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Abstract

Motivation: RNA virus populations contain different but genetically related strains, all infecting an

individual host. Reconstruction of the viral haplotypes is a fundamental step to characterize the

virus population, predict their viral phenotypes and finally provide important information for clin-

ical treatment and prevention. Advances of the next-generation sequencing technologies open up

new opportunities to assemble full-length haplotypes. However, error-prone short reads, high simi-

larities between related strains, an unknown number of haplotypes pose computational challenges

for reference-free haplotype reconstruction. There is still much room to improve the performance

of existing haplotype assembly tools.

Results: In this work, we developed a de novo haplotype reconstruction tool named PEHaplo,

which employs paired-end reads to distinguish highly similar strains for viral quasispecies data. It

was applied on both simulated and real quasispecies data, and the results were benchmarked

against several recently published de novo haplotype reconstruction tools. The comparison shows

that PEHaplo outperforms the benchmarked tools in a comprehensive set of metrics.

Availability and implementation: The source code and the documentation of PEHaplo are available

at https://github.com/chjiao/PEHaplo.

Contact: yannisun@msu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High mutation rate, natural selections and recombinations can lead

to high genetic diversity of RNA virus populations (Domingo-Calap

et al., 2016), which consist of closely related but different viral

strains. These groups of virus populations are often termed as viral

quasispecies (Nowak, 2006). Each strain in the quasispecies is

defined by its haplotype sequence. Commonly known examples of

the fast mutating viruses include clinically important viruses such as

human immunodeficiency virus (HIV-1) and the hepatitis C virus

(HCV). The genetic heterogeneity of the virus populations is the key

to their adaptive behavior. As the natural selection works on a set of

sequences rather than one, high genetic diversity confers the viruses

the abilities to escape host immune responses or develop drug resist-

ance. Reconstruction of the viral haplotypes is a fundamental step to

characterize the structure of the virus populations, predict viral

phenotypes and finally provide important information for clinical

treatment and prevention (Schirmer et al., 2014).

Development of next-generation sequencing technologies ad-

vances the characterization of the haplotypes and their abundance in

heterogeneous virus populations. The deep sequencing of virus

population samples becomes available and various methods and

tools have been devised for viral haplotype reconstruction (Baaijens

et al., 2017; Jayasundara et al., 2015; Malhotra et al., 2015;

Mangul et al., 2014; Töpfer et al., 2014). The methods can be
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divided into two groups based on their dependency on a reference

genome (Beerenwinkel et al., 2012). The first group of methods

needs reference genomes and employs read alignments against the

reference sequence to infer haplotypes. However, due to the high

mutation rate, high quality reference genomes of virus populations

are not always available. In particular, for emerging infectious viral

diseases such as SARS, which lack reference genomes during the

breakout, reference-based methods are not plausible. The second

group of methods belongs to de novo haplotype reconstruction,

which does not require reference genomes. These methods can char-

acterize new viral strains or novel haplotypes. Our work belongs to

the second group.

A recent review of chosen haplotype reconstruction tools has

shown that haplotype recovery is a computationally challenging

problem (Schirmer et al., 2014). The authors’ benchmarking results

on a series of data demonstrated the performance of the tested pro-

grams is poor when sequence divergence is low. In addition, these

programs failed to recover rare haplotypes. Thus, there is a pressing

need for new methods and tools for more accurate haplotype

reconstruction.

The tested programs in the review (Schirmer et al., 2014) all be-

long to group 1, which require alignments against a reference se-

quence as input. Without using a reference sequence, our method of

haplotype reconstruction from deep sequencing data uses a method

similar to de novo genome assembly. Applying assembly to viral

haplotype reconstruction faces several challenges. The first challenge

is to distinguish highly similar genomes of different strains.

Supplementary Figure S3 and Table S1 show the high sequence simi-

larity between the genomes of interest. Existing assembly methods

tend to produce either short or chimeric contigs for deep sequencing

data containing highly similar genomes. The second challenge is the

extreme difficulty in distinguishing sequencing errors from muta-

tions of a rare haplotype. The third challenge is to recover the haplo-

types of low abundance.

1.1 Related work
There exist a number of metagenomic assembly tools that could be

applied to assemble viral genomes in quasispecies data (Laserson

et al., 2011; Namiki et al., 2012; Peng et al., 2011; Salzberg et al.,

2008; Treangen et al., 2013). However, these assembly tools cannot

distinguish different haplotypes and only produce fragmented or chi-

meric contigs.

There are a group of tools specifically designed for viral haplo-

type reconstruction (Astrovskaya et al., 2011; Baaijens et al., 2017;

Huang et al., 2011; Jayasundara et al., 2015; Malhotra et al., 2013;

Malhotra et al., 2015; Mangul et al., 2014; Prabhakaran et al.,

2010; Prabhakaran et al., 2014; Prosperi and Salemi, 2012; T O’neil

and Emrich, 2012; Töpfer et al., 2013; Töpfer et al., 2014; Zagordi

et al., 2011). Of them, HaploClique, MLEHaplo and SAVAGE were

recently published and are closely related to our method. They all

utilized the paired-end reads. HaploClique uses the insert size distri-

bution for detection of large indels and clique enumeration to distin-

guish mutations from sequencing errors. However, it needs a

reference sequence for generating alignment graphs. HaploClique

provides a source of inspiration for SAVAGE, which is the first tool

for de novo assembly of viral haplotypes using overlap graphs.

SAVAGE joins overlapped read pairs before merging short reads

using cliques. It has been benchmarked with other virus assembly

tools and showed its superiority over other tools in a comprehensive

set of assembly metrics. MLEHaplo also explicitly employs paired-

end reads for finding top-score paths. MLEHaplo and our method

are based on two different graph models: de Bruijn graph and over-

lap graph. The major differences of these two types of graphs are de-

tailed in a review paper (Li et al., 2012). We chose error correction

tool that is specifically designed for overlap graphs. Both tools

applied topology-based graph pruning. The graph pruning tech-

niques that are unique to PEHaplo will be described in Section

2.2.2. In addition, during path finding, we carefully distinguish

paired-end connections formed by different types of nodes in order

to improve the accuracy of path finding. Focusing on de novo assem-

bly tools, we will benchmark our work against SAVAGE and

MLEHaplo.

In this work, we designed and implemented PEHaplo, which as-

sembles viral haplotypes from deep sequencing data. We created a

novel overlap graph incorporating paired-end reads information,

which is utilized in graph pruning, path finding and contig refine-

ment. PEHaplo was applied to both simulated and real viral deep

sequencing data and was benchmarked with the recently published

tools. The experimental results show that PEHaplo can recover viral

haplotypes with longer contigs and higher accuracy.

2 Materials and methods

A major challenge for viral haplotype reconstruction is the high se-

quence similarity between viral strains. In particular, the distribu-

tion of the mutations/insertions/deletions largely determines the

difficulty levels of the problem. Here, longest common substring

(LCS) is used to refer to the LCS between any two neighboring mu-

tations/insertions/deletions. Depending on the size of the LCS, we

have three cases as shown in Figure 1.

• If LCS size � read size, haplotype reconstruction can be solved

based on read overlaps (Fig. 1A).
• If LCS size � read size but � insert size, paired-end reads are

able to distinguish different haplotypes (Fig. 1B).
• If LCS size � insert size, coverage information can be utilized to

distinguish haplotypes of different abundance (Fig. 1C).

In order to classify viral haplotype reconstruction problems in

the above three cases, it is necessary to know the LCS distributions

inside each quasispecies. While the insert size can be estimated for

different sequencing platforms, it is not feasible to empirically ob-

tain all viral strains and compute the sizes of their LCSs. We thus

rely on quasispecies theory (Nowak, 2006) for estimating the LCS

sizes using an average viral mutation rate. The detailed method and

also the generated distribution of LCSs can be found in

Supplementary Material Section S1.

According to our computed LCS distribution, the LCS sizes span

all three cases in Figure 1. Therefore, our methods use three types of

information for virus assembly. (i) Paired-end reads. As paired-end

reads are sequenced from the same fragment, they thus belong to the

same haplotype. (ii) Coverage. If two strains have highly different

A B C

Fig. 1. Distinguishing two haplotypes with different LCS sizes. In panel B, P1

and P2 represent the ends of a read pair. The problem becomes harder with

increase in the LCS sizes
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coverages, they can be distinguished using coverage information.

(iii) Enumeration of cliques. Reads forming cliques in the overlap

graph tend to come from the same haplotype. Several recently pub-

lished tools (Baaijens et al., 2017; Töpfer et al., 2014) employed cli-

que enumeration for haplotype reconstruction. Although paired-end

reads have been previously employed in haplotype reconstruction,

they were not carefully elaborated and analyzed. We conducted a

deep analysis of the utility and limitations of using paired-end reads

for haplotype reconstruction.

We organize the Section 2 as follows: first introducing the

paired-end overlap graph and the key idea of path finding using

paired-end reads, then outlining the complete pipeline and describ-

ing the major components.

2.1 Paired-end overlap graph and path finding
An overlap graph G(V, E) is a weighted directed graph that reflects

overlaps between reads. Each node v 2 V represents a read. An over-

lap between two reads is formed if the suffix of a read matches the

prefix of another read. Given any two reads r1, r2, and an overlap

threshold l, if the overlap size between r1 and r2 is greater than l, a

directed edge is added from the nodes representing r1 and r2 in G.

The edge weight is the overlap size.

In our method, a paired-end overlap graph (PE_G), which adds

information from paired end reads to a standard overlap graph, has

been constructed. PE_G has the same node set as an overlap graph

but has two sets of edges. One set of edges are inherited from a

standard overlap graph. The other set of edges connect nodes whose

reads form paired-end reads. Intuitively, while an overlap graph re-

cords the connectivity between reads, PE_G also records the number

of paired-end reads between nodes. Thus, PE_G can be defined as

GðV;E;E0Þ, where E is the same as in an overlap graph. If two reads

form a paired-end read pair, an edge in set E0 is created between the

corresponding nodes.

Figure 2 shows an example of paired-end overlap graph.

Figure 2A contains reads sequenced from two strains that differ by

only two mutations. The overlap threshold is set as half of the read

size. The corresponding paired-end overlap graph PE_G is shown in

(B). The edges in E are plotted by solid lines and the edges in E0 by

dashed lines. Nodes a.1 and a.2 are a read pair and thus form an

edge in E0. Similarly, nodes d.1 and d.2 have an edge in E0 because

d.1 and d.2 are a read pair.

In the graph, there are four complete paths: a:1! b! c! e!
f ! a:2; a:1! b! c! e! f ! d:2; d:1! b! c! e! f ! a:2

and d:1! b! c! e! f ! a:2. The goal of the assembly step is to

output the two correct paths (i.e. a:1 to a:2 and d:1 to d:2), using the

guidance from edges in E0. Specifically, for a path starting with a.1,

the dashed edges in E0 (a:1! a:2) will guide the path to the correct

node a.2. Similarly, a path starting with d.1 will end with d.2 based

on the guidance of the dashed edge d:1! d:2. Thus, the path finding

using the paired-end information will output two paths, representing

the two haplotypes.

2.2 The whole pipeline of PEHaplo
There are five major components in the pipeline of PEHaplo as

shown in Figure 3. In the first pre-processing stage, reads with low-

quality or ambiguous base calls are filtered or trimmed. Base-calling

errors or indels are corrected from the filtered set of reads using

alignment-based error correction tool Karect (Allam et al., 2015).

We chose Karect because it was more recently published and also it

takes advantage of the whole reads rather than k-mers for error cor-

rection. Duplicated reads and substring reads are then removed

from the corrected reads. The detailed pre-processing description

can be found in the Supplementary Material Section S2. Second, an

overlap graph is built from the pre-processed reads with overlaps

computed by Readjoiner (Gonnella and Kurtz, 2012) and the strand

of reads is adjusted by traversing the graph. The detailed strategy

about strand adjustment can be found in Supplementary Material

Section S3. The output reads will have the same orientation. The

third stage will build the overlap graph again from the strand-

adjusted reads with overlaps computed by Apsp (Haj Rachid and

Malluhi, 2015) and utilize various graph pruning methods to re-

move possible random overlaps and simplify the graph for efficient

assembly. In the fourth stage, E0 will be constructed and paired-end

guided path finding algorithms are applied to produce contigs from

the paired-end overlap graph. Finally, the paired-end reads are

aligned against produced contigs by bowtie2 (Langmead and

Salzberg, 2012) to identify and correct potential mis-join errors.

2.2.1 Paired-end overlap graph construction

There are two steps in construction of the paired-end overlap graph.

In the first step, the standard overlap graph G is constructed, fol-

lowed by collapsing nodes and merging cliques. In the second step,

the numbers of paired-end reads between nodes in G are identified

and false connected edges are removed using added paired-end in-

formation. This section will focus on the overlap computation be-

tween reads.

All remaining reads after pre-processing are used to construct the

overlap graph. A straightforward overlap detection method requires

Oðn2Þ comparisons, which is computationally expensive for large

sequencing datasets. There are efficient implementation of all-pairs

suffix–prefix comparison algorithms based on data structures such

as hashing table or compact prefix tree (Gonnella and Kurtz, 2012;

Haj Rachid and Malluhi, 2015). In PEHaplo, we first compute all

G
C

A
G

A B

Fig. 2. (A) The bottom two long lines represent two haplotypes, which only

differ by two mutations at two loci (G-C and A-G). Short lines represent reads

sequenced from the two strains. The reads are sorted by their read mapping

positions against their native strain. a.1 and a.2 are a read pair from the thick

strain. d.1 and d.2 are the read pair from the thin strain. (B) Paired-end over-

lap graph. Nodes b, c, e, and f originate from the common region of the two

strains. The dashed lines represent paired-end read connection

Fig. 3. The pipeline and main components of PEHaplo. Note that the error cor-

rection component is implemented using Karect (Allam et al., 2015), which

uses alignments between reads rather than alignments between reads and a

reference genome for error correction. The read orientation adjustment uses

the overlap results from Readjoiner (Gonnella and Kurtz, 2012), and the

paired-end overlap graph is built based on overlaps computed by Apsp (Haj

Rachid and Malluhi, 2015)
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suffix–prefix matches between reads for read orientation adjustment

and then construct the final overlap graph from adjusted reads.

Overlap cutoff estimation: The overlap cutoff l is an important

parameter. A small l tends to keep most true overlaps but also intro-

duces false edges. A large l is likely to eliminate most false overlaps

but can possibly miss true connections for reads from lowly

sequenced regions. In our methods, an exponential distribution is

used to estimate the appropriate overlap cutoff.

Let N be the total reads number, r be the read length, and L be

the genome size, the sequencing coverage is calculated as C ¼ Nr=L.

We use the Poisson distribution to model the number of reads

sequenced from unit length of a genome. The parameter k in the

Poisson distribution is estimated as N/L (Jiang and Wong, 2009).

The distance (X) (see Fig. 4) between two adjacent reads will thus

follow an exponential distribution. The corresponding cumulative

distribution function is the probability that two adjacent reads have

an overlap size of at least r – d, where d is a given upper bound of X.

For example, Let r¼250, L¼10 000 and N¼800. Then the

sequencing coverage C is 20 and kðN=LÞ is 0.08. Thus, for given d

as 70, we have FðX � 70Þ ¼ 0:9963. That is, there is 99.63% possi-

bility that two adjacent reads will form an overlap with size of at

least 180 (i.e. 250–70). The expected number of adjacent read pairs

with overlap less than r – d can be calculated as ðN � 1Þe�kd. Since

there are 800 reads, the expected number of pairs with overlap

smaller than 180 is: 799 � ð1� 0:9963Þ ¼ 2:96. Therefore, four con-

tigs may be produced for the genome under this overlap cutoff. Our

empirical experience shows that choosing an overlap threshold with

ðN � 1Þe�kd being around 0.01 usually produces good assembly re-

sults. While keeping the connectivity of the graph, the overlap

threshold should be as large as possible.

2.2.2 Graph pruning

The original overlap graph is often very complex because of the

large data size, transitive edges, sequencing errors and highly similar

regions shared by haplotypes. After transitive reduction, the node

collapsing operation is applied. For an edge u! v, if the out-degree

of u and the in-degree of v are both 1, they can be merged into a

new node without losing the connectivity of the graph. This collaps-

ing operation is applied iteratively on the whole graph until there is

no such edge (Yuan et al., 2015). After transitive reduction and

node collapsing, an iterative graph pruning procedure is applied to

repeatedly simplify the graph at each iteration.

Merging cliques: We are interested in cliques in the overlap

graph because reads within a clique can share true mutations while

sequencing errors are usually random and are not shared by other

reads. Therefore, cliques can be used to distinguish true mutations

from sequencing errors. In PEHaplo, we prune the graph by remov-

ing the edges from nodes inside of cliques to nodes outside of

cliques. The details can be found in Supplementary Material

Section S4.

Removing false edges using read pairs: Due to the nature of viral

quasispecies, different haplotypes of one species usually have very

high sequence similarity (possibly over 90%), which can easily cause

overlaps between reads originating from different strains. Therefore,

having a suffix-prefix match does not guarantee the same origin of

the two reads. Wrong edges increase the complexity of the graph

and may also produce misjoined contigs. Paired-end information is

employed to remove potentially wrong edges.

There are two key observations about the edges formed by reads

from different strains. First, the end nodes usually have other inci-

dent edges incurred by the correction connections. Second, the

wrong edge or the contigs containing the wrong edge are not well

supported by read pairs. Therefore, paired-end information is used

as evidence to remove false edges. Each edge formed by nodes with

large in or out degrees (Cormen, 2009) is examined because of the

significant chance that some of the incident edges are false overlaps.

Figure 5A presents an example. Edge u! v is one of the many

edges incident to nodes u or v. The following rules for edge u! v

are applied: if there is no read pair support between u and v, be-

tween u’s predecessor nodes and v, or between u and v’s successor

nodes, and the sequence formed by joining u, v is longer than an in-

sert size cutoff, remove u! v. The insert size cutoff can be custom-

ized depending on the given data properties. To remove false

connected edges, each node and edge of the overlap graph need to

be traversed. The time complexity is OðV þ EÞ.

2.2.3 Paired-end guided path finding

Once the overlap graph is pruned, paired-end connections will be

added and thus form the paired-end overlap graph PE_G. As a quick

review, PE_G is defined as ðV;E;E0Þ, where E contains the edges

from read overlaps while E0 contains edges from paired-end connec-

tions. The weight of an edge in E0 represents the number of paired-

end read pairs between two end nodes. Note that after node col-

lapse, each node can contain multiple reads.

Fig. 4. The distance between two adjacent reads can be estimated by an

exponential distribution. a, b, c represent three reads. r is the read length

A B

Fig. 5. (A) Removing false edges using paired-end information. The overlap

edges with ‘X’ will be removed if insufficient read pairs exist between their

ends. (B) In this example, the ending node pn of current path has two succes-

sors v1 and v2. The path and a SISO nodes in the path are marked. The solid

lines are overlaps and dashed lines are paired-end connections between

nodes. Six scores are computed to select the right successor for extending

the path. Among these, five are calculated as paired-end edge weights be-

tween nodes in current path and nodes associated with the successor. As for

v1, succðv1Þ and succ0ðv1Þ are shown in the figure. The group 1 scores contain

the paired-end edge weights between the SISO node and v1, s1, and s 01; s
0
2.

Group 2 scores contain the paired-end edge weights between path nodes

fp1; . . . ;pn�1g and v1, s1
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The problem of assembling a single haplotype in the graph PE_G

can be formulated as finding a path p, so that p0s weight defined

using edges in E0 is maximized. Intuitively, we look for paths with

the best support of paired-end connections. This process can be re-

peated to find k longest paths. Unfortunately, finding the path with

the greatest number of paired-end connections in PE_G is NP-

complete . The detailed proof can be found in the Supplementary

Material Section S5.

Thus, we designed a greedy path finding algorithm for path ex-

tension. At each vertex with multiple successors, the greedy algo-

rithm chooses the best node for extension. It carefully considers

paired-end connections between different types of nodes and also

the coverage information. Paired-end connections between nodes

can be efficiently accessed from the constructed paired-end graph

PE_G.

Scores calculation for path extension: To find correct paths from

the graph, the right node needs to be selected each time we extend

the path. In particular, when a node has multiple successors, a right

choice must be made for path extension. In general, a successor with

the most paired-end connections is chosen to the current path.

Different types of paired-end connections were treated with different

priorities in distinguishing haplotypes; in particular, single-in single-

out (SISO) nodes are differentiated from other nodes. After error

correction and node collapsing, SISO nodes, which have in-degree

of 1 and out-degree of 1, tend to represent one haplotype

(Supplementary Fig. S4). Any paired-end connection incident to

SISO nodes can be used to recruit nodes that belong to the same

haplotype. Other nodes originating from common regions of two or

more haplotypes usually have multiple child or parent nodes.

Paired-end connections to those nodes do not provide useful guid-

ance in path finding. In our algorithm, we distinguish paired-end

connections involving SISO nodes and other nodes.

For e0 2 E0; e0ðu; vÞ is the edge weight between u and v in E0. Let

Path ¼ fp1; p2; . . . ; png be the current path. The ending node pn in

the current path has multiple successors. As we have two sets of

edges in PE_G, let succ(v) in E represents v’s successor nodes in the

standard overlap graph. succ0ðvÞ in E0 represents all nodes that form

paired-end connections with v. For each successor v of pn

(v 2 succðpnÞ), we compute six scores, which are divided into three

groups. An example of the scores calculation is shown in Figure 5B.

Group 1 contains the paired-end edge weights between SISO nodes

in Path and v (score 1), v0s successor nodes in E (score 2), and v0s

successor nodes in E0 (i.e. all nodes forming paired-end connections

with v, score 3). Group 2 contains the paired-end edge weights be-

tween all path nodes (except pn) and v (score 4), v0s successor nodes

in E (score 5). The third group contains coverage difference between

Path and v (score 6).

The pseudocode in Supplementary Material Section S7 describes

the greedy algorithm, which chooses the locally optimal node for

path extension based on the above scores.

2.2.4 Correcting contigs with paired-end read distribution

To further improve the quality of assembled contigs, we apply a

contig correction method similar to the tool PECC (Li et al., 2017).

With the contigs generated after path finding, the raw reads are

aligned to them and contigs are split from the locations with low

read pairs coverage (Fig. 6).

3 Results

In this section, we will evaluate the performance of PEHaplo on

both simulated and real viral quasispecies datasets. The simulated

dataset includes both the commonly adopted HIV dataset and also

highly biased dataset with rare haplotypes. For each experiment, we

will present the performance of PEHaplo and benchmark it with re-

cently published de novo quasispecies assembly tools. In addition,

we carefully evaluate the performance of each main component in

the whole pipeline. The results show that our tool produces fewer

and significantly longer contigs which recover a majority of the

haplotypes.

3.1 Experimental datasets
We evaluated PEHaplo on several simulated datasets, one real HIV-

1 Illumina MiSeq sequencing dataset, and one real Influenza sample.

Both the simulated and real HIV-1 datasets were generated from a

mixture of five well-studied HIV-1 strains (HXB2, JRCSF, 89.6, NL

43 and YU2). These strains have pairwise sequence similarities from

91.8% to 97.4% (Supplementary Table S1). HXB2 and NL43 have

the highest similarity with LCS of size 427 bp (Supplementary Table

S2). We choose HIV because it is adopted by other viral haplotype

reconstruction tools and has become a leading standard for perform-

ance evaluation.

3.2 Evaluation metrics
The haplotype sequences and compositions are known in these data-

sets and we are able to evaluate the quality of the assembled contigs

generated by all tools. The produced results were compared to re-

cently published de novo assembly tools IVA (Hunt et al., 2015),

MLEHaplo (Malhotra et al., 2015) and SAVAGE (Baaijens et al.,

2017).

Following SAVAGE, a third-party tool MetaQuast (Mikheenko

et al., 2015) is used for evaluating the output of all tested tools.

MetaQuast integrated several components for convenient de novo

assembly performance evaluation. It aligns the generated contigs to

the viral reference genomes and reports the number of contigs, N50,

unaligned length, target genome(s) covered, mismatch and indel

rates and so on. Only the best matching position for each contig is

reported. N50 length is defined as the maximum length in which all

contigs of at least this length contain at least 50% of all the contig

bases. A contig can be partially aligned to a reference sequence.

Thus, the total length of all unaligned parts is reported as ‘unaligned

length’. For the aligned parts, ‘target genome(s) covered’ and ‘mis-

match and indel rates’ are computed. Target genome(s) covered is

the percentage of reference genomes that are aligned by contigs, and

mismatch/indel rate is the percentage of mismatchs/indels of aligned

contigs.

3.3 Results on HIV simulated dataset
PEHaplo was first applied on a simulated HIV-1 quasispecies data-

set. We used ART-illumina (Huang et al., 2012) to simulate 1.9eþ5

paired-end, 250 bp error-containing MiSeq reads from the five HIV-

1 strains with average insert size of 600 bp and standard deviation

Fig. 6. Read pairs mapping profile on a misjoined contig. The contig is shown

as the long bar at the bottom, which is misjoined with two sequences from

strains a and b. The dashed line connects the two ends of a read pair. Fewer

read pairs will go across the misjoined location, thus revealing a valley in the

aligned reads profile, which can be used to split the contig
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of 150 bp. The total coverage of the five strains is �5000x, which is

close to the coverage of real HIV quasispecies data commonly used

by existing tools. To obtain a more realistic dataset, a fitness-based

power law equation (Barbosa et al., 2012) was used to simulate the

coverage distribution among five strains: Ci ¼ bf a
i ; i ¼ 1;2; . . . ; 5,

where Ci and fi denote the coverage and fitness of strain i, respect-

ively. The coverages for each strain in the simulated dataset are as

follows: 89.6–2190�, HXB2–1095�, JRCSF–730�, NL43–547�
and YU2–438�.

Following the PEHaplo pipeline, we first performed error correc-

tion and duplicated sequence removal on the raw simulated dataset.

With 1.9eþ5 error corrected reads, 48 833 reads were kept after

removing duplicates. Only those reads that duplicate at least three

times in the raw data were kept, further reducing the reads number

to 26 961. After adjusting reads orientation, an overlap graph was

constructed with the tool Apsp (Haj Rachid and Malluhi, 2015).

The original overlap graph has 26 961 nodes and 977 570 edges.

After merging cliques, removing transitive edges and collapsing

nodes, 63 nodes and 67 edges were left. We then applied false edge

removal and node collapsing on the graph, and further reduced it to

48 nodes and 44 edges. Paths and contigs were generated from this

pruned graph using the greedy algorithm described in the Section 2.

To evaluate the effectiveness of our false edge removal step, the

simulated reads was also assembled without the false edges removal

step. The results are shown in Supplementary Table S3. Comparing

to contigs with false edge removal, the genome covered fraction is

reduced from 97% to 91.8%. Also, the N50 value is decreased while

the mismatch rate is increased. The results reveal that our false edge

removal step is effective and improves the final results.

PEHaplo generated 10 contigs from the simulated dataset and

the results are summarized in Table 1. The contigs are able to cover

over 97% on the five viral strains, with a N50 of 9274 bp. The larg-

est contig has a length of 9668 bp, which almost covers a complete

HIV strain. Meanwhile, these contigs have low mismatch and indel

rates.

We also assembled the simulated reads with IVA, MLEHaplo

and SAVAGE and summarized their results in Table 1. With the de-

fault parameters, IVA produced a single, long contig from the error

corrected reads. This long contig has a length of 13 434 bp and can

cover the whole genome of the strain 89.6 and about 43% of the

strain HXB2. The results of IVA real that it tends to generate one

consensus genome sequence corresponding to the haplotype with

the highest coverage. Other strains are largely missed. Using k-mer

size of 55, MLEHaplo produced 205 contigs that cover 78% of the

five HIV-1 strains. The contigs it produced are quite fragmented,

with a low N50 value of 671 bp and the longest contig of 1716 bp.

Following the guidance of SAVAGE tutorial, we set the overlap cut-

off as 180 bp. SAVAGE produced 64 contigs covering 97% of the

reference genomes, with a N50 of 1926 bp and the largest contigs of

7941 bp.

Comparing to IVA and MLEHaplo, PEHaplo is able to produce

longer contigs with fewer mismatches and indels on the simulated

HIV-1 dataset. SAVAGE also shows better performance than IVA

and MLEHaplo on this dataset, but it produced many short contigs

(N50 value 1926 bp versus 9262 bp of PEHaplo). Some of them can-

not be aligned to the reference genomes, leading to larger ‘unaligned

length’.

3.3.1 Paired-end reads guided path finding is able to generate

accurate long contigs

The greedy algorithm carefully utilizing paired-end information

plays a crucial role for producing high quality long contigs. In this

section, we focus on evaluating the performance of path finding and

investigating whether the improved performance of PEHaplo is sim-

ply due to the pruned graph or the combination of the pruned graph

and path finding algorithm. Thus, we applied popular de novo meta-

genomic assembly tools IDBA-UD (Peng et al., 2012) and Ray Meta

(Boisvert et al., 2012) on the pruned overlap graph that was used as

the input for path finding in PEHaplo. In addition, as SAVAGE is

the newest viral haplotype reconstruction tool and has better per-

formance than IVA and MLEHaplo, we also applied SAVAGE on

the same pruned overlap graph as PEHaplo.

With the same input reads or graph, we compared the output of

these tools using MetaQuast and presented the results in

Supplementary Table S4. The results revealed those contigs

assembled by IDBA-UD, Ray Meta and SAVAGE from the reduced

overlap graph are fragmented and cover only insufficient proportion

of the five reference genomes. These contigs have low rate of mis-

matches and indels, but their average lengths are much shorter than

PEHaplo. The experiments show that the paired-end guided path

finding algorithm in PEHaplo is essential for producing long haplo-

type segments from the viral quasispecies sequencing data.

3.4 Benchmark on HIV MiSeq dataset
To further assess the performance of assembly methods, we applied

PEHaplo on a real HIV quasispecies dataset (SRR961514),

sequenced from the mix of five HIV-1 strains with Illumin MiSeq

sequencing technology (Di Giallonardo et al., 2014). This dataset

contains 714 994 pairs (2 � 250 bp) of reads that cover the five

strains to 20 000�.

Similar pre-processing procedures were performed on the real

HIV quasispecies data. With 774 044 filtered and error corrected

reads, 98 947 reads were kept after removing duplicates and sub-

strings. Since the raw dataset has extremely high coverage on the

five strains, we still kept those reads that duplicate at least three

times in the raw dataset. After these pre-processing procedures,

26 691 reads were kept for strand adjustment and assembly.

PEHaplo produced 24 contigs from the real MiSeq HIV dataset

that can cover over 92% of the five HIV-1 strains. These contigs

have a N50 value of 2223 bp and the longest contig is 9133 bp. The

results are summarized in Table 2. Compared to simulated HIV

dataset, PEHaplo has generated more contigs but with a lower N50

value and higher mismatches and indels on the real dataset. We no-

tice that the real HIV dataset contains more sequencing errors and

has a larger variation for insert size than the simulated dataset.

The performance of PEHaplo was again compared with IVA,

MLEHaplo and SAVAGE. IVA generated 10 contigs that can cover

about 20% of the five strains. Similar to the simulated dataset, these

contigs still cover larger parts on haplotypes with higher sequencing

Table 1. Assembly results on simulated HIV dataset for IVA,

MLEHaplo, SAVAGE and PEHaplo. Contigs that are at least 500 bp

are aligned to the reference haplotype sequences with a similarity

cutoff of 98%

Tools Contigs

num

N50 Genomes

covered

(%)

Unaligned

length (bp)

Mismatch

rate (%)

Indels

(%)

IVA 1 13 434 28.7 0 0.809 0.051

MLEHaplo 205 671 78.0 81 125 0.542 0.008

SAVAGE 64 1926 97.32 4792 0.009 0.004

PEHaplo 10 9274 97.0 0 0.026 0.002
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coverage. With the same parameters as before, MLEHaplo produced

234 contigs that can cover over 53% of the five genomes with mis-

match and indel rates similar to the simulated dataset. It generated

much longer contigs on the real data, with a N50 value of 6501 bp

and the largest contig of 8470 bp. However, these contigs contain

many misjoined segments. Over 150 contigs with total length of

787 272 cannot align to any reference genomes. Since the SAVAGE

paper (Baaijens et al., 2017) has shown results on the same dataset,

the metrics in their literature are used for evaluation. From their re-

sults, SAVAGE produced 846 contigs covering over 92% of the ref-

erence genomes, with a N50 of 588 bp, and largest contig of

1221 bp (Table 2).

On the real HIV dataset, PEHaplo can still produce longer con-

tigs with fewer mismatches than all three benchmarked tools.

Overall, PEHaplo is able to assemble short reads sequenced from

multiple viral strains sharing high similarities, generating long, high

quality contigs that can reconstruct most of the target haplotypes. In

Supplementary Figure S5, we show the contig alignment result on

HXB2 strain for PEHaplo and SAVAGE. This figure clearly shows

that our tool usually produces fewer but longer contigs.

3.5 Benchmark on simulated biased HIV datasets
A major challenge in viral quasispecies assembly is to reconstruct

the low-abundance haplotypes. To evaluate the performance of our

methods on assembling low abundance strains, we used HIV strains

HXB2 and NL43 to simulate three groups of datasets with ex-

tremely biased coverages. We chose HXB2 and NL43 because they

share the highest similarity and longest common region among five

HIV strains, representing the hardest case for assembly. The total

coverage for each group is 1000�, with HXB2-900�, NL43-100�;

HXB2-950�, NL43-50�; and HXB2-990�, NL43-10� for each

group, respectively. These datasets contain 250 bp paired-end reads

produced by ART-illumina with average insert size of 600 bp and

standard deviation of 150 bp.

With the similar pre-processing procedures on HIV 5 strains

data, we used PEHaplo to assemble contigs from these datasets and

compared the results with SAVAGE, which has better performance

than MLEHaplo and IVA. The results are shown in Table 3.

The results reveal that both tools failed to assemble the rare

strain with 5% or 1% abundance. However, PEHaplo was able to

better assemble the dominant strain with one long contig. In add-

ition, when the rare strain reached 10% (100�) of the total cover-

age, PEHaplo could partially assemble it, while SAVAGE could only

assemble the dominant one.

3.6 Benchmark on influenza dataset
In addition to HIV data, we also applied PEHaplo on a real

Influenza H1N1 dataset (SRR1766219) sequenced from the mix of

a wild type (99%) and a mutant type (1%). This dataset is

sequenced with Illumina MiSeq sequencing technology, containing

646 879 pairs (2 � 250) of reads covering the two strains to

�23 000�. The mutant type carries two silent mutations in the M1

ORF (C354T and A645T, segment 7).

We first performed similar pre-processing on the Influenza data.

With 851 988 filtered and error corrected reads, 27 888 reads were

kept after removing duplicates and substrings. Still, those reads that

duplicate at least three times in the raw dataset were kept. After pre-

processing, 11 940 reads were kept for strand adjustment and

assembly.

It is worth noting that the H1N1 viruses have eight segmented

genomes. PEHaplo produced 10 contigs from the MiSeq Influenza

data, with eight contigs covering over 99% of the eight segments of

Influenza genome and two contigs unaligned. On the other hand,

SAVAGE produced 220 contigs with a N50 value of 620 bp. The re-

sults are summarized and compared in Table 4. The comparison

shows that PEHaplo works much better than SAVAGE on this

Influenza quasispecies data as it successfully assembled all the eight

segments.

This dataset contains a wild type and a rare mutant type (1%).

However, neither method can recover the two mutations in the rare

haplotype. In order to investigate this issue, we mapped all reads

back to the region of the rare haplotype that contains the two muta-

tions. The read mapping results clearly show that only several reads

contain the same bases as the mutant type, while all the other reads

support the wild type. Thus, with such low number of mapped

reads, existing information is not sufficient to distinguish true muta-

tions from sequencing errors. Long read sequencing platforms might

be a better choice for recovering the rare mutant type.

3.7 Computational time and memory usage
To evaluate the computational efficiency of our tool, we compare

the running time and peak memory usage of the tested tools on the

HIV 5-strain simulated data and also the real data. The results are

shown in Table 5. PEHaplo runs significantly faster than SAVAGE

and MLEHaplo. All the experiments were tested on a MSU HPCC

CentOS 6.8 node with Two 2.4Ghz 14-core Intel Xeon E5-2680v4

CPUs and 128GB memory. We used 4 threads for IVA, 16 threads

for SAVAGE and 1 thread for PEHaplo. The commands of running

Table 2. Assembly results on real HIV MiSeq dataset for IVA,

MLEHaplo, SAVAGE and PEHaplo

Tools Contigs

num

N50 Genomes

covered

(%)

Unaligned

length (bp)

Mismatch

rate (%)

Indels

(%)

IVA 10 1150 20.1 1150 0.660 0.052

MLEHaplo 234 6501 53.6 786 272 0.588 0.035

SAVAGE 846 588 92.6 0 0.161 0.040

PEHaplo 24 2223 92.98 0 0.016 0.045

Table 3. Assembly results on simulated biased HXB2-NL43 MiSeq

dataset for SAVAGE and PEHaplo

HXB2:

NL43

Tools Contig

num

N50 Genome

covered

(%)

Unaligned

length (bp)

Mismatch

rate (%)

Indels

(%)

900:100 SAVAGE 7 2 500 46.76 581 0.022 0

PEHaplo 11 8 163 80.26 0 0.038 0

950:50 SAVAGE 8 8 032 46.76 1817 0 0

PEHaplo 1 9 470 46.76 0 0.033 0.01

990:10 SAVAGE 13 2 130 46.75 1590 0.022 0

PEHaplo 1 9 509 48.95 0 0 0

Table 4. Assembly results on Influenza MiSeq dataset for SAVAGE

and PEHaplo

Tools Contig

num

N50 Genomes

covered

(%)

Unaligned

length (bp)

Mismatch

rate (%)

Indels

(%)

SAVAGE 220 620 96.3 38 303 0.818 0.046

PEHaplo 10 1 790 99.5 1 270 0.836 0.007
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these tools on HIV simulated data can be found in Supplementary

Material Section S8.

4 Discussion and conclusion

For paired-end reads, one may consider to combining read pairs into

a longer sequence before assembly. We applied existing read joining

tools for this purpose. However, joining reads is not a trivial task as

the overlapping part of the read pairs may not always be identical.

Thus, existing methods of joining two ends may introduce errors. In

addition, merging paired-end reads will lose the paired-end informa-

tion for guiding the path finding process. As a result, the experimen-

tal results using PEAR (Zhang et al., 2014) and other end merging

tools show inferior performance. Therefore, we did not include this

step in our pipeline.

The third-generation sequencing platforms such as PacBio can

produce very long reads, which can cover the whole length of viral

genomes. However, the high sequencing error rate (about 10%) and

the lower throughput than Illumina still hamper their wide applica-

tion for metagenomic sequencing. The advantages and limitations of

applying current long reads technologies for viral haplotypes recon-

struction are discussed in BAsE-Seq (Hong et al., 2014). With the

increased read quality, we expect to see more promising applications

of the third-generation sequencing to viral haplotype reconstruction.

Our method can be extended to metagenomic data if the member

species’ genomes have common regions with length smaller than

fragment size. However, our analysis has shown that many genes in

metagenomic data can have LCS sizes much greater than typical

fragment size. For those metagenomic data, large insert sizes should

be chosen for the sequencing protocol.

In conclusion, we present PEHaplo: a de novo viral haplotype re-

construction tool for viral quasispecies. It does not need references.

When the references are available, it may be preferable to use

reference-based methods.
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