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Abstract

Motivation: The detection of genomic variants has great significance in genomics, bioinformatics,

biomedical research and its applications. However, despite a lot of effort, Indels and structural var-

iants are still under-characterized compared to SNPs. Current approaches based on next-

generation sequencing data usually require large numbers of reads (high coverage) to be able to

detect such types of variants accurately. However Indels, especially those close to each other, are

still hard to detect accurately.

Results: We introduce a novel approach that leverages known variant information, e.g. provided

by dbSNP, dbVar, ExAC or the 1000 Genomes Project, to improve sensitivity of detecting variants,

especially close-by Indels. In our approach, the standard reference genome and the known variants

are combined to build a meta-reference, which is expected to be probabilistically closer to the sub-

ject genomes than the standard reference. An alignment algorithm, which can take into account

known variant information, is developed to accurately align reads to the meta-reference. This strat-

egy resulted in accurate alignment and variant calling even with low coverage data. We showed

that compared to popular methods such as GATK and SAMtools, our method significantly

improves the sensitivity of detecting variants, especially Indels that are close to each other. In par-

ticular, our method was able to call these close-by Indels at a 15–20% higher sensitivity than other

methods at low coverage, and still get 1–5% higher sensitivity at high coverage, at competitive pre-

cision. These results were validated using simulated data with variant profiles extracted from the

1000 Genomes Project data, and real data from the Illumina Platinum Genomes Project and ExAC

database. Our finding suggests that by incorporating known variant information in an appropriate

manner, sensitive variant calling is possible at a low cost.

Availability and implementation: Implementation can be found in our public code repository

https://github.com/namsyvo/IVC.

Contact: vosynam@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The detection of genomic variants has great significance in

genomics, bioinformatics, biomedical research and its applications

(1000 Genomes Project Consortium, 2012, 2015; Pabinger et al.,

2014). Recent advances in next-generation sequencing (NGS) tech-

nologies make it possible to provide cost-effective, high-throughput

and large-scale sequencing data for humans and other species

(Auton et al., 2012; Lek et al., 2016). This facilitates a wide range of
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genomics and bioinformatics research including genomic variant

detection. Many algorithms and tools with several approaches have

been developed for calling genomic variants including SNPs, Indels

and Structural Variants. Most of them are based on statistical meth-

ods such as Bayesian methods, Hidden Markov models or logistic

regression models (Bansal et al., 2010; Challis et al., 2012; Chen

et al., 2009; DePristo et al., 2011; Garrison and Marth, 2012; Li,

2011; Mose et al., 2014; Wang et al., 2013; Ye et al., 2009).

Although these methods are well-established, they still suffer from

detecting Indels and structural variants in repetitive or densely

altered regions of the genome. Li (2014) has shown that Indels that

are close to each other (close-by Indels) can make it challenging for

aligners to get the correct alignments and consequently for variant

callers to make the correct calls. Recently, Jiang et al. (2015) have

shown that Indels are more abundant than currently appreciated.

Furthermore, Chaisson et al. (2014), by analyzing a haploid human

genome (CHM1) using single-molecule, real-time DNA sequencing,

have detected several folds more Indels than previously reported.

Missing these variants can lead to inaccurate downstream analyses

such as characterizing tumor evolution or predicting therapeutic

responses. Therefore, there is still need for improving sensitivity of

Indel detection.

Most of the current variant calling methods detect variants based

on analyzing aligned reads from external aligners (Pabinger et al.,

2014). To speed up the alignment process, most aligners ignore the

interdependency between reads coming from the same regions,

which might produce inconsistent aligned reads and therefore com-

plicate variant calling (Li, 2014). Researchers usually perform

realignment to recover misaligned reads at the region of interests

(Albers et al., 2011; DePristo et al., 2011). Some methods perform

local assembly to construct unitigs, and then map the unitigs against

the reference genome to call variants (Carnevali et al., 2012; Mose

et al., 2014). Some other methods exploit a special data structure

called alignment graphs to improve detection of long Indels

(Marschall et al., 2013). Researchers also exploit multi-samples to

support variant detection (Bansal et al., 2010; Li, 2011; Wang et al.,

2013). Nevertheless, they still have not taken full advantage of input

data to support variant calling process. Consequently, they usually

require high sequencing coverage to be able to detect variants

accurately.

Currently, a large number of genomic variants in populations of

humans and other species have been collected in public databases.

For example, a lot of human genomic variants are detected from a

large number of individuals with a lot of effort such as dbSNP

(Wheeler et al., 2007), dbVar and DGVa (Lappalainen et al., 2013),

1000 Genomes Project (1000 Genomes Project Consortium, 2015)

or ExAC (Lek et al., 2016). Therefore it would be desirable to design

methods which can efficiently exploit them to support calling var-

iants in new genomes. For this purpose, SOAPsnp (Li et al., 2009b)

calculates a prior-genotype probability by the use of dbSNP in the

analysis of human data; while Atlas (Shen et al., 2010) uses prior

SNP probability and prior error probability in its training datasets.

Nevertheless, those methods have not exploited known variant

information efficiently to support variant calling. In particular, these

tools have not used that known variants to support analyzing

aligned reads. Recently, BWBBLE (Huang et al., 2013) is among a

few tools which can use known variants to support read alignment,

but this method has not been adapted to variant calling problem.

In this paper, we introduce a novel method that leverages known

variant information to detect both known and unknown genomic

variants from NGS data, especially close-by Indels. In this method

we combine reference genomes and their associated known variant

profiles in an appropriate manner to help perform read alignment

and variant calling efficiently and accurately. We then develop an

algorithm, which can take into account known variant information,

for alignment of reads to the reference. This strategy allows reads to

be aligned more accurately, and variants can be called more accu-

rately even with few numbers of reads (low coverage) compared to

conventional methods. In particular, our method is better at calling

Indels that are otherwise hard to call even at high coverage. The

method’s high accuracy at low coverage can help reduce experimen-

tal cost of variant detection.

2 Materials and methods

The overall objective of our method is to detect genomic variants

from short reads that come from an individual’s genome. Our

method incorporates known information of genomic variants, which

are collected in public databases by efforts such as the 1000

Genomes Project or ExAC, into the variant calling process. We

expect that information of known variants can help to identify the

known variants of a new individual’s genome more efficiently. More

importantly, we also expect that by leveraging the known informa-

tion in the variant calling process, we can detect unknown variants,

i.e. variants that do not exist in databases, more accurately.

Our method, called IVC (Integrated Variant Calling), includes

two main contributions: (i) a meta-genome representation which

combines the reference genome and known variant profile in an

appropriate manner, and (ii) a known-variant-sensitive alignment

algorithm which can take into account known variants in determin-

ing optimal alignment. Both of them are designed to efficiently and

effectively exploit known variants in read alignment and variant

detection processes, which is difficult to do with standard reference

genomes and conventional alignment algorithms. Two other techni-

ques are also introduced: (iii) an iterated randomized algorithm

which can find seeds efficiently, and (iv) a strategy to update variant

profiles during the alignment process, which turns out can help

improve accuracy of read alignment and therefore the variant call-

ing. These contributions will be described in the following sections.

2.1 Representing and indexing reference genomes with

incorporated known genomic variants
Many methods of calling variants depend on the alignment of short

reads to a reference genome. To incorporate genomic variants into

the reference genome, several approaches have been proposed such

as graph representations for multiple genomes (Schneeberger et al.,

2009), strings with wildcards (Thachuk, 2011) or strings with

IUPAC symbols (Huang et al., 2013). While these approaches are

theoretically interesting, they either cannot fully describe variants or

are computationally inefficient or difficult to implement in practice.

Here we introduce a novel representation which incorporates

variants into the reference genome in a simpler and more efficient

way. First, we create a reference meta-genome M which is composed

of characters A, C, G, T, N and V. Positions with A, C, G, T and N

are corresponding to bases in the standard reference genome which

are not marked as variant locations in the databases. Positions with

V represent locations of known genomic variants in databases,

which can be either SNPs or Indels (other types of variants will be

added into the design in the future). Thus, a V character can repre-

sent multiple bases (e.g. A or C) in case of SNPs or multiple sequen-

ces of bases (e.g. AC or ACGGT) in case of Indels. Together with

this reference meta-genome, we create a hash table H with keys rep-

resenting locations of known variants and values representing the
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variant profiles at corresponding locations. During the alignment of

short reads to the reference, whenever a known variant location is

reached, the hash table is used to retrieve variants at that location.

The main advantage of using a hash table is that it allows us to

retrieve information of known variants in a quick and simple way,

although it might require accessing both data structures.

Together with the meta-genome M and the hash table H, an

index I is also created to speed up the alignment of short reads to

the reference. The use of an index to facilitate short-read alignment

is commonplace. The purpose of such indexes is to quickly identify

long common substrings, known as seeds, between reads and the

reference. Those seeds are then extended to find the complete align-

ment between reads and the reference. Researchers have used vari-

ous types of data structures such as hash tables or FM-indexes to

build such indexes (Li and Homer, 2010). A standard FM-index is a

data structure built for a specific string to allow optimal linear stor-

age and linear time substring query on that string (Ferragina and

Manzini, 2005). In particular, given a string s, to find out if s is a

substring of another string t, the FM-index search algorithm starts

at the end of s and proceeds in a backward fashion to identify all

currently matched suffixes of s in t, using the FM-index data struc-

ture created from t. The search stops when either it cannot find any

occurrences of the current suffix of s in t or it reaches beyond the

beginning of s.

In our method, we exploit the FM-index for indexing the meta-

genome M, which consists of characters A, C, G, T, N and V as

described above, in which V is considered as a wildcard character.

However, to facilitate alignment of reads to the reference meta-

genome, we developed an iterated randomized algorithm to replace

the traditional FM-index search algorithm. This algorithm turns out

to be very efficient in our experiments as described in next sections.

2.2 Aligning reads to the reference meta-genome
The purpose of aligning reads to the reference meta-genome in our

method is to keep track of genomic differences between reads and

the reference. Our alignment strategy is similar to popular methods

in its decomposition of the alignment process into two steps:

1. (Seeding phase) Searching for (appropriate) seeds of the align-

ment between reads and the reference meta-genome.

2. (Extension phase) Seeds are extended on both sides (left and

right) on reads and on the reference into a complete alignment.

However, to improve accuracy of read alignment, in each phase

we introduce several novel techniques as described in the following.

2.2.1 Seeding phase

Many current alignment methods determine proper seeds based on

long exact matches between reads and the reference genome. A good

strategy to determine long exact matches must not start near posi-

tions on reads that contain differences between reads and the refer-

ence. However, these differences can occur at any positions on

reads. Thus, several seed finding methods such as CUSHAW2 (Liu

and Schmidt, 2012) are essentially brute-force, which are computa-

tionally expensive.

Our seed finding strategy is an iterated randomized algorithm,

which is faster than the brute-force algorithm while still having com-

petitive accuracy. A more detailed analysis of this strategy is given in

Supplementary Material. Basically, our seed finding algorithm is

based on searching for exact substrings on an FM index with the fol-

lowing modifications:

1. The search for seeds starts at a random position in r and pro-

ceeds in a forward fashion. Instead of considering all positions

on the read in the brute-force manner to find the longest exact

matches, this algorithm starts the search from a random posi-

tion on the read. By repeating this several times, we can find

the near longest exact matches after a number of random itera-

tions which is much less than those numbers required by the

brute-force manner (Vo et al., 2014). The algorithm also per-

forms forward search from a position near the beginning of the

read than the conventional backward search from the end of

the read. The main advantage of doing this is making the

search less likely encountering sequencing errors. This is based

on the observation that probabilities of sequencing errors are

likely increased from the beginning to the end of the reads

(Wang et al., 2012).

2. The search for seeds ends as either it reaches a known variant

location, or it cannot find any occurrences of the current suffix

of r in M, or it reaches beyond the end of r. To avoid as many

as possible variant locations (one source of differences between

reads and the reference) as searching for seeds, here we exploit

one advantage of the meta-genome representation. By looking

at V characters on the meta-genome M using the hash table H,

we can stop the search for seeds whenever it reaches a known

variant location. In our experiments, this strategy significantly

improves the chance of finding proper seeds, therefore improv-

ing the chance of mapping reads to accurate locations and

aligning reads accurately at those locations.

2.2.2 Extension phase

Many current methods have exploited dynamic programming-based

alignment algorithms to efficiently extend seeds to a complete align-

ment. In particular, given a seed s, which is a substring of the refer-

ence and matches exactly to a substring t of the read, we need to

extend this exact match into a complete alignment by aligning the

extracted left and right sides of s and t. To do that, algorithms such

as Needleman-Wunsch or Smith-Waterman with some modifica-

tions and heuristics have usually been exploited (Li and Homer,

2010). These algorithms, however, cannot be applied directly to our

design. Moreover, the representation of meta-genome requires dif-

ferentiating V characters from other standard characters (A, C, G, T

or N) in the pairwise alignment. Therefore, a new alignment algo-

rithm is needed to deal with these problems.

Here we introduce a novel asymmetric alignment algorithm

which can take into account known variants in the pairwise align-

ment. To be precise, suppose that the read has the following form:

usv, and that its mate on the reference has the following form:

. . . sussv . . ., in which s is the seed found from the seeding phase

(Section 2.2.1). A complete alignment is obtained by aligning (1) u

and su, and (2) v and sv symmetrically, and then combining them

with the seed s. Basically, the alignment of u and su (and between v

and sv) is done in two combination steps as follows (more detail of

this algorithm is given in Supplementary Material):

1. Non-gapped alignment: starting at the end of u and su and back-

wardly, as long as the current character of u either matches the

current character of su or (in case the current location of su is a

known variant) matches one of the variants at the known loca-

tion of su. This process stops when two current characters do

not match or the current location of su is a known Indel. This

step turns out can help to reduce running time of whole align-

ment process significantly. The main reason is, mutation rates

are usually small, which means that mismatch locations,
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including Indels, exist on only a small fraction of alignment loca-

tions. Therefore, in most of the cases, this step will be performed

instead of pairwise alignment (the next step) which is much

more time-consuming.

2. Affine-gapped alignment: the rest of u and su are aligned using an

asymmetric edit-distance algorithm with an affine gap penalty

scheme. This algorithm is different from the traditional edit-

distance algorithm in that (i) the cost of deleting a prefix of su (on

the reference) to align to an empty prefix of u (on the read) is 0

(asymmetric), and (ii) the way of substituting, inserting and delet-

ing bases depends on their locations on the reference, which can

be known or unknown variant locations, and the corresponding

cost is determined based on the variant profiles. By allowing the

asymmetric alignment, we can align a short fragment u to a much

longer fragment su, which is necessary to efficiently capture possi-

ble long reference-deletions, with an appropriate alignment cost.

This is because the alignment cost should not depend on the

length of the prefix of su which is aligned to an empty prefix of u.

By using a variant location-dependent alignment process and var-

iant profile-dependent cost scheme in an appropriate manner, we

can efficiently exploit information of known variants to support

determining the appropriate alignment.

2.3 Updating variant profiles and calling variants
The variant profile at a location stores all possible variants (SNPs or

Indels) and their probabilities at the location. Variant profiles of

both known and unknown variants are kept track and updated using

Bayes’ theorem during the alignment of reads. The main advantage

of updating the variant profiles during the alignment process is,

updated variant profiles provide latest information to the alignment

algorithm (Section 2.2.2) during the read alignment process so the

alignments are more likely correct.

To be specific, suppose a read base ai is aligned to a location that

is a known or unknown variant. Then, for each base b of the variant

profile at the location, probability of b to be a true variant given

that ai is aligned to that location is calculated by:

PðT ¼ bjA ¼ aiÞ ¼
PðT ¼ bÞ � PðA ¼ aijT ¼ bÞ

PðA ¼ aiÞ
where T is a random variable representing the true variant and A is

a random variable representing the aligned base at the location.

The prior probability PðT ¼ bÞ is initially assigned based on the

initial variant profile at the location. Initial profiles of known var-

iants are assigned based on input variant databases (e.g. 1000

Genomes data), and the prior probability of variants is estimated

from population allele frequency in the database. Initial profiles of

unknown variants are assigned heavy bias toward the reference

(more detail on this is given in the Supplementary Material). This

probability is then updated (replaced) by the posterior probability

PðT ¼ bjA ¼ aiÞ during the alignment process.

To calculate the quantity PðA ¼ aijT ¼ bÞ, we consider two

cases: (i) if b¼ ai, then PðA ¼ aijT ¼ bÞ ¼ 1� ei, where ei is the

probability that ai is a sequencing error, which can be derived from

base qualities of the read; (ii) if b 6¼ ai, then PðA ¼ aijT ¼ bÞ ¼ ei

3,

which is the probability of one of three non-ai bases to be b.

The other quantity, PðA ¼ aiÞ, can be calculated as

PðA ¼ aiÞ ¼
P

b PðA ¼ aijT ¼ bÞ. In case of an Indel, the probabil-

ity is a product of probabilities of corresponding reference and read

bases.

After all reads have been aligned, the variant profiles are used to

call variants at both known and unknown locations. For each var-

iant profile location, let c be a base (or an Indel) with highest

probability, f(c), among all of the other bases (or Indels), then the

Phred quality score of c is given as Qc ¼ �10 log10ð1� f ðcÞÞ. Qc is

declared as quality score of the called variant c at the location.

3 Results

3.1 Experimental setup
3.1.1 Data

Comparisons were made on human data with the reference genome

GRCh37. The types of data used in our experiments are: (i) variant

information used by our method, IVC, as known variants to be

leveraged for detecting unknown variants, and (ii) sequencing reads

from certain individuals used to detect variants of those individuals.

For known variants used by IVC, we have tested three sources of

information. The first is the 1000 Genomes Project data (1KGP)

(1000 Genomes Project Consortium, 2012). The second is dbSNP

(Wheeler et al., 2007). The third is ExAC database, which focused

on exonic regions (Lek et al., 2016). ExAC is a more comprehensive

database compared to 1KGP on exonic regions, especially for Indels,

as it analyzed sequencing data from many more individuals (more

than 60 000 people).

For sequencing reads, we used two types of data. First, simulated

paired-end data were generated carefully and realistically to com-

pare precision and recall of all methods. Reads were generated using

DWGSIM, a popular whole genome simulator (https://github.com/

nh13/DWGSIM), with length 2� 100 bp and average insert size

500 bp at coverage from 3� to 50�. The rate of sequencing errors

was chosen to be 0.015% at the start and 0.15% at the end of reads

to capture realistically base quality of high-quality real reads. This

error rate was increased from the beginning to the end of reads by

DWGSIM. Additionally, �5% of random reads were inserted into

the datasets to reflect noise. In this simulation, there were totally

211 855 variants, of which 17 761 Indels on Chromosome 1.

Among these Indels, there were 8379 Insertions and 9382 Deletions,

of which 201 Insertions and 398 Deletions had length � 10 bp.

Because we focus on detecting Indels, there were no Insertions or

Deletions that are longer than 50 bp.

Second, we used real paired-end data provided by the Platinum

Genomes project (http://www.illumina.com/platinumgenomes).

This is a high-quality Illumina HiSeq 2000 dataset sequenced from

sample NA12878 with read length 101 and coverage �50�. We

also down-sampled (by randomly selecting part of reads from the

original dataset) this dataset to 20�, 10� and 5�, respectively, to

investigate impact of coverage on performance of each method.

3.1.2 Evaluation metrics

The accuracy of each calling method is defined in terms of Precision,

Recall (or Sensitivity), and Specificity as follows:

Precision ¼ TP

TPþ FP

RecallðSensitivityÞ ¼ TP

TPþ FN

Specificity ¼ TN

TN þ FP

where TP is the number of correctly called variants, FP is number of

incorrectly called variants, TN is number of correctly called non-variants,

and FN is number of incorrectly called non-variants, by each method.

We compared IVC and other methods basically by measuring the

percent of increase in precision (PIP) and recall (PIR) of IVC relative to

other methods, which is defined as pðIVCÞ
pðXÞ � 1Þ � 100

�
, where p
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indicates either precision or recall. A positive (negative) PIP or PIR of a

method indicate a better (worse) accuracy of that method, and the

higher PIP or PIR, the better accuracy of the method (compared to

another).

3.1.3 Variant callers

We compared our method (IVC) to GATK UnifiedGenotyper (UG),

GATK HaplotypeCaller (HC) (DePristo et al., 2011; McKenna et al.,

2010), SAMtools (ST) (Li et al., 2009a) for both SNP and Indel call-

ing. These tools have been reported to outperform others for variant

calling (Liu et al., 2013; Yu and Sun, 2013). We also compared our

method to Atlas2 (AT) (Shen et al., 2010), a variant caller that incor-

porated prior SNP/error probabilities in its training datasets, and

Scalpel (SP) (Narzisi et al., 2014), a recent Indel caller that has previ-

ously shown to outperform many other state-of-the-art callers on the

exome capture data. For short-read aligner we chose BWA-MEM

(Li, 2013), a tool that has been applied widely (Pabinger et al., 2014)

and was also suggested by all above methods.

Additionally, we used GATK IndelRealigner (IR), a realignment

tool suggested by all tools UG, HC, ST and AT to improve their accu-

racy of Indel calling. Indel realignment is a post-alignment step,

which realigns reads around Indel locations to get more accurate

alignment. We found that this process could improve considerably

the accuracy of variants called by all tools UG, HC, ST and AT. In

particular, for UG and AT, precision and recall were increased by up

to 11 and 22%, respectively. For ST, the increase was around 4% for

precision and 6% for recall. Interestingly, while the improvement of

precision was most dramatic with high-coverage data, the improve-

ment of recall was most dramatic with low-coverage data. For HC,

there was no improvement for SNP calling but some slight improve-

ment of recall at low coverage for Indel calling.

3.1.4 Evaluation strategies

First, we evaluated how effectively our method could leverage exist-

ing variant information to detect known and unknown variants

using simulated data. To accomplish this, we pretend to know and

leverage only a fixed percentage of known variant information

which was used to simulate hypothetical individuals. We varied this

percentage from 60 to 90% to measure how much our method,

IVC, was able to detect unknown variants.

Second, we evaluated how well our method could leverage

known variant information to detect variants of new individuals

using real data. To accomplish this, we used real sequencing data

for the individual NA12878 provided by Platinum Genome Project.

To leverage known variant information, we used data from 1KGP

as well as dbSNP. To evaluate accuracy, we used variants from

Genome-In-A-Bottle (GIAB) (Zook et al., 2014), which has been

used as gold standard for benchmarking SNP and Indel calls in

many studies (Cornish and Guda, 2015; Li, 2015).

Third, we evaluated how well our method could leverage known

variants to detect Indels in exonic regions. Indel detection is challenging,

and accurate detection of Indels in exonic regions is especially impor-

tant. To accomplish this, we used variants from the ExAC database as

known variants for IVC to detect known and potentially new variants.

Again, GIAB variants were used as gold standard for evaluation.

3.2 Leveraging known variants to detect unknown

variants with simulated data
3.2.1 Detecting variants with varied percentage of known variants

Table 1 shows the percent increase in precision (PIP) and recall

(PIR) of IVC relative to other methods. In this experiment, we

pretend to know and leverage 70% of variant information.

Unsurprisingly, IVC did a superior job at being able to detect these

known variants in reads from simulated individuals varying from

3� coverage to 50� coverage. The percent increase in precision was

about 1–2%, while the percent increase in recall was much more

drastic. The increase in recall was especially impressive at lower cov-

erage, where other methods did not have enough information to

make accurate calls while IVC was able to take advantage of known

information to call variants accurately. AT did not get a high recall,

especially for SNP calling and Indel calling at low coverage, prob-

ably because it performed too strict filtering. SC was eliminated

from this experiment since it caught runtime errors or run nearly

forever in many cases, probably because it was mainly designed and

has been extensively tested on exome capture data but not whole

genome data.

Table 1 also shows the percent increase in precision and recall of

IVC relative to other methods for unknown variants. In this experi-

ment, 30% of the variant was not used by IVC as prior knowledge.

We observe that IVC was generally and marginally better than other

methods in detecting unknown SNPs. However, IVC was noticeably

better at detecting unknown Indels, again especially at lower

coverage.

Table 2 shows the PIP and PIR of IVC relative to HC, the best

methods among the others based on above evaluation, when the per-

centage of known variants leveraged by IVC varied from 60 to 90%

(of total variants). In this experiment, we fixed read coverage at

50�. We observed similar increase in precision and recall of IVC rel-

ative to the other methods. For known variants, the percent increase

in precision (PIP) was noticeable, while the percent increase in recall

(PIR) was much more drastic, especially at lower coverage. For

unknown variants, we found similar increases in recall of IVC com-

pared to other methods, especially for Indels.

Finally, Figure 1 compares the trade off between precision and

recall of all methods at predicting unknown variants for read cover-

ages from 3� to 50�. AT was eliminated from this comparison due

to its too low recall. IVC was the only tool with both precision and

recall greater than 0.9 at 10� or higher coverage. Overall, IVC was

superior at predicting unknown variants from low to high

coverages.

3.2.2 Predicting close-by Indels using known variants

Two Indels are considered to be close-by if their left-most ends are

located closely to each other. Our analysis of population Indels in

human chromosome 1 using variant callset from 1KGP showed that

there are 14% of Indels have at least one Indel located within 30 bp

on the left or on the right in terms of their left-most positions.

Close-by Indels make it challenging for aligners to get the correct

alignments and consequently for variant callers to make the correct

calls (Li, 2014). An aligner’s mistake in getting the correct alignment

for one read will likely repeats for another read. Therefore, high

coverage probably does not help in improving the accuracy of call-

ing close-by Indels. To illustrate this, let’s consider a toy example in

which the read GTAATATTGT is aligned to the reference genome

GTATTAGTGT:

location 12 34567890 1234567890

genome GT–––ATTAGTGT GTATTAGTGT

read GTAATATT-GT GTAATATTGT

correct algn incorrect algn

The correct alignment yields two Indels at location 2 and 5,

while the incorrect one yields two SNPs at location 4 and 7.
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An aligner likely chooses the incorrect alignment as it has better

scores (gaps in Indels are generally penalized seriously by aligners).

This can be repeated for all reads thus it makes the alignment based

variant callers difficult to detect the correct variants even at high

coverage. Our analysis of true positives and false negatives of all

four methods confirmed this. They were more likely to detect var-

iants correctly when there were fewer close-by Indels. Counting the

number of Indels located within 30 bp on the left or on the right of a

variant at coverage 50�, we found that on average, the difference in

numbers of close-by Indels between true positives and false negatives

for all four methods is approximately 1. Thus, on average, one

close-by Indel within a window size of 30 bp could make a differ-

ence between one correct call and one incorrect call.

IVC’s ability to detect close-by Indels compared to the other

methods is apparent in Table 1. Even at 50�, IVC’s recall rate of

Indels was 4–5% higher than that of the other methods. To analyze

IVC’s ability to detect these Indels more carefully, we separate them

into two main groups, G50 and G100, based on the percentage of

known close-by Indels within 30 bp that IVC was informed, 50 and

100%, respectively. Figure 2 shows the numbers of true positives

and false negatives of Indels in each of the three groups, for all four

methods (AT was eliminated from this experiment due to its too low

recall). First, we see that the ratio between true positives and false

negatives of UG, HC and ST are, respectively, similar in all groups.

This makes sense because these tools are not informed of close-by

Indels. Second, the more IVC is informed of close-by Indels, the

more likely it is able to detect Indels correctly. In particular, when

IVC is totally informed of close-by Indels (G100), the number of

true positives and false negatives increased and decreased signifi-

cantly, respectively, compared to the others. One notice in this

experiment is that the numbers of Indels in those groups are non-

uniformly distributed. This characteristic of the data caused by our

strategy of randomly selecting known/unknown variants for both

SNPs and Indels for whole evaluation, not for only this one.

Nevertheless, this result could show the advantage of leveraging

known information of close-by Indels.

3.3 Leveraging known variants to detect variants from

Platinum Genomes data
In this section, we compared the ability of detecting variants

between IVC and other methods on real data. To accomplish this,

we used sequencing reads from human sample NA12878 provided

by Illumina Platinum Genomes Project (dataset ERR194147,

sequenced at 50�). We used variants from the 1KGP data (Phase 1)

(1000 Genomes Project Consortium, 2012) as the known variant

profile for IVC. Since this variant dataset does not include the

NA12878 individual, the experiment is meant to show how IVC

exploits known variants from population to detect variants for a

new individual. We also used dbSNP (build 142) (Wheeler et al.,

2007) as the known variant profile to investigate more about IVC’s

ability of leveraging known information in calling variants. To eval-

uate accuracy of all methods, we used the Genome-In-A-Bottle var-

iant call set [GIAB (Zook et al., 2014)]. GIAB, which integrated 14

datasets from five sequencing technologies, seven read mappers and

three variant callers to help minimize bias toward any method, has

been used as gold standard for benchmarking variant calls in many

studies (Cornish and Guda, 2015; Li, 2015). In this experiment,

GATK UnifiedGenotyper and Atlas2 were eliminated because of

their inferior performance on simulated data.

To evaluate the methods, we consider their two main groups of

called variants: (i) GIAB-Call, called variants that are in the GIAB;T
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and (ii) GP-Call, called variants that are not in the GIAB but are in

1KGP. The two top diagrams of Figure 3 showed the high sensitivity

of IVC compared to HC and ST. We could see that IVC called more

unique GIAB-variants than the other methods while sharing with

them most of variant calls in this group. This result showed that

IVC can reduce the number of false negatives. Further, the number

of variants shared between IVC and HC is the highest compared to

those between IVC and ST as well as those between HC and ST.

This was consistent with the high performance of IVC and HC com-

pared to ST with simulated data.

The two bottom diagrams of Figure 3 showed another important

result, which confirmed the advantage of exploiting known variants

by IVC to detect variants. We could see that IVC called much more

unique variants that are in 1KGP data, especially Indels, than the

other methods. We got �9 times more unique GP-Call-SNPs and

�20 times more unique GP-Call-Indels than the others’.

Interestingly, while IVC shared the most number of SNPs with HC,

it shared the most number of Indels with ST, compared to the num-

ber of sharing variants between all two methods.

For the called variants that are neither in the GIAB dataset nor in

the 1KGP data, we found that the agreement between IVC, HC and

ST were too low compared to two above groups (�3100 shared calls

for SNP calling and �3300 shared calls for Indel calling). In particu-

lar, for Indel calling, each method called �4000 to 4500 unique var-

iants, which were even more than the common calls. There might be

many false positives in such callset of each method, which are worth

for further analyses.

Next, we compared all methods using their specificity and sensi-

tivity based on the GIAB variant call set. For SNP calling, IVC got

specificity and sensitivity of 99.996 and 99.609%, respectively,

while ST got 99.998 and 97.790% and HC got 99.998 and

99.817%, respectively. For Indel calling, IVC got specificity and

sensitivity of 99.996 and 90.523%, respectively, while ST got

99.996 and 86.240% and HC got 99.996 and 98.640%, respec-

tively. In this comparison, HC seems to be the best one in term of

balance between specificity and sensitivity.

Finally, we tested IVC using dbSNP as known variant profile to

investigate more its ability of leveraging existing known variant

databases. Because dbSNP does not focus on Indels, we evaluated

IVC on SNP calling. Our results showed that IVC with dbSNP got

specificity and sensitivity of 99.989 and 98.497%, respectively,

while IVC with 1KGP data got 99.996 and 99.609%. Although the

Table 2. Percentage of increase in precision (PIP) and recall (PIR) of our method (IVC) relative to GATK HaplotypeCaller (HC) as percentage

of known information leveraged by IVC varies from 60 to 90%, at coverage 50� for SNP and Indel calling

Known variant locations Unknown variant locations

SNPs Indels SNPs Indels

% of known variants 60% 70% 80% 90% 60% 70% 80% 90% 60% 70% 80% 90% 60% 70% 80% 90%

PIP of IVC to HC 0.02 0.03 0.03 0.03 1.35 1.67 1.67 2.28 0.04 0.09 0.24 0.64 0.35 0.74 1.97 2.13

PIR of IVC to HC 0.19 0.19 0.20 0.18 9.64 9.53 9.54 9.70 0.07 0.08 0.04 0.08 3.58 4.22 4.55 4.81

Fig. 1. Precision versus Recall of each method for Indel calling at Unknown

variant locations as coverage varies from 3� to 50�

IVC

HCST

7 91430

249

85 1845

87518

IVC

HCST

65 319966

366

36 1131

8315

IVC

HCST

137 79256

1216

510 567

21295

IVC

HCST

167 49178

3389

227 144

1880

Fig. 3. Number of SNPs and Indels called by each method (IVC: our tool, HC:

GATK-HaplotypeCaller, ST: SAMtools) from sample NA12878 on

Chromosome 1 using Illumina Platinum data. Top: GIAB-Call, variant calls

that are in the GIAB dataset (Left: SNPs, Right: Indels). Bottom: GP-Call, var-

iant calls that are not in the GIAB dataset but are in the 1KGP dataset (Left:

SNPs, Right: Indels)

Fig. 2. Number of TP and FN of each tool at different fractions of close-by

known Indels. Left: 50% of close-by Indels are known, Right: 100% of close-by

Indels are known. HC: GATK-HaplotypeCaller, IVC: our tool, ST: SAMtools,

UG: GATK-UnifiedGenotyper
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performance in both cases are quite similar, it seems that IVC can

leverage a bit more from 1KGP data than dbSNP data. This is prob-

ably because 1KGP data include allele frequencies, which can help

IVC improve detection of variants through its calculation, whereas

dbSNP data do not.

3.4 Leveraging known variants to detect exonic Indels
In this section, we compared the ability of detecting exonic Indels of

IVC compared to other methods. In terms of known variant sources

for IVC, we used ExAC (Lek et al., 2016), a more comprehensive

and accurate known variant data compared to 1KGP data, espe-

cially for Indels, as described in Section 3.1.1. Although this data-

base is for exonic regions only, we think the evaluation is still

important due to the crucial role of the exonic regions in genomic

research. In terms of the sequencing read datasets, in addition to the

original dataset ERR194147 (50�), we also down-sampled it to

20�, 10� and 5�, respectively, to investigate impact of coverage on

performance of each method.

To get a more comprehensive evaluation of the ability of IVC in

calling Indels compared to other tools, in addition to GATK

HaplotypeCaller and SAMtools, we also considered Scalpel, a more

recent Indel caller (Narzisi et al., 2014). Scalpel performed a local-

ized micro-assembly on specific regions of interest to improve detec-

tion of variants. Table 3 showed that IVC has competitive to high

sensitivity at calling Indels compared to other methods, especially at

low coverage. Overall, Scalpel did a good job for calling Indels,

especially at high coverage (>10�). However for calling Indels that

are in both GIAB and ExAC data (GIAB\ExAC), IVC was better

than Scalpel and other tools, especially at low coverage (<10�).

This result again showed the advantage of leveraging known Indels

by IVC to detect Indels.

3.5 Runtime analysis
To evaluate computational cost of all methods, we compared their

runtime using simulated reads on Chromosome 1 with coverage

from 5� to 50�. All experiments were run on a workstation with 2

CPUs Xeon E5-2680 2.70 GHz. We used multi-threaded mode for

all tools whenever possible with maximum number of cores (32)

(actually all of them had been run in multi-threaded mode with 32

cores except some data preprocessing tasks). We summed up run-

time of all steps in whole variant calling pipeline of other methods

(aligning the reads, converting SAM files to BAM files, sorting the

BAM files, doing post-alignment processing tasks, performing Indel

realignment and calling variants). Figure 4 showed that IVC was

faster than or at least competitive with the other tools at low to

medium coverage and was quite competitive at high coverage.

We have also tested our method on simulated whole genome

data with all chromosomes using the same above settings. Due to

time limit, we selected only GATK HaplotypeCaller for our compar-

ison. Table 4 showed that IVC performed even better than

HaplotypeCaller on all chromosomes compared to Chromosome 1.

The main reason for that is probably our iterated randomized strat-

egy for searching seeds is able to gain an advantage on high repeti-

tive regions of the other chromosomes.

4 Discussion

By leveraging known genomic variant information, IVC could sig-

nificantly improve sensitivity of detecting not only known but also

unknown variants, including close-by Indels, one source of hard-to-

detect Indels. Compared to other popular methods GATK

UnifiedGenotyper, GATK HaplotypeCaller, SAMtools, Atlas2 and

Scalpel, IVC had superior sensitivity for calling not only known but

also unknown variants, especially close-by Indels that are hard to

detect by the others. Its superior sensitivity at low coverage can help

researchers design less expensive experiments, especially in case high

quality known genomic variants are available.

One important motivation of our work is the number of known

genomic variants is rapidly growing. However, variant databases

such as the 1000 Genomes Project data or dbSNP are not error-free

despite the best efforts. Since our method prefers the know variants

if they exist by giving them high prior probabilities in variant pro-

files, the incorrect known variants can result in false positives.

However, our method do not rely on only known variants, it consid-

ers the alignment between reads and the reference as well. Those

incorrect variants will likely result in the alignments with

Table 3. Number of Indels called by each method from sample

NA12878 on exonic regions of Chromosome 1 as coverage varies

from 5� to 50�

Tools 5� 10� 20� 50�

GIAB\ExAC Scalpel 15 51 59 59

HaplotypeCaller 57 64 64 64

SAMtools 52 64 63 63

IVC 65 66 69 70

GIAB\NonExAC Scalpel 10 44 62 71

HaplotypeCaller 12 13 14 14

SAMtools 7 8 12 12

IVC 8 9 10 10

Note: GIAB\ExAC: variant calls existing in both GIAB and ExAC.

GIAB\Non-ExAC: variant calls existing in GIAB but not in ExAC.

Fig. 4. Runtime of all tools with simulated data at various coverages on

Chromosome 1

Table 4. Runtime (format: hh:mm:ss) of IVC and GATK

HaplotypeCaller (HC), including all steps of its pipeline (alignment

with BWA, pre/postprocessing, realignment with GATK

IndelRealigner, and variant calling with GATK HaplotypeCaller)

with simulated data at various coverages on all chromosomes

5� 10� 20� 30� 50�

BWA-MEM 00:41:16 01:28:27 03:18:31 04:26:46 07:15:00

IndelRealigner 00:55:44 01:22:47 02:33:14 03:51:42 06:21:18

Pre/postprocess 01:27:29 03:42:37 05:43:21 08:33:45 18:07:50

HaplotypeCaller 24:59:05 22:59:45 25:02:22 30:22:27 36:43:14

HC-Total 28:03:34 29:33:36 36:37:28 47:14:40 68:27:22

IVC 04:46:26 09:41:39 20:08:42 30:11:40 53:07:33
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ambiguities or low quality, which are likely to be eliminated during

the alignment process. Consequently, those variants likely do not

have high probabilities in the final variant profiles and they are

likely not called. This makes our method less suffers from inaccurate

known variants.

Currently IVC focuses on detecting SNPs and Indels, long inser-

tions/deletions and other structural variants will be considered in

near future by incorporating an assembly-driven module. Our

experiments were also performed with haploid data only, detection

of higher-ploidy variants have been currently testing. The theoretical

framework for higher-ploidy data was the same, with some technical

modification to store variants and to update the variant profiles.

In summary, our method is promising in sensitively detecting

genomic variants from NGS data, including close-by Indels, which

are difficult to be detected by other methods due to low coverage or

the hardness of detecting those variants. The current implementa-

tion is not optimized but still competitive in performance compared

to other popular tools.
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