting the superiority of the

three DeepSol models over PROSO II using 10-fold cross-validation

on the training set (see Supplementary Table S5). Moreover, we

used 10-fold cross-validation on the training set to illustrate the sta-

bility of the results obtained by the DeepSol models for various

evaluation metrics (see Supplementary Fig. S2). This is justified by

the small amount of variance in the boxplots corresponding to vari-

ous evaluation metrics for the different DeepSol models (see

Supplementary Fig. S2).

Additionally, we built a deep feed-forward neural network clas-

sifier based on the exact set of features used in PaRSnIP. We opti-

mized for the number of layers, the number of hidden neurons in

each layer and the amount of dropout at each layer for good gener-

alization performance and reduced the risk of over-fitting by per-

forming 10-fold cross-validation. The optimal model, hereby

referred as DL WPF (Deep Learning With PaRSnIP Features), has

three feed-forward layers with 128 hidden neurons each and a drop-

out of 20%. We could not use CNNs as the local contextual features

(mono-, di- and tri-peptide frequencies) from the raw protein se-

quences were engineered explicitly for PaRSnIP. DL WPF achieved

an accuracy of 0.70 and a MCC value of 0.39 on the independent

test set. For DL WPF both accuracy and MCC values were much

smaller in comparison to that obtained from PaRSnIP and DeepSol

S2 indicating a feed-forward neural network built on PaRSnIP fea-

tures was not as capable as either PaRSnIP (GBM) or DeepSol S2

(CNN) for protein solubility prediction.

Fig. 3. Comparison of proposed DeepSol models with PaRSnIP and PROSO II on independent test set. DeepSol S1, S2 and S3 correspond to the best DeepSol

model for model Setting 1 (S1), model Setting 2 (S2) and model Setting 3 (S3), respectively. Comparison was performed with respect to area under precision-re-

call curve (AUPR) (Fig. 3a) and area under receiver operating curve (AUC) (Fig. 3b). We illustrate how accuracy varies as a function of the cutoff which acts as a

threshold to discriminate between the soluble and the insoluble class for all these bioinformatics tools (Fig. 3c)

Table 2. Prediction performance of DeepSol compared with seven protein solubility predictors on the independent test set

Methods Accuracy MCC Selectivity

(soluble)

Selectivity

(insoluble)

Sensitivity

(soluble)

Sensitivity

(insoluble)

Gain

(soluble)

Gain

(insoluble)

DeepSol S1 0.73 0.46 0.75 0.71 0.69 0.77 1.50 1.42

DeepSol S2 0.77 0.55 0.84 0.72 0.65 0.88 1.69 1.44

DeepSol S3 0.77 0.54 0.81 0.73 0.69 0.84 1.63 1.46

PaRSnIP 0.74 0.48 0.76 0.72 0.70 0.78 1.52 1.45

PROSO II 0.64 0.34 0.67 0.68 0.69 0.66 1.33 1.35

CCSOL 0.54 0.08 0.54 0.54 0.51 0.57 1.09 1.08

SOLpro 0.60 0.20 0.62 0.58 0.51 0.69 1.24 1.17

PROSO 0.58 0.16 0.58 0.57 0.54 0.62 1.17 1.15

RPSP 0.52 0.03 0.52 0.51 0.44 0.59 1.03 1.02

SCM 0.60 0.21 0.65 0.57 0.42 0.77 1.30 1.14

Note: Best performing method in bold. Performance values for majority of predictors obtained from (Chang et al., 2014). Here DeepSol S1, S2 and S3 corres-

pond to best DeepSol model for first, second and third model settings.
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By using score distribution plots, we were able to compare DL

WPF with PaRSnIP and the best proposed approach, DeepSol S2,

to identify whether the improvement came from the training algo-

rithm or from the selection of features (see Fig. 4a). It empirically

illustrated that the score distributions for the three methods did not

follow a normal distribution. Hence, we used the Mann-Whitney-

Wilcox (MWW) test (Mann and Whitney, 1947) to compare pair-

wise score distribution for each class. We found that the score dis-

tributions of DeepSol S2 versus DL WPF, DL WPF versus PaRSnIP

and DeepSol S2 versus PaRSnIP were all different (P-value < 0.01)

in the case of the insoluble class and the difference between the

mean scores for each of the paired score distributions (DeepSol S2

versus DL WPF and DL WPF versus PaRSnIP) were statistically sig-

nificant (P-value <0.01) for the soluble class. Moreover, from the

violin plot, we observed that the score distributions followed very

different density distributions for the three methods, particularly in

the case of the insoluble class (see Fig. 4a). This indicated that the

underlying mechanism being used by these models for classifying

the insoluble class prediction was disparate. Both DL WPF and

PaRSnIP used the same set of features, but PaRSnIP built more ac-

curate gradient boosted trees, resulting in a score distribution that

contrasted with the one obtained from DL WPF for both the sol-

uble and the insoluble class. Additionally, at the optimal cutoff 0.5,

DL WPF had greater density of scores below threshold h for the sol-

uble class, resulting in lower accuracy than DeepSol S2 and

PaRSnIP.

Interestingly, DeepSol S2 was the only method that was >99%

confident while predicting both the soluble (score ¼ 1) and the insol-

uble (score ¼ 0) class for several test set proteins (see Fig. 4a).

Another interesting observation was that DeepSol S2 and PaRSnIP

had a similar score distribution for the soluble class (P-value ¼ 0.74)

and the mean score for DeepSol S2 (0.24) was significantly lower

than the mean score for PaRSnIP (0.32) in case of the insoluble class.

Lower score values are better for the insoluble class where the actual

class label is 0 and higher score values are better for soluble class

where the actual class label is 1.

Similarly, we showed empirically that score distributions for the

three DeepSol model settings did not follow the normal distribution

(see Fig. 4b). Hence, we performed the MWW test between pairwise

distributions (DeepSol S1 versus DeepSol S2, DeepSol S2 versus

DeepSol S3, DeepSol S3 versus DeepSol S1) for both the insoluble

and the soluble class, respectively. The difference between the mean

scores for each paired score distribution was statistically significant

for both the insoluble and the soluble class. At the optimal predic-

tion cutoff 0.5, DeepSol S1 had a higher density of scores �0.5 for

the insoluble class and a higher density of scores �0.5 for the soluble

proteins, resulting in lower predictive accuracy and MCC in com-

parison to DeepSol S2 and DeepSol S3. Moreover, from the violin

plot, we observed that the score density distribution of DeepSol S1

was very different from that of DeepSol S2 and DeepSol S3 in the

case of both the insoluble and the soluble class (see Fig. 4a). Though

the underlying mechanism being used by all DeepSol models was

CNN based Deep Learning, DeepSol S2 and DeepSol S3 benefit

similarly from the additional 57 biological features resulting in more

accurate models (having almost identical density distributions for

both the classes) in comparison to DeepSol S1 (see Table 2).

4 Discussion

Novel in silico, sequence-based protein solubility predictors that

have high prediction accuracy are highly sought. In this study, we

introduce DeepSol, a solubility predictor that uses Deep Learning, in

particular CNNs, and additional set of biological features that rep-

resent sequence as well as structural properties of proteins. DeepSol

(S2 and S3) outperformed, to the best of our knowledge, all existing

sequence-based solubility predictors by at least 3.5% in accuracy

and 15% in MCC.

(a) (b)

Fig. 4. Comparison of score distributions for various protein solubility predictors. PaRSnIP and DeepSol S2 have nearly similar score distributions (no statistical

significance) for the soluble class but these are very different for the insoluble class. However, in Figure 4b, only DeepSol S2 and DeepSol S3 have similar shapes

for score distributions in the cases of both the soluble and the insoluble class. The violin plot corresponding to each method for each class can efficiently estimate

the density of the scores, with thickness / to the density. Here the ‘dark red’ colored diamond represents the mean for each score distribution, P represents P-

value and 2e-16 is equivalent to 2� 10�16. (a) Comparison of score distributions of DeepSol S2, DL WPF and PaRSnIP for both insoluble and soluble test set pro-

teins. (b) Comparison of score distributions of DeepSol S1, S2 and S3 for both insoluble and soluble test set proteins
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Interestingly, the performance of DeepSol S1, which extracts

local contextual feature vectors using ‘biological’ words of different

lengths (fk 2 f2;3; . . . ;15g) from just the raw protein sequence, is

comparable with PaRSnIP and much better than SVM-based tools

like PROSO II, CCSOL and SOLpro with respect to various evalu-

ation metrics. PaRSnIP uses 8477 features including mono-, di- and

tri-peptide frequencies along with an additional 57 biological fea-

tures mentioned in Table 1. The authors of PaRSnIP illustrated that

k-mer peptide frequencies (where k 2 f1;2; 3g) play a major role in

predicting the solubility of a protein. However, this suggests that

DeepSol S1 not only captures mono-, di- and tri-peptide frequencies

through the local contextual feature vector, but can also capture

additional informative higher order interactions amidst the amino

acid residues by means of the convolutional features

(fk 2 f4; 5; . . . ; 15g) and higher order abstract structural features

such as protein folds (Hou et al., 2017), thereby, making its predict-

ive performance comparable to PaRSnIP (see Table 2). It was shown

in (Hou et al., 2017) that CNNs can be used to accurately predict

protein folds and in a recent review on protein solubility (Trainor

et al., 2017), the authors emphasize that sequence-based features

such as k-mer frequencies and structural features such as protein

folding play a vital role in protein solubility.

One of the limitations of PaRSnIP is that it explicitly calculates

the peptide frequency for different values of k. Hence, for larger val-

ues of k, the computational complexity explodes (i.e. 20k features),

whereas CNNs can capture these higher order local interactions

with relative ease using multiple parallel non-linear convolution fil-

ters. However, PaRSnIP has the ability to provide relative variable

importance for each feature, a trait currently missing in the DeepSol

architecture.

DeepSol S2 and S3 models have score means which are closer to

each other for both soluble and insoluble classes in comparison to

DeepSol S1 (see Fig. 4b). This is expected as they both greatly bene-

fit from complimentary information incorporated in these models

through the additional 57 explicit sequence and structural features.

Both, DeepSol S2 and DeepSol S3 achieve superior performance for

each class (see Table 2 and Fig. 4b). This indicated that local con-

textual feature vectors learnt via a multi-filter CNN is compli-

mented by sequence and structural features such as FERs, SS

features obtained from SCRATCH, hydrophobicity indices of

exposed residues, etc. and are not confounding each other. It was

shown in PaRSnIP (Rawi et al., 2017) that several of these add-

itional explicit features also play a major role in protein solubility

prediction. Moreover, as in DeepSol S1, both DeepSol S2 and

DeepSol S3 capture discriminative higher order local interactions

amidst the amino acid residues by means of the different convolu-

tion filter sizes (fk 2 f4; 5; . . . ;15g), thereby, making its predictive

performance superior.

Finally, the primary reason for the enhanced performance of

DeepSol models is the choice of state-of-the-art machine learning

technique CNNs. The CNN framework exploits the k-mer structure

in the input protein sequence using a set of parallel convolution fil-

ters of varying sizes and can efficiently capture abstract structural

features such as protein folds (Hou et al., 2017). It can inherently

capture the non-linear relationships between the local contextual

feature vector and the dependent vector (solubility classification),

while preventing over-fitting using dropout on the weights, leading

to good generalization performance. It overcomes the limitations

faced by two-stage classifiers which have a separate step for feature

selection. Moreover, the predictive performance of DeepSol models

(DeepSol S2 and S3) is significantly boosted by the addition of 57 se-

quence and structural features extracted from protein sequences

using bioinformatics tools (e.g. SCRATCH) which compliment the

local contextual feature vector obtained from multi-filter CNN.

In conclusion, we propose a novel Deep Learning-based solubil-

ity predictor, DeepSol, that primarily utilizes features extracted

from the raw protein sequence using CNNs. The performance of

DeepSol is boosted by additional sequence and structural features

extracted from the protein sequence. DeepSol overcomes limitations

such as two-stage classifier with a separate step for feature selection

and outperforms all existing sequence-based solubility predictors

with respect to various evaluation metrics like accuracy, MCC, se-

lectivity and gain for soluble and sensitivity for insoluble proteins.

The capability (sensitivity) of DeepSol S1 (69%) and DeepSol S3

(69%) to correctly identify soluble proteins in the independent test

set is comparable to that of sequence-based methods like PaRSnIP

(70%) and PROSO II (69%). However, DeepSol S2 (88%) and

DeepSol S3 (84%) are 10 and 6% more sensitive than PaRSnIP

(78%), respectively, and are 22 and 18% more sensitive than

PROSO II (66%), respectively for identifying insoluble proteins.

Hence, DeepSol can be applied in applications, such as, to pre-reject

initial targets that are insoluble in silico and thus can help to reduce

the production cost.

Conflict of Interest: none declared.

References

Agostini,F. et al. (2012) Sequence-based prediction of protein solubility. J.

Mol. Biol., 421, 237–241.

Asgari,E. and Mofrad,M.R. (2015) Continuous distributed representation of

biological sequences for deep proteomics and genomics. PloS One, 10,

e0141287.

Bertone,P. et al. (2001) SPINE: an integrated tracking database and data min-

ing approach for identifying feasible targets in high-throughput structural

proteomics. Nucleic Acids Res., 29, 2884–2898.

Chan,W.-C. et al. (2010) Learning to predict expression efficacy of vectors in

recombinant protein production. BMC Bioinformatics, 11, S21.

Chang,C.C.H. et al. (2014) Bioinformatics approaches for improved recom-

binant protein production in Escherichia coli: protein solubility prediction.

Brief. Bioinform., 15, 953–962.

Christendat,D. et al. (2000) Structural proteomics of an archaeon. Nat. Struct.

Biol., 7, 903–909.

Cortes,C. and Vapnik,V. (1995) Support vector networks. Mach. Learn., 20,

273–297.

Davis,G.D. et al. (1999) New fusion protein systems designed to give soluble

expression in Escherichia coli. Biotechnol. Bioeng., 65, 382–388.

Friedman,J.H. (2001) Greedy function approximation: a gradient boosting

machine. Ann. Stat., 29, 1189–1232.

Fu,L. et al. (2012) CD-HIT: accelerated for clustering the next-generation

sequencing data. Bioinformatics, 28, 3150–3152.

Harris,D. and Harris,S. (2010). Digital Design and Computer Architecture.

Morgan Kaufmann, San-Francisco, USA.

Hou,J. et al. (2017). Deepsf: deep convolutional neural network for mapping

protein sequences to folds. Bioinformatics, doi: 10.1093/bioinformatics/

btx780.

Huang,H.-L. et al. (2012) Prediction and analysis of protein solubility using a

novel scoring card method with dipeptide composition. BMC

Bioinformatics, 13(Suppl 1), S3.

Idicula-Thomas,S. and Balaji,P.V. (2005) Understanding the relationship be-

tween the primary structure of proteins and its propensity to be soluble on

overexpression in Escherichia coli. Protein Sci., 14, 582–592.

Khurana,S. and Mall,R. (2018). DeepSol: a deep learning framework for

sequence-based protein solubility prediction. doi.org/10.5281/zenodo.

1162886.

Kingma,D. and Ba,J. (2015). ADAM: A method for stochastic optimization.

International Conference on Learning Representations (ICLR), San Diego,

USA, 2015.

2612 S.Khurana et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/15/2605/4938490 by guest on 19 April 2024

Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: , 
Deleted Text: fraction of exposed residues (
Deleted Text: )
Deleted Text: secondary structure
Deleted Text:  
Deleted Text: convolutional neural networks (
Deleted Text: )
Deleted Text:  
Deleted Text: &hx0025;
Deleted Text: &hx0025;


LeCun,Y. et al. (1995) Convolutional networks for images, speech, and time

series. The Handbook of Brain Theory and Neural Networks, vol. 3361,

1995.

Li,W. and Godzik,A. (2006) CD-HIT: a fast program for clustering and com-

paring large sets of protein or nucleotide sequences. Bioinformatics, 22,

1658–1659.

Li,Z. and Yu,Y. (2016). Protein secondary structure prediction using cascaded

convolutional and recurrent neural networks. arXiv preprint arXiv:

1604.07176.

Magnan,C.N. and Baldi,P. (2014) SSpro/ACCpro 5: almost perfect prediction

of protein secondary structure and relative solvent accessibility using pro-

files, machine learning and structural similarity. Bioinformatics (Oxford,

England), 30, 2592–2597.

Magnan,C.N. et al. (2009) SOLpro: accurate sequence-based prediction of

protein solubility. Bioinformatics, 25, 2200–2207.

Mann,H.B. and Whitney,D.R. (1947) On a test of whether one of two random

variables is stochastically larger than the other. Ann. Math. Stat., 18, 50–60.

Mikolov,T. et al. (2013) Distributed representations of words and phrases and

their compositionality. In: Advances in Neural Information Processing

Systems, pp. 3111–3119.
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