
Genome analysis

Efficient population-scale variant analysis and

prioritization with VAPr

Amanda Birmingham†, Adam M. Mark†, Carlo Mazzaferro†, Guorong Xu

and Kathleen M. Fisch*

Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego,

La Jolla, CA 92093, USA

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first three authors should be regarded as Joint First Authors.

Associate Editor: Bonnie Berger

Received on March 9, 2017; revised on March 14, 2018; editorial decision on March 17, 2018; accepted on April 5, 2018

Abstract

Summary: With the growing availability of population-scale whole-exome and whole-genome

sequencing, demand for reproducible, scalable variant analysis has spread within genomic re-

search communities. To address this need, we introduce the Python package Variant Analysis and

Prioritization (VAPr). VAPr leverages existing annotation tools ANNOVAR and MyVariant.info with

MongoDB-based flexible storage and filtering functionality. It offers biologists and bioinformatics

generalists easy-to-use and scalable analysis and prioritization of genomic variants from large

cohort studies.

Availability and implementation: VAPr is developed in Python and is available for free use and ex-

tension under the MIT License. An install package is available on PyPi at https://pypi.python.org/

pypi/VAPr, while source code and extensive documentation are on GitHub at https://github.com/

ucsd-ccbb/VAPr.

Contact: kfisch@ucsd.edu

1 Introduction

Precision medicine’s promise of diagnoses and treatments precisely

tuned to each patient cannot be realized without a comprehensive

understanding of the genomic variants underlying individual differ-

ences (Morgan et al., 2010; Lek et al., 2016). The rise of next-

generation sequencing has drastically decreased the cost and

increased the availability of the raw genomic data upon which such

understanding is built, but the technical hurdles to mining full anno-

tation of these data, especially for variants from population-scale

whole genome sequencing, hinder the transformation of variant in-

formation into knowledge (Pabinger et al., 2014).

Due to the glut of sequencing data and the scarcity of computa-

tional biologists with deep specialization in variant analysis, much

variant annotation and prioritization must be performed by

computer-savvy lab biologists and by bioinformatics generalists.

Currently, they are hampered by the necessity of learning details of

multiple annotation software tools and integrating these into an

analysis environment, as well as developing bespoke data structures

supporting storage and filtering of variants’ extremely heteroge-

neous information (Beck et al., 2014). Given these issues, many such

analyses are performed manually or semi-manually, using ad hoc

filtering approaches that are difficult to accurately record and repro-

duce. Variant Analysis and Prioritization (VAPr) addresses these

challenges by providing a simple software package that painlessly in-

tegrates high-quality reproducible variant investigation into any

analysis pipeline.

2 Main features

The VAPr workflow is described in Figure 1. As a wide variety of

tools already exist for annotating variants (Pabinger et al., 2014),

VAPr builds upon the best-in-class choices from this field. For basic

evaluation of novel variants, VAPr leverages the popular command-

line software ANNOVAR (Wang et al., 2010); since this tool

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2843

Bioinformatics, 34(16), 2018, 2843–2845

doi: 10.1093/bioinformatics/bty192

Advance Access Publication Date: 6 April 2018

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/16/2843/4962490 by guest on 20 April 2024

https://pypi.python.org/pypi/VAPr
https://pypi.python.org/pypi/VAPr
https://github.com/ucsd-ccbb/VAPr
https://github.com/ucsd-ccbb/VAPr
Deleted Text: <italic>-</italic>
Deleted Text: VAPr (
Deleted Text: F
Deleted Text: <?A3B2 show [AuthorQuery id=
https://academic.oup.com/

requires the installation and update of various local data files, VAPr

also provides set-up methods to easily manage these resources. For

collation of existing annotations for known variants, VAPr queries

the MyVariant.info web service (Xin et al., 2016), which aggregates

continually updated information from more than a dozen disparate

variant annotation efforts. Both sets of resulting annotations for

each variant are merged and recorded in a local NoSQL MongoDB,

against which filtering and output steps are performed. The BigQ

extension to the i2b2 framework for clinical research management

(Gabetta et al., 2015) has already demonstrated that such databases

provide fast, scalable and flexible storage for variant information,

and VAPr thus extends these benefits to the large body of data ana-

lysts working outside the i2b2 framework. Access to all data is pro-

vided by a single Python API (Application Programming Interface);

furthermore, since VAPr is available through PyPi, it can be installed

with a simple one-line command (pip install VAPr).

An additional advantage of VAPr’s storage approach over a trad-

itional relational database is that users need not learn a complex table

structure in order to filter for variants of interest (Schulz et al., 2016).

VAPr manages the data in such a way that custom queries can be for-

mulated using only MyVariant.info or ANNOVAR field names using

the standard PyMongo syntax (O’Higgins, 2011). Many users, how-

ever, will find that they do not need to write custom queries at all, as

VAPr provides pre-built variant analysis filters for four classes of vari-

ants that are commonly of interest: deleterious rare variants, known dis-

ease variants, deleterious compound heterozygous variants, and de

novo variants from trios. The full definitions for these filters are detailed

in the VAPr documentation. A user requiring different filtering criteria

can easily create a custom query using these preset filters as a template.

As variant data are primarily conveyed via the variant call

format (VCF) (Danecek et al., 2011), VAPr supports single-sample

and multi-sample VCF file input and output. VAPr results can also

be exported to comma-separated value (CSV) files for examination

in an Excel spreadsheet and/or integration with a wide variety of

downstream analysis tools. VAPr supports human genome assem-

blies hg19 and hg38 and comes with extensive user documentation

that presupposes no expertise beyond basic experience with Python,

including a tutorial on how to compose custom queries. In addition,

we provide installation instructions, an extensive suite of unit tests

and a fully executable Jupyter Notebook workflow to demonstrate a

sample usage of VAPr.

3 Sample implementation

VAPr supports extremely lightweight implementation of variant in-

vestigation in Python scripts. The code sample below demonstrates

the minimal code necessary to read in and parse a VCF file, annotate

its variants with MyVariant.info and ANNOVAR and identify those

meeting criteria for known disease variants. As shown here, these

tasks can be accomplished with only four statements.

from VAPr import vapr_core.VaprAnnotator

Parse, annotate, and save variants from input VCF

annotator¼VaprAnnotator(“/path/to/vcfs/”,
“/path/to/output_dir/”, mongo_db_name, mongo_

collection_name,

“/path/to/annovar/”, build_ver¼“hg19”)

dataset¼annotator.annotate()

Identify and prioritize known variants

known_disease_variants¼dataset.get_known_
disease_variants()

Run times on a laptop computer with four cores and 16GB memory

were 2.5 min for a whole exome vcf file (40 000 variants) and 5 h for

a whole genome vcf file (4.8 million variants).

4 Conclusions

VAPr provides a simple, turn-key Python API that integrates popular

annotation tools with a flexible local data store to efficiently anno-

tate, analyze and prioritize population-scale variant calls. It accom-

modates large variant files (such as those from whole genome

sequencing) and meshes easily with upstream variant calling pipe-

lines, while offering simplified Python-based custom filtering for

variant prioritization and built-in filter options for common criteria.

Furthermore, as VAPr is entirely open-source and available for ex-

pansion under the MIT license, users can easily extend it to include

their own prioritization strategies and thus reduce dependence on

manual variant filtering. We hope that, given its native ease-of-use

as well as its extensibility, VAPr will empower lab biologists and

non-specialist bioinformaticists to perform more transparent and re-

producible analyses. Such reproducible, automated variant evalu-

ation methods are critical not only for primary research but also in

realizing many precision medicine workflows.

Funding

This work was supported by the National Institutes of Health

[UL1TR001442] of CTSA and the San Diego Center for Systems Biology

[P50GM085764]. The content is solely the responsibility of the authors and

does not necessarily represent the official views of the NIH.

Conflict of Interest: none declared.

Fig. 1. VAPr workflow for variant annotation and prioritization. Variant calls in

VCF format are parsed, annotated, aggregated and stored in a MongoDB

database where they can be quickly retrieved through filtering queries or out-

put as CSV files

2844 A.Birmingham et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/16/2843/4962490 by guest on 20 April 2024

Deleted Text: ,
Deleted Text: p
Deleted Text: m
Deleted Text: V
Deleted Text: C
Deleted Text: F
Deleted Text: CSV (C
Deleted Text: S
Deleted Text: V
Deleted Text: ,
Deleted Text: I
Deleted Text: ,
Deleted Text: 4
Deleted Text: utes
Deleted Text: ,
Deleted Text: ours
Deleted Text: ,
Deleted Text: as well as
Deleted Text: ,

References

Beck,T. et al. (2014) GWAS Central: a comprehensive resource for the com-

parison and interrogation of genome-wide association studies. Eur. J. Hum.

Genet., 22, 949–952.

Danecek,P. et al. (2011) The variant call format and VCFtools.

Bioinformatics, 27, 2156–2158.

Gabetta,M. et al. (2015) BigQ: a NoSQL based framework to handle genomic

variants in i2b2. BMC Bioinformatics, 16, 415.

Lek,M. et al. (2016) Analysis of protein-coding genetic variation in 60, 706

humans. Nature, 536, 285–291.

Morgan,A.A. et al. (2010) Clinical assessment incorporating a personal gen-

ome—authors’ reply. Lancet, 376, 869–870.

O’Higgins,N. (2011) MongoDB and Python: Patterns and processes for the

popular document-oriented database. ‘O’Reilly Media, Inc, Sebastopol, CA.

Pabinger,S. et al. (2014) A survey of tools for variant analysis of

next-generation genome sequencing data. Brief. Bioinformatics, 15,

256–278.

Schulz,W.L. et al. (2016) Evaluation of relational and NoSQL database archi-

tectures to manage genomic annotations. J. Biomed. Inform., 64, 288–295.

Wang,K. et al. (2010) ANNOVAR: functional annotation of genetic variants

from high-throughput sequencing data. Nucleic Acids Res., 38, e164–e164.

Xin,J. et al. (2016) High-performance web services for querying gene and vari-

ant annotation. Genome Biol., 17, 91.

Efficient population-scale variant analysis and prioritization with VAPr 2845

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/34/16/2843/4962490 by guest on 20 April 2024

